Yaron Ostrover Tel-Aviv University

Joint with: Vinicius G. B. Ramos (IMPA)

Seminário Geometria em Lisboa, October 2020

When is there a symplectic embedding $(M_1, \omega_1) \hookrightarrow (M_2, \omega_2)$?

When is there a symplectic embedding $(M_1, \omega_1) \hookrightarrow (M_2, \omega_2)$?

Tremendously difficult question!

When is there a symplectic embedding $(M_1, \omega_1) \hookrightarrow (M_2, \omega_2)$?

- Tremendously difficult question!
- Major driving force in Symplectic Topology.

When is there a symplectic embedding $(M_1, \omega_1) \hookrightarrow (M_2, \omega_2)$?

- Tremendously difficult question!
- Major driving force in Symplectic Topology.
- Goes back to Gromov's celebrated nonsqueezing theorem

$$E(a,b) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} < 1 \right\}$$

$$E(a,b) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} < 1 \right\}$$

Define the ellipsoid embedding function to the ball by

$$c(a) := \inf \left\{ \mu > 0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu) \right\}$$

$$E(a,b) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} < 1 \right\}$$

Define the ellipsoid embedding function to the ball by

$$c(a) := \inf \left\{ \mu > 0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu) \right\}$$

Note: One has $c(a) \ge \sqrt{a}$ by the volume obstruction

$$E(a,b) := \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} < 1 \right\}$$

Define the ellipsoid embedding function to the ball by

$$c(a) := \inf \left\{ \mu > 0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B^{4}(\mu) \right\}$$

Note: One has $c(a) \ge \sqrt{a}$ by the volume obstruction

Question: For an open set $U \subset \mathbb{R}^4$ find the optimal *r*, *R* such that

$$B^4[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} B^4[R]$$

Question: For an open set $U \subset \mathbb{R}^4$ find the optimal *r*, *R* such that

$$\mathsf{B}^4[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} \mathsf{B}^4[R]$$

Note: Very little is known already in the case of a rotated cube.

Question: For an open set $U \subset \mathbb{R}^4$ find the optimal r, R such that

$$\mathsf{B}^4[r] \stackrel{s}{\hookrightarrow} U \stackrel{s}{\hookrightarrow} B^4[R]$$

Note: Very little is known already in the case of a rotated cube. **Question:** Which class of domains is "natural" to study?

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}^n_x \oplus \mathbb{R}^n_y$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}^n_x \oplus \mathbb{R}^n_y$

Let $\mathcal{K} \subset \mathbb{R}^n_x$ be a centrally symmetric convex body $\nleftrightarrow \|x\|_\mathcal{K}$

Let $\mathcal{T} \subset \mathbb{R}^n_{\mathcal{V}}$ be a centrally symmetric convex body $\leftrightsquigarrow \|y\|_{\mathcal{T}}$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider \mathbb{R}^{2n} as the *p*-sum of two normed spaces, i.e.,

$$\|(x,y)\|_{p} = \left\{ \begin{pmatrix} \|x\|_{K}^{p} + \|y\|_{T}^{p} \end{pmatrix}^{1/p}, & \text{for } 1 \le p < \infty \\ \max\{\|x\|_{K}, \|y\|_{Y}\}, & \text{for } p = \infty \end{cases} \right\}$$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider \mathbb{R}^{2n} as the *p*-sum of two normed spaces, i.e.,

$$\|(x,y)\|_{p} = \begin{cases} \left(\|x\|_{K}^{p} + \|y\|_{T}^{p}\right)^{1/p}, & \text{for } 1 \le p < \infty \\ \max\{\|x\|_{K}, \|y\|_{Y}\}, & \text{for } p = \infty \end{cases} \end{cases}$$

Using the theory of integrable Hamiltonian systems we showed:

Using the theory of integrable Hamiltonian systems we showed: Theorem (O, Ramos)

Let $\mathbb{X}_p = \left\{ (x, y) \in \mathbb{R}^2_x imes \mathbb{R}^2_y \mid |x|^p + |y|^p < 1 \right\}$, for $1 \le p < \infty$

Using the theory of integrable Hamiltonian systems we showed: Theorem (O, Ramos)

Let $\mathbb{X}_p = \left\{ (x, y) \in \mathbb{R}^2_x imes \mathbb{R}^2_y \mid |x|^p + |y|^p < 1 \right\}$, for $1 \le p < \infty$

Denote by $r(X_p)$ and $R(X_p)$ the symplectic inner and outer radii

Using the theory of integrable Hamiltonian systems we showed: Theorem (O, Ramos)

Let $\mathbb{X}_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ Denote by $r(\mathbb{X}_p)$ and $R(\mathbb{X}_p)$ the symplectic inner and outer radii

$$r(\mathbb{X}_p) = \begin{cases} 2\pi(\frac{1}{4})^{1/p}, & \text{for } 1 \le p \le 2\\ \frac{4\Gamma(1+\frac{1}{p})^2}{\Gamma(1+\frac{2}{p})}, & \text{for } 2 \le p \end{cases} \end{cases}$$

Using the theory of integrable Hamiltonian systems we showed: Theorem (O, Ramos)

Let $\mathbb{X}_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ Denote by $r(\mathbb{X}_p)$ and $R(\mathbb{X}_p)$ the symplectic inner and outer radii

$$r(\mathbb{X}_p) = \begin{cases} 2\pi (\frac{1}{4})^{1/p}, & \text{for } 1 \le p \le 2\\ \frac{4\Gamma (1+\frac{1}{p})^2}{\Gamma (1+\frac{2}{p})}, & \text{for } 2 \le p \end{cases} \end{cases}$$

$$R(\mathbb{X}_p) = \begin{cases} \frac{4\Gamma(1+\frac{1}{p})^2}{\Gamma(1+\frac{2}{p})}, & \text{for } 1 \le p \le 2\\ 2\pi(\frac{1}{4})^{1/p}, & \text{for } 2 \le p \le 9/2\\ \text{"complicated function of p"}, & \text{for } \frac{9/2 < p}{p} \end{cases}$$

Using the theory of integrable Hamiltonian systems we showed: Theorem (O, Ramos)

Let $\mathbb{X}_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ Denote by $r(\mathbb{X}_p)$ and $R(\mathbb{X}_p)$ the symplectic inner and outer radii

$$r(\mathbb{X}_p) = \begin{cases} 2\pi (\frac{1}{4})^{1/p}, & \text{for } 1 \le p \le 2\\ \frac{4\Gamma (1+\frac{1}{p})^2}{\Gamma (1+\frac{2}{p})}, & \text{for } 2 \le p \end{cases} \end{cases}$$

$$R(\mathbb{X}_p) = \begin{cases} \frac{4\Gamma(1+\frac{1}{p})^2}{\Gamma(1+\frac{2}{p})}, & \text{for } 1 \le p \le 2\\ 2\pi(\frac{1}{4})^{1/p}, & \text{for } 2 \le p \le 9/2\\ \text{"complicated function of p"}, & \text{for } \frac{9/2 < p}{p} \end{cases}$$

Remark: The case $p = \infty$ was previously studied by V. Ramos, and is closely related with billiard dynamics!

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^2 is the preimage of the region $\Omega \subset \mathbb{R}^2_{\geq 0}$ under the map $(z_1, z_2) \mapsto (\pi |z_1|^2, \pi |z_2|^2)$.

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^2 is the preimage of the region $\Omega \subset \mathbb{R}^2_{\geq 0}$ under the map $(z_1, z_2) \mapsto (\pi |z_1|^2, \pi |z_2|^2)$.

Toric Domains

A toric domain X_{Ω} in \mathbb{C}^2 is the preimage of the region $\Omega \subset \mathbb{R}^2_{\geq 0}$ under the map $(z_1, z_2) \mapsto (\pi |z_1|^2, \pi |z_2|^2)$.

Theorem (O, Ramos)

 $\mathbb{X}_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}, \text{ for } 1 \leq p < \infty$ is symplectomorphic to a **convex/concave** toric domain X_{Ω_p} .

Theorem (O, Ramos)

 $\mathbb{X}_p \stackrel{s}{\simeq} X_{\Omega_p}$ where $\Omega_p \subseteq \mathbb{R}^2_{\geq 0}$ is bounded by the axes and the curve

$$\begin{cases} (2\pi v + g_{p}(v), g_{p}(v)), & \text{for } v \in [0, (1/4)^{1/p}] \\ (g_{p}(-v), -2\pi v + g_{p}(-v)), & \text{for } v \in [-(1/4)^{1/p}, 0] \end{cases}$$

where $g_{p}:[0,(1/4)^{1/p}] \rightarrow \mathbb{R}$ is given by

Figure 1: The set Ω_p for different values of p

Let X_1 and X_2 be subdomains in \mathbb{R}^4 .

Let X_1 and X_2 be subdomains in \mathbb{R}^4 .

- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>rigid</u> if $X_1 \stackrel{s}{\hookrightarrow} \alpha X_2 \iff X_1 \subseteq \alpha X_2$
- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>torically rigid</u> if $X_i \stackrel{s}{\simeq} X_{\Omega_i}$, and the embedding $X_{\Omega_1} \stackrel{s}{\hookrightarrow} X_{\Omega_2}$ is rigid.
- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>non rigid</u> if neither (1) or (2).

Let X_1 and X_2 be subdomains in \mathbb{R}^4 .

- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>rigid</u> if $X_1 \stackrel{s}{\hookrightarrow} \alpha X_2 \iff X_1 \subseteq \alpha X_2$
- X₁ ^s→ X₂ is said to be <u>torically rigid</u> if X_i ^s→ X_{Ωi}, and the embedding X_{Ω1} ^s→ X_{Ω2} is rigid.
- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>non rigid</u> if neither (1) or (2).

Theorem (O, Ramos)

Let X_1 and X_2 be subdomains in \mathbb{R}^4 .

- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>rigid</u> if $X_1 \stackrel{s}{\hookrightarrow} \alpha X_2 \iff X_1 \subseteq \alpha X_2$
- X₁ ^s→ X₂ is said to be <u>torically rigid</u> if X_i ^s→ X_{Ωi}, and the embedding X_{Ω1} ^s→ X_{Ω2} is rigid.
- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>non rigid</u> if neither (1) or (2).

Theorem (O, Ramos)

Let X_1 and X_2 be subdomains in \mathbb{R}^4 .

- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>rigid</u> if $X_1 \stackrel{s}{\hookrightarrow} \alpha X_2 \Longleftrightarrow X_1 \subseteq \alpha X_2$
- X₁ ^s→ X₂ is said to be <u>torically rigid</u> if X_i ^s→ X_{Ωi}, and the embedding X_{Ω1} ^s→ X_{Ω2} is rigid.
- $X_1 \stackrel{s}{\hookrightarrow} X_2$ is said to be <u>non rigid</u> if neither (1) or (2).

Theorem (O, Ramos)

▶
$$B^4[r] \xrightarrow{s} X_p$$
 is torically rigid for $1 \le p$
▶ $B^4[r] \xrightarrow{s} X_p$ is rigid for $1 \le p \le 2$
▶ $X_p \xrightarrow{s} B^4[r]$ is torically rigid for $1 \le p \le \frac{9}{2}$
▶ $X_p \xrightarrow{s} B^4[r]$ is rigid for $2 \le p \le \frac{9}{2}$
▶ $X_p \xrightarrow{s} B^4[r]$ is non rigid for $2 \le p \le \frac{9}{2}$
▶ $X_p \xrightarrow{s} B^4[r]$ is non rigid for $\frac{9}{2} < p$

Let
$$(M, \omega)$$
, and $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ s.t. $\{H_i, H_j\} = 0$.

Let
$$(M, \omega)$$
, and $F = (H_1, \ldots, H_n) : M \to \mathbb{R}^n$ s.t. $\{H_i, H_j\} = 0$.

Theorem (Arnold-Liouville)

• If c regular, and $F^{-1}(c)$ comp. & conn., then $F^{-1}(c) \simeq \mathbb{T}^n$.

Let (M, ω) , and $F = (H_1, ..., H_n) : M \to \mathbb{R}^n$ s.t. $\{H_i, H_j\} = 0$. Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. & conn., then $F^{-1}(c) \simeq \mathbb{T}^n$.
- ▶ $U \subseteq M$ open s.t. F(U) simply connected without crit. values. For $c \in F(U)$, let $\{\gamma_1^c, ..., \gamma_n^c\}$ generating $H_1(F^{-1}(c))$, and

$$\varphi(c) = \left(\int_{\gamma_1^c} \lambda, \ldots, \int_{\gamma_n^c} \lambda\right), \quad \omega = d\lambda \text{ on } U.$$

Then, φ is a diff with image B, and there is symp Φ such that

Let (M, ω) , and $F = (H_1, ..., H_n) : M \to \mathbb{R}^n$ s.t. $\{H_i, H_j\} = 0$. Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. & conn., then $F^{-1}(c) \simeq \mathbb{T}^n$.
- ▶ $U \subseteq M$ open s.t. F(U) simply connected without crit. values. For $c \in F(U)$, let $\{\gamma_1^c, ..., \gamma_n^c\}$ generating $H_1(F^{-1}(c))$, and

$$\varphi(c) = \left(\int_{\gamma_1^c} \lambda, \ldots, \int_{\gamma_n^c} \lambda\right), \quad \omega = d\lambda \text{ on } U.$$

Then, φ is a diff with image B, and there is symp Φ such that

$$\begin{array}{ccc} U & \stackrel{\Phi}{\longrightarrow} B \times \mathbb{T}^n \\ & & & \downarrow^{\pi_1} \\ F(U) & \stackrel{\varphi}{\longrightarrow} & B \end{array}$$

Let (M, ω) , and $F = (H_1, ..., H_n) : M \to \mathbb{R}^n$ s.t. $\{H_i, H_j\} = 0$. Theorem (Arnold-Liouville)

- If c regular, and $F^{-1}(c)$ comp. & conn., then $F^{-1}(c) \simeq \mathbb{T}^n$.
- ▶ $U \subseteq M$ open s.t. F(U) simply connected without crit. values. For $c \in F(U)$, let $\{\gamma_1^c, ..., \gamma_n^c\}$ generating $H_1(F^{-1}(c))$, and

$$\varphi(c) = \left(\int_{\gamma_1^c} \lambda, \ldots, \int_{\gamma_n^c} \lambda\right), \quad \omega = d\lambda \text{ on } U.$$

Then, φ is a diff with image B, and there is symp Φ such that

$$\begin{array}{ccc} U & \stackrel{\Phi}{\longrightarrow} B \times \mathbb{T}^n \\ \downarrow_F & & \downarrow_{\pi_1} \\ F(U) & \stackrel{\varphi}{\longrightarrow} & B \end{array}$$

Remark: $B \subset \mathbb{R}^2_{>0}$ and X_B is a toric domain!

Let $\mathbb{X}_p = \left\{ (x, y) \in \mathbb{R}^2_x imes \mathbb{R}^2_y \mid |x|^p + |y|^p < 1 \right\}$, for $1 \le p < \infty$

Let $\mathbb{X}_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ We have one natural Hamiltonian function

 $H_p(x,y) = |x|^p + |y|^p$

Let $X_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ We have one natural Hamiltonian function

$$H_p(x,y) = |x|^p + |y|^p$$

A commuting Hamiltonian function is the angular momentum:

$$V(x,y) = x \otimes y = y_1 x_2 - y_2 x_1$$

Let $X_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ We have one natural Hamiltonian function

$$H_p(x,y) = |x|^p + |y|^p$$

A commuting Hamiltonian function is the angular momentum:

$$V(x, y) = x \otimes y = y_1 x_2 - y_2 x_1$$

Note: One should be careful with certain <u>regularity issues</u> when applying the Arnold-Liouville theorem in this case!

Let $X_p = \{(x, y) \in \mathbb{R}^2_x \times \mathbb{R}^2_y \mid |x|^p + |y|^p < 1\}$, for $1 \le p < \infty$ We have one natural Hamiltonian function

$$H_p(x,y) = |x|^p + |y|^p$$

A commuting Hamiltonian function is the angular momentum:

$$V(x, y) = x \otimes y = y_1 x_2 - y_2 x_1$$

Note: One should be careful with certain <u>regularity issues</u> when applying the Arnold-Liouville theorem in this case!

Conclusion: By a <u>careful computation</u> of the action-angle coordinates, one gets the identification $X_p \stackrel{s}{\simeq} X_{\Omega_p}$, where X_{Ω_p} is the **concave/convex** domain mentioned above.

The Lagrangian bidisc D ⊕ D ⊂ ℝ²_x ⊗ ℝ²_y (the domain X_∞) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary ∂(D ⊕ D) correspond to billiard dynamics in the disc D.

- The Lagrangian bidisc D ⊕ D ⊂ ℝ²_x ⊗ ℝ²_y (the domain X_∞) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary ∂(D ⊕ D) correspond to billiard dynamics in the disc D.
- ► The Lagrangian product of a hypercube and a "symmetric" region in ℝ²ⁿ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).

- The Lagrangian bidisc D ⊕ D ⊂ ℝ²_x ⊗ ℝ²_y (the domain X_∞) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary ∂(D ⊕ D) correspond to billiard dynamics in the disc D.
- ► The Lagrangian product of a hypercube and a "symmetric" region in ℝ²ⁿ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).
- ► The Lagrangian product of an equilateral triangle and a sufficiently symmetric region in ℝ² is symplectomorphic to a toric domain (O-Ramos-Sepe, in progress).

- The Lagrangian bidisc D ⊕ D ⊂ ℝ²_x ⊗ ℝ²_y (the domain X_∞) is symplectomorphic to a concave toric domain (Ramos, 2015). Here the dynamics on the boundary ∂(D ⊕ D) correspond to billiard dynamics in the disc D.
- ► The Lagrangian product of a hypercube and a "symmetric" region in ℝ²ⁿ is symplectomorphic to a toric domain (Ramos and Sepe, 2019).
- ► The Lagrangian product of an equilateral triangle and a sufficiently symmetric region in ℝ² is symplectomorphic to a toric domain (O-Ramos-Sepe, in progress).

Question: Are there convex sets which are not symplectomorphic to toric domains?

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}^n_x \oplus \mathbb{R}^n_y$ Let $K \subset \mathbb{R}^n_x$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}^n_y$ be a centrally symmetric convex body $\iff ||y||_T$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ The dynamics on $\partial(K \times T)$ may be interpreted as Finsler Bililard dynamics, where K plays the role of a billiard table, and T defines a Minkowski geometry, which controls the billaird dynamics in K.

Characteristic foliation on $\partial(K \times T)$

Consider $H(x, y) = \max\{||x||_{\mathcal{K}}, ||y||_{\mathcal{T}}\}$ (singular function) The 1-level set is $\partial(\mathcal{K} \times \mathcal{T})$.

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$

Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$

Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Remark II: In particular, if one can show that the symplectic inradius of $K \times K^*$ is 4, this would settle an 80-years old open conjecture in convex geometry known as "Mahler Conjecture" (but this is a story for a different lecture...).

Consider the Lagrangian splitting: $\mathbb{R}^{2n} = \mathbb{R}_x^n \oplus \mathbb{R}_y^n$ Let $K \subset \mathbb{R}_x^n$ be a centrally symmetric convex body $\iff ||x||_K$ Let $T \subset \mathbb{R}_y^n$ be a centrally symmetric convex body $\iff ||y||_T$ Consider the Lagrangian product $K \times T \subset \mathbb{R}_x^n \oplus \mathbb{R}_y^n$

Remark I: Lagrangian products is a "natural" class to test symplectic embedding questions, since one (sometimes) has some "geometric understanding" of the corresponding dynamics.

Remark II: In particular, if one can show that the symplectic inradius of $K \times K^*$ is 4, this would settle an 80-years old open conjecture in convex geometry known as "Mahler Conjecture" (but this is a story for a different lecture...).

THANK YOU VERY MUCH!