On Symplectic Inner and Outer Radii

Yaron Ostrover
Tel-Aviv University

Joint with: Vinicius G. B. Ramos (IMPA)

Seminário Geometria em Lisboa, October 2020

The Symplectic Embedding Problem

When is there a symplectic embedding $\left(M_{1}, \omega_{1}\right) \hookrightarrow\left(M_{2}, \omega_{2}\right)$?

The Symplectic Embedding Problem

When is there a symplectic embedding $\left(M_{1}, \omega_{1}\right) \hookrightarrow\left(M_{2}, \omega_{2}\right)$?

- Tremendously difficult question!

The Symplectic Embedding Problem

When is there a symplectic embedding $\left(M_{1}, \omega_{1}\right) \hookrightarrow\left(M_{2}, \omega_{2}\right)$?

- Tremendously difficult question!
- Major driving force in Symplectic Topology.

The Symplectic Embedding Problem

When is there a symplectic embedding $\left(M_{1}, \omega_{1}\right) \hookrightarrow\left(M_{2}, \omega_{2}\right)$?

- Tremendously difficult question!
- Major driving force in Symplectic Topology.
- Goes back to Gromov's celebrated nonsqueezing theorem

Gromov' s non squeezing theorem (1985):

The McDuff-Schlenk Infinite Fibonacci stairs

The McDuff-Schlenk Infinite Fibonacci stairs

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right.\right\}
$$

The McDuff-Schlenk Infinite Fibonacci stairs

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right.\right\}
$$

Define the ellipsoid embedding function to the ball by

$$
c(a):=\inf \left\{\mu>0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu)\right\}
$$

The McDuff-Schlenk Infinite Fibonacci stairs

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right.\right\}
$$

Define the ellipsoid embedding function to the ball by

$$
c(a):=\inf \left\{\mu>0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu)\right\}
$$

Note: One has $c(a) \geq \sqrt{a}$ by the volume obstruction

The McDuff-Schlenk Infinite Fibonacci stairs

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right.\right\}
$$

Define the ellipsoid embedding function to the ball by

$$
c(a):=\inf \left\{\mu>0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu)\right\}
$$

Note: One has $c(a) \geq \sqrt{a}$ by the volume obstruction

$a=2 \quad$ "Symplectic Rigidity"
$a=4 \quad$ "Symplectic Flexibility"

Symplectic Inner and Outer Radii

Symplectic Inner and Outer Radii

Question: For an open set $U \subset \mathbb{R}^{4}$ find the optimal r, R such that

$$
B^{4}[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} B^{4}[R]
$$

Symplectic Inner and Outer Radii

Question: For an open set $U \subset \mathbb{R}^{4}$ find the optimal r, R such that

$$
B^{4}[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} B^{4}[R]
$$

Note: Very little is known already in the case of a rotated cube.

Symplectic Inner and Outer Radii

Question: For an open set $U \subset \mathbb{R}^{4}$ find the optimal r, R such that

$$
B^{4}[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} B^{4}[R]
$$

Note: Very little is known already in the case of a rotated cube.
Question: Which class of domains is "natural" to study?

The Phase space $\mathbb{R}^{2 n}$ as p-sum of Lagrangian Subspaces

The Phase space $\mathbb{R}^{2 n}$ as p-sum of Lagrangian Subspaces

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$

The Phase space $\mathbb{R}^{2 n}$ as p-sum of Lagrangian Subspaces

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\leadsto \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|y\|_{T}$

The Phase space $\mathbb{R}^{2 n}$ as p-sum of Lagrangian Subspaces

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \rightsquigarrow\|y\|_{T}$
Consider $\mathbb{R}^{2 n}$ as the p-sum of two normed spaces, i.e.,

$$
\|(x, y)\|_{p}=\left\{\begin{array}{ll}
\left(\|x\|_{K}^{p}+\|y\|_{T}^{p}\right)^{1 / p}, & \text { for } 1 \leq p<\infty \\
\max \left\{\|x\|_{K},\|y\|_{Y}\right\}, & \text { for } p=\infty
\end{array}\right\}
$$

The Phase space $\mathbb{R}^{2 n}$ as p-sum of Lagrangian Subspaces

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\leadsto \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \rightsquigarrow\|y\|_{T}$
Consider $\mathbb{R}^{2 n}$ as the p-sum of two normed spaces, i.e.,

$$
\|(x, y)\|_{p}=\left\{\begin{array}{ll}
\left(\|x\|_{K}^{p}+\|y\|_{T}^{p}\right)^{1 / p}, & \text { for } 1 \leq p<\infty \\
\max \left\{\|x\|_{K},\|y\|_{Y}\right\}, & \text { for } p=\infty
\end{array}\right\}
$$

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
Denote by $r\left(\mathbb{X}_{p}\right)$ and $R\left(\mathbb{X}_{p}\right)$ the symplectic inner and outer radii

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
Denote by $r\left(\mathbb{X}_{p}\right)$ and $R\left(\mathbb{X}_{p}\right)$ the symplectic inner and outer radii

$$
r\left(\mathbb{X}_{p}\right)=\left\{\begin{array}{ll}
2 \pi\left(\frac{1}{4}\right)^{1 / p}, & \text { for } 1 \leq p \leq 2 \\
\frac{4 \Gamma\left(1+\frac{1}{p}\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}, & \text { for } 2 \leq p
\end{array}\right\}
$$

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
Denote by $r\left(\mathbb{X}_{p}\right)$ and $R\left(\mathbb{X}_{p}\right)$ the symplectic inner and outer radii

$$
\begin{gathered}
r\left(\mathbb{X}_{p}\right)=\left\{\begin{array}{ll}
2 \pi\left(\frac{1}{4}\right)^{1 / p}, & \text { for } 1 \leq p \leq 2 \\
\frac{4 \Gamma\left(1+\frac{1}{p}\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}, & \text { for } 2 \leq p
\end{array}\right\} \\
R\left(\mathbb{X}_{p}\right)=\left\{\begin{array}{ll}
\frac{4 \Gamma\left(1+\frac{1}{p}\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}, & \text { for } 1 \leq p \leq 2 \\
2 \pi\left(\frac{1}{4}\right)^{1 / p}, & \text { for } 2 \leq p \leq 9 / 2 \\
\text { "complicated function of } p^{\prime \prime}, & \text { for } 9 / 2<p
\end{array}\right\}
\end{gathered}
$$

Inner and Outer Radii of the ℓ_{p}-sum of Disks

Using the theory of integrable Hamiltonian systems we showed:
Theorem (O, Ramos)
Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
Denote by $r\left(\mathbb{X}_{p}\right)$ and $R\left(\mathbb{X}_{p}\right)$ the symplectic inner and outer radii

$$
\begin{gathered}
r\left(\mathbb{X}_{p}\right)=\left\{\begin{array}{ll}
2 \pi\left(\frac{1}{4}\right)^{1 / p}, & \text { for } 1 \leq p \leq 2 \\
\frac{4 \Gamma\left(1+\frac{1}{p}\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}, & \text { for } 2 \leq p
\end{array}\right\} \\
R\left(\mathbb{X}_{p}\right)=\left\{\begin{array}{ll}
\frac{4 \Gamma\left(1+\frac{1}{p}\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}, & \text { for } 1 \leq p \leq 2 \\
2 \pi\left(\frac{1}{4}\right)^{1 / p}, & \text { for } 2 \leq p \leq 9 / 2 \\
\text { "complicated function of } p^{\prime \prime}, & \text { for } 9 / 2<p
\end{array}\right\}
\end{gathered}
$$

Remark: The case $p=\infty$ was previously studied by V . Ramos, and is closely related with billiard dynamics!

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^{2} is the preimage of the region $\Omega \subset \mathbb{R}_{\geq 0}^{2}$ under the map $\left(z_{1}, z_{2}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right)$.

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^{2} is the preimage of the region $\Omega \subset \mathbb{R}_{\geq 0}^{2}$ under the map $\left(z_{1}, z_{2}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right)$.

Example (Cylinder)

$$
z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}
$$

Example (Ellipsoid)
$\pi\left|z_{2}\right|^{2}$

$E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}$

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^{2} is the preimage of the region $\Omega \subset \mathbb{R}_{\geq 0}^{2}$ under the map $\left(z_{1}, z_{2}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right)$.

$Z(a):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq a\right\}$

Example (Ellipsoid)

$E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}$

Theorem (O, Ramos)
$\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$ is symplectomorphic to a convex/concave toric domain $X_{\Omega_{p}}$.

The ℓ_{p}-sum of Disks as a Toric Domain

Theorem (O, Ramos)

$\mathbb{X}_{p} \stackrel{s}{\simeq} X_{\Omega_{p}}$ where $\Omega_{p} \subseteq \mathbb{R}_{\geq 0}^{2}$ is bounded by the axes and the curve

$$
\left\{\begin{array}{ll}
\left(2 \pi v+g_{p}(v), g_{p}(v)\right), & \text { for } v \in\left[0,(1 / 4)^{1 / p}\right] \\
\left(g_{p}(-v),-2 \pi v+g_{p}(-v)\right), & \text { for } v \in\left[-(1 / 4)^{1 / p}, 0\right]
\end{array}\right\}
$$

where $g_{p}:\left[0,(1 / 4)^{1 / p}\right] \rightarrow \mathbb{R}$ is given by

$$
g_{p}(v)=2 \int_{\left(\frac{1}{2}-\sqrt{\frac{1}{4}-v^{p}}\right)^{1 / p}}^{\left(\frac{1}{\frac{1}{4}-v^{p}}\right)^{1 / p}} \sqrt{\left(1-r^{p}\right)^{2 / p}-\frac{v^{2}}{r^{2}}} d r
$$

(a) $p=1$

(b) $p=2$

(c) $p=6$

Figure 1: The set Ω_{p} for different values of p

The Rigidity and Flexibility of the Embeddings

The Rigidity and Flexibility of the Embeddings

Let X_{1} and X_{2} be subdomains in \mathbb{R}^{4}.

The Rigidity and Flexibility of the Embeddings

Let X_{1} and X_{2} be subdomains in \mathbb{R}^{4}.

- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be rigid if $X_{1} \stackrel{s}{\hookrightarrow} \alpha X_{2} \Longleftrightarrow X_{1} \subseteq \alpha X_{2}$
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be torically rigid if $X_{i} \stackrel{s}{\sim} X_{\Omega_{i}}$, and the embedding $X_{\Omega_{1}} \stackrel{s}{\hookrightarrow} X_{\Omega_{2}}$ is rigid.
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be non rigid if neither (1) or (2).

The Rigidity and Flexibility of the Embeddings

Let X_{1} and X_{2} be subdomains in \mathbb{R}^{4}.

- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be rigid if $X_{1} \stackrel{s}{\hookrightarrow} \alpha X_{2} \Longleftrightarrow X_{1} \subseteq \alpha X_{2}$
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be torically rigid if $X_{i} \stackrel{s}{\sim} X_{\Omega_{i}}$, and the embedding $X_{\Omega_{1}} \stackrel{s}{\hookrightarrow} X_{\Omega_{2}}$ is rigid.
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be non rigid if neither (1) or (2).

Theorem (O, Ramos)

- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is torically rigid for $1 \leq p$
- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is rigid for $1 \leq p \leq 2$

The Rigidity and Flexibility of the Embeddings

Let X_{1} and X_{2} be subdomains in \mathbb{R}^{4}.

- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be rigid if $X_{1} \stackrel{s}{\hookrightarrow} \alpha X_{2} \Longleftrightarrow X_{1} \subseteq \alpha X_{2}$
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be torically rigid if $X_{i} \stackrel{s}{\sim} X_{\Omega_{i}}$, and the embedding $X_{\Omega_{1}} \stackrel{s}{\hookrightarrow} X_{\Omega_{2}}$ is rigid.
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be non rigid if neither (1) or (2).

Theorem (O, Ramos)

- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is torically rigid for $1 \leq p$
- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is rigid for $1 \leq p \leq 2$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is torically rigid for $1 \leq p \leq \frac{9}{2}$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is rigid for $2 \leq p \leq \frac{9}{2}$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is non rigid for $\frac{9}{2}<p$

The Rigidity and Flexibility of the Embeddings

Let X_{1} and X_{2} be subdomains in \mathbb{R}^{4}.

- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be rigid if $X_{1} \stackrel{s}{\hookrightarrow} \alpha X_{2} \Longleftrightarrow X_{1} \subseteq \alpha X_{2}$
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be torically rigid if $X_{i} \stackrel{s}{\sim} X_{\Omega_{i}}$, and the embedding $X_{\Omega_{1}} \stackrel{s}{\hookrightarrow} X_{\Omega_{2}}$ is rigid.
- $X_{1} \stackrel{s}{\hookrightarrow} X_{2}$ is said to be non rigid if neither (1) or (2).

Theorem (O, Ramos)

- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is torically rigid for $1 \leq p$
- $B^{4}[r] \stackrel{s}{\hookrightarrow} \mathbb{X}_{p}$ is rigid for $1 \leq p \leq 2$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is torically rigid for $1 \leq p \leq \frac{9}{2}$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is rigid for $2 \leq p \leq \frac{9}{2}$
- $\mathbb{X}_{p} \stackrel{s}{\hookrightarrow} B^{4}[r]$ is non rigid for $\frac{9}{2}<p$

Integrable systems and toric domains

Integrable systems and toric domains

$$
\text { Let }(M, \omega), \text { and } F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n} \text { s.t. }\left\{H_{i}, H_{j}\right\}=0
$$

Integrable systems and toric domains

Let (M, ω), and $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ s.t. $\left\{H_{i}, H_{j}\right\}=0$.
Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. \& conn., then $F^{-1}(c) \simeq \mathbb{T}^{n}$.

Integrable systems and toric domains

Let (M, ω), and $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ s.t. $\left\{H_{i}, H_{j}\right\}=0$.
Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. \& conn., then $F^{-1}(c) \simeq \mathbb{T}^{n}$.
- $U \subseteq M$ open s.t. $F(U)$ simply connected without crit. values. For $c \in F(U)$, let $\left\{\gamma_{1}^{c}, \ldots, \gamma_{n}^{c}\right\}$ generating $H_{1}\left(F^{-1}(c)\right)$, and

$$
\varphi(c)=\left(\int_{\gamma_{1}^{c}} \lambda, \ldots, \int_{\gamma_{n}^{c}} \lambda\right), \quad \omega=d \lambda \text { on } U .
$$

Then, φ is a diff with image B, and there is symp Φ such that

Integrable systems and toric domains

Let (M, ω), and $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ s.t. $\left\{H_{i}, H_{j}\right\}=0$.
Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. \& conn., then $F^{-1}(c) \simeq \mathbb{T}^{n}$.
- $U \subseteq M$ open s.t. $F(U)$ simply connected without crit. values. For $c \in F(U)$, let $\left\{\gamma_{1}^{c}, \ldots, \gamma_{n}^{c}\right\}$ generating $H_{1}\left(F^{-1}(c)\right)$, and

$$
\varphi(c)=\left(\int_{\gamma_{1}^{c}} \lambda, \ldots, \int_{\gamma_{n}^{c}} \lambda\right), \quad \omega=d \lambda \text { on } U .
$$

Then, φ is a diff with image B, and there is symp Φ such that

Integrable systems and toric domains

Let (M, ω), and $F=\left(H_{1}, \ldots, H_{n}\right): M \rightarrow \mathbb{R}^{n}$ s.t. $\left\{H_{i}, H_{j}\right\}=0$.
Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. \& conn., then $F^{-1}(c) \simeq \mathbb{T}^{n}$.
- $U \subseteq M$ open s.t. $F(U)$ simply connected without crit. values. For $c \in F(U)$, let $\left\{\gamma_{1}^{c}, \ldots, \gamma_{n}^{c}\right\}$ generating $H_{1}\left(F^{-1}(c)\right)$, and

$$
\varphi(c)=\left(\int_{\gamma_{1}^{c}} \lambda, \ldots, \int_{\gamma_{n}^{c}} \lambda\right), \quad \omega=d \lambda \text { on } U .
$$

Then, φ is a diff with image B, and there is symp Φ such that

Remark: $B \subset \mathbb{R}_{\geq 0}^{2}$ and X_{B} is a toric domain!

The ℓ_{p}-sum of Disks as a Toric Domain

$$
\text { Let } \mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}, \text { for } 1 \leq p<\infty
$$

The ℓ_{p}-sum of Disks as a Toric Domain

Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
We have one natural Hamiltonian function

$$
H_{p}(x, y)=|x|^{p}+|y|^{p}
$$

The ℓ_{p}-sum of Disks as a Toric Domain

Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
We have one natural Hamiltonian function

$$
H_{p}(x, y)=|x|^{p}+|y|^{p}
$$

A commuting Hamiltonian function is the angular momentum:

$$
V(x, y)=x \otimes y=y_{1} x_{2}-y_{2} x_{1}
$$

The ℓ_{p}-sum of Disks as a Toric Domain

Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
We have one natural Hamiltonian function

$$
H_{p}(x, y)=|x|^{p}+|y|^{p}
$$

A commuting Hamiltonian function is the angular momentum:

$$
V(x, y)=x \otimes y=y_{1} x_{2}-y_{2} x_{1}
$$

Note: One should be careful with certain regularity issues when applying the Arnold-Liouville theorem in this case!

The ℓ_{p}-sum of Disks as a Toric Domain

Let $\mathbb{X}_{p}=\left\{(x, y) \in \mathbb{R}_{x}^{2} \times\left.\mathbb{R}_{y}^{2}| | x\right|^{p}+|y|^{p}<1\right\}$, for $1 \leq p<\infty$
We have one natural Hamiltonian function

$$
H_{p}(x, y)=|x|^{p}+|y|^{p}
$$

A commuting Hamiltonian function is the angular momentum:

$$
V(x, y)=x \otimes y=y_{1} x_{2}-y_{2} x_{1}
$$

Note: One should be careful with certain regularity issues when applying the Arnold-Liouville theorem in this case!

Conclusion: By a careful computation of the action-angle coordinates, one gets the identification $\mathbb{X}_{p} \stackrel{s}{\sim} X_{\Omega_{p}}$, where $X_{\Omega_{p}}$ is the concave/convex domain mentioned above.

Toric Domains in Disguise

Toric Domains in Disguise

- The Lagrangian bidisc $D \oplus D \subset \mathbb{R}_{x}^{2} \otimes \mathbb{R}_{y}^{2}$ (the domain \mathbb{X}_{∞}) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary $\partial(D \oplus D)$ correspond to billiard dynamics in the disc D.

Toric Domains in Disguise

- The Lagrangian bidisc $D \oplus D \subset \mathbb{R}_{x}^{2} \otimes \mathbb{R}_{y}^{2}$ (the domain \mathbb{X}_{∞}) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary $\partial(D \oplus D)$ correspond to billiard dynamics in the disc D.
- The Lagrangian product of a hypercube and a "symmetric" region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).

Toric Domains in Disguise

- The Lagrangian bidisc $D \oplus D \subset \mathbb{R}_{x}^{2} \otimes \mathbb{R}_{y}^{2}$ (the domain \mathbb{X}_{∞}) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary $\partial(D \oplus D)$ correspond to billiard dynamics in the disc D.
- The Lagrangian product of a hypercube and a "symmetric" region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).
- The Lagrangian product of an equilateral triangle and a sufficiently symmetric region in \mathbb{R}^{2} is symplectomorphic to a toric domain (O-Ramos-Sepe, in progress).

Toric Domains in Disguise

- The Lagrangian bidisc $D \oplus D \subset \mathbb{R}_{x}^{2} \otimes \mathbb{R}_{y}^{2}$ (the domain \mathbb{X}_{∞}) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary $\partial(D \oplus D)$ correspond to billiard dynamics in the disc D.
- The Lagrangian product of a hypercube and a "symmetric" region in $\mathbb{R}^{2 n}$ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).
- The Lagrangian product of an equilateral triangle and a sufficiently symmetric region in \mathbb{R}^{2} is symplectomorphic to a toric domain (O-Ramos-Sepe, in progress).

Question: Are there convex sets which are not symplectomorphic to toric domains?

Back to Symplectic Inner and Outer Radii

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $m\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $u \Rightarrow\|y\|_{T}$

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $n \rightarrow\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $u \rightarrow\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\rightsquigarrow\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
The dynamics on $\partial(K \times T)$ may be interpreted as Finsler Bililard dynamics, where K plays the role of a billiard table, and T defines a Minkowski geometry, which controls the billaird dynamics in K.

Characteristic foliation on $\partial(K \times T)$

Consider $H(x, y)=\max \left\{\|x\|_{K},\|y\|_{T}\right\}$ (singular function)
The 1-level set is $\partial(K \times T)$.

$$
\mathfrak{X}_{H}(x, y)= \begin{cases}\left(\nabla\|y\|_{T}, 0\right), & (x, y) \in \operatorname{int}(K) \times \partial T \\ \left(0,-\nabla\|x\|_{K}\right), & (x, y) \in \partial K \times \operatorname{int}(T), \\ (?, ?) & (x, y) \in \partial(K) \times \partial(T)\end{cases}
$$

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \rightsquigarrow\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\leadsto \rightsquigarrow\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Remark II: In particular, if one can show that the symplectic inradius of $K \times K^{*}$ is 4 , this would settle an 80-years old open conjecture in convex geometry known as "Mahler Conjecture" (but this is a story for a different lecture...).

Back to Symplectic Inner and Outer Radii

Consider the Lagrangian splitting: $\mathbb{R}^{2 n}=\mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Let $K \subset \mathbb{R}_{x}^{n}$ be a centrally symmetric convex body $\leadsto \leadsto\|x\|_{K}$
Let $T \subset \mathbb{R}_{y}^{n}$ be a centrally symmetric convex body $\rightsquigarrow \leadsto\|y\|_{T}$
Consider the Lagrangian product $K \times T \subset \mathbb{R}_{x}^{n} \oplus \mathbb{R}_{y}^{n}$
Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Remark II: In particular, if one can show that the symplectic inradius of $K \times K^{*}$ is 4 , this would settle an 80-years old open conjecture in convex geometry known as "Mahler Conjecture" (but this is a story for a different lecture...).

THANK YOU VERY MUCH!

