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If Mss:={x € M; injrad (x) > d},

ess-MinVol(M) := gimo inf{Vol(M~s,g); |secg| <1}
—
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Motivations

Gromov 80's: “measuring” topology by geometry, definitions of
topological-geometric invariants

Hopf 30’s, Thom 60’s, Yau 90's: “Given a closed smooth manifold
M., is there a best metric on M7?”

Taken literally, the above question is overly optimistic; one needs
to allow certain degenerations of the manifold.

We consider the following problem: realize those invariants by
geometric objects, i.e. find natural maps from sets of topological
spaces to sets of Riemannian spaces.
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Motivations

Examples of positive answers: Uniformization of 2-surfaces,
Geometrization of 3-manifolds, (other results under additional
assumptions like in conformal geometry or Kahler geometry).

Works of Nabutovsky on recognizability of Einstein metrics,
Nabutovsky-Weinberger on local minima of diameter when
|sec| < 1.
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then g; should subsequentially converge to a generalized Einstein
metric space (when non-empty).

Today: focus on the condition |Sec| < 1. sec gives intuition about
Ric, and is closely related to Ric in dimension 4.
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Today: focus on the condition |Sec| < 1. Let g be a metric on M
with | Sec| <1

This condition is more tractable thanks to 2 facts:
» on the “thick part” M., the geometry is bounded,

» the “thin part” Mc. is well described by the collapsing theory
of Cheeger-Fukaya-Gromov.

Here, for € > 0,
Ms. = {x € M; injectivity radius at x > €},

M<. := {x € M; injectivity radius at x < €}.
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C. Vol(M, g) and degree at each vertex bounded by C.. In fact by
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injrad,. > ¢, then a subsequence g; converges to a Cl % metric (see
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Motivations

M- . admits a triangulation with number of vertices bounded by

C. Vol(M, g) and degree at each vertex bounded by C.. In fact by
Cheeger, if gj is a sequence of metrics on M with | Secg. | <1 and
injrad,. > ¢, then a subsequence g; converges to a Cl % metric (see
also Peters, Greene-Wu).

M carries an F-structure (Cheeger-Gromov) and an N-structure
(Cheeger-Fukaya-Gromov). These structures generalize respectively
actions by tori and nilpotent Lie groups.
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Motivations

Gromov previously defined the minimal volume as

MinVol(M) := inf{Vol(M, g); |Sec| <1}.

Besson-Courtois-Gallot: If (X, gx) has negative curvature
seCg, < —1, then

MinVol(X) > Vol(X, gx)

with equality if and only if X is hyperbolic.
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Motivations

In light of Hopf-Thom-Yau's question: Is MinVol(M) achieved by a
metric?

Not clear. Note that MinVol behaves in a delicate way with
respect to collapsing.

Gap Conjecture (Gromov): If MinVol(M) < €, small enough, then
MinVol(M) = 0.

See work of X.-C. Rong, and Cheeger-Rong.

Our goal is to introduce a natural variant of MinVol which is
achieved by the volume of a minimizer, and study those minimizers
(geometric interpretation, estimates for negatively curved
manifolds, Einstein 4-manifolds and complex surfaces).

It is a “sectional curvature” approach to Hopf-Thom-Yau's
question.
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Alternative definition for ess-MinVol

We consider a weak closure ﬂrVSeC‘Sl(M) of M|seci<1(M), by
using a weak notion of convergence:

a sequence of metrics g; € M|5ec\§1(M) weakly converges if for
any 0 > 0, the J-thick part of (M, g;) converges in a multi-pointed
Gromov-Haudorff sense.

By Cheeger/Gromov, it turns out that
ess-MinVol(M) = inf{Vol(Y, h); (Y, h) € Msec|<1(M)},

and that there exists a weak minimizer (M, g5 ) € Mrvsec\g(M)
with volume equal to ess-MinVol(M).

( ess-MinVol(M) is thus relevant to the generalized
Hopf-Thom-Yau question)
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First comparisons with MinVol

Similarly to MinVol,
ess-MinVol(M) > C,simplicial volume(M),
ess-MinVol(M) > C,e(M).

By definition
ess-MinVol(M) < MinVol(M).

However, ess-MinVol can be arbitrarily smaller than MinVol!
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First comparisons with MinVol

Similarly to MinVol,
ess-MinVol(M) > C,simplicial volume(M),
ess-MinVol(M) > C,e(M).

By definition
ess-MinVol(M) < MinVol(M).

However, ess-MinVol can be arbitrarily smaller than MinVol!
Moreover ess-MinVol does satisfy the gap property: if
ess-MinVol(M) < €, then actually ess-MinVol(M) = 0.



Thickness of minimizing metrics

Theorem 1 (S.)

There is a d, > 0, for a smooth closed manifold M, and a weak
minimizer (Mso, 8) € mrlseqél(l\/l) with

Vol(My, go0) = ess-MinVol(M),
any connected component of My, contains a point p such that

Vol(Bg.. (p;1), &s0) > 6n.
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Theorem 1 (S.)

There is a d, > 0, for a smooth closed manifold M, and a weak
minimizer (Mxo, 8 ) € m’WSeCKl(I\/l) with

Vol(My, go0) = ess-MinVol(M),
any connected component of My, contains a point p such that

Vol(Bg..(p, 1), 85) > 6n.

It implies that M has finitely many components, so actually My,
lives in a strong closure of J\/l|55ec|§1(M) of M| sec|<1(M).
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prove “e,-collapsed implies existence of uniform continuous
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if (M, g) is ep-collapsed then there is a 1-parameter family of

metrics g; with gg = g, g+ becomes arbitrarily collapsed as t — o0,
and |Secgt | < C(”v ||g |3)
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Technically we need to improve a result of Cheeger-Gromov and

prove “e,-collapsed implies existence of uniform continuous
collapsing”:

if (M, g) is ep-collapsed then there is a 1-parameter family of

metrics g; with gg = g, g+ becomes arbitrarily collapsed as t — o0,
and |Secgt | < C(”v ||g |3)
-

We need the N-structures introduced by Cheeger-Fukaya-Gromov.
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In dimension at least 3, we have:

Theorem 2 (S.)
If (X, gx) has negative curvature Secg, < —1, then

ess-MinVol(X) > Vol(X, gx)
with equality if and only if X is hyperbolic.
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Minimizing metrics generalize hyperbolic metrics

In dimension at least 3, we have:

Theorem 2 (S.)
If (X, gx) has negative curvature Secg, < —1, then

ess-MinVol(X) > Vol(X, gx)

with equality if and only if X is hyperbolic.

This shows that in some sense, ess-MinVol /minimizers generalize
hyperbolic volume/metrics.



One issue in the proof is that the difference between
ess-MinVol(M) and MinVol(M) can be arbitrarily large.



One issue in the proof is that the difference between
ess-MinVol(M) and MinVol(M) can be arbitrarily large.

-Fukaya-Gromov / Paternain-Petean and

Besson-Courtois-Gallot-

—
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Examples

In dimension 2: By Gauss-Bonnet, for a surface X, of genus ~,
ess-MinVol(¥X,) = 27| e(X,)

and if v > 1, the minimizers are exactly the metrics in the closure
of the hyperbolic metrics on 3.

In dimension 3: if M is a closed oriented prime 3-manifold, then
ess-MinVol(M) = volume of hyperbolic part of M.

Proof uses the fact that the Yamabe invariant of M is known:

Scal,/
o(M) :=sup inf Ju Sea gl
[g] &'€lgl VO|(M,g/) /3

= —6(volume of hyperbolic part of M)2/3.
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Estimates for Einstein 4-manifolds and complex surfaces
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there is a constant C such that if a closed 4-manifold M admits an
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Estimates for Einstein 4-manifolds and complex surfaces

Theorem 3 (S.)

there is a constant C such that if a closed 4-manifold M admits an
Einstein metric, or is a complex surface of nonnegative Kodaira
dimension, then

C!e(M) < ess-MinVol(M) < C e(M).

For an Einstein 4-manifold M, the proof treats the thicker part of
M using Cheeger-Naber, then the thinner part using
Cheeger-Fukaya-Gromov.

For complex surfaces, we use the Enriques-Kodaira classification
and Aubin-Yau's theorem.



Geometric interpretation in dimension 4:

ess-MinVol(M) < C if and only if there is a bounded curvature
metric on M divided into a part covered by F-structures, and a
part with bounded geometry and volume < C.



Geometric interpretation in dimension 4:

ess-MinVol(M) < C if and only if there is a bounded curvature
metric on M divided into a part covered by F-structures, and a
part with bounded geometry and volume < C.

Conjecture: For any closed N* and any genus v > 1,

ess-MinVol (N§(S* x £,)) > Cr.
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