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The systolic ratio in metric geometry

Any closed Riemannian manifold (M, g) admits closed geodesics
(Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the
volume has been normalized?

What is the supremum of the systolic ratio

min{length(y, g)" | 7y closed geodesic on (M, g
psys(M, g) := t G-8) M ( )}
vol(M, g)

of the n-dimensional closed Riemannian manifold (M, g) over the
space of all Riemannian metrics g7
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Some classical answers

If M is not simply connected: Look for non-contractible closed
curves minimizing length (always closed geodesics).

Loewner, 1949: pgys(T?,-) is maximized by the flat torus R?/T,
where I C R? is the lattice generated by two sides of an equilateral
triangle.

Pu, 1952: peys(RP?,-) is maximized by the round metric.

Gromov, 1983: psys(Xk, g) < CM for every k > 2 and every
metric g on X (orientable closed surface of genus k).

Gromov, 1983: If the n-dimensional closed manifold M is essential
(i.e. [M] #0in K(m1(M),1)), then psys(M, g) < Cp.
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The two-sphere

Croke, 1988: pgys(S2,g) < C.
The optimal C lies in the interval [21/3,21/8) é&
(Calabi-Croke's sphere + Rotman, 2006)

The round metric on S? has systolic ratio 7 < 2v/3 and does not
maximize pgys.

However:

A.-Bramham-Hryniewicz-Salom&o, 2018: The round metric is a
local maximizer of pgys in the C?-topology of metrics.
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Zoll metrics

\—/ =
A metric g on the manifold M is said to be { ‘
Zoll if all its geodesics are closed and have the 7 "
same length. &/ /
bl

On S2: Huge set of Zoll metrics (Zoll, 1903, Funk, 1913,
Guillemin, 1976). [On RP? only one (Green, 1961)]

All Zoll metrics on S? have systolic ratio 7 (Weinstein, 1974). [Pu
= Green]

A.-Bramham-Hryniewicz-Salom3o, 2018: Zoll metrics on S2 are
the local maximizers of pgy in the C?-topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated
geodesic flows have the same systolic ratio.

Remark 2: Any two Zoll metrics on S? have conjugate geodesic
flows (up to rescaling).
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Contact forms and their Reeb flows

Contact form « on closed (2n — 1)-manifold W, i.e. a A da"~!
volume form.

Volume of (W, a): vol(W,a) := [,y &« A da"" 1.

Reeb vector field Ry: 1g, da =0, 1, = 1.

Example 1. W =S;M ={pe T*M | g*(p,p) = 1}, unit
cotangent sphere bundle with contact form o = pdq|5;;M.

The flow of R, is the geodesic flow. The volume vol(S;M, a) is
the Riemannian volume of M times nlw,,.

Example 2: W closed hypersurface in R2" \ {0} transverse to the
radial direction, contact form o = 3 i1 (xidy; — yjdxi)| .

The flow of R, is the Hamiltonian flow on {H = 1} of the
positively 2-homogeneous Hamiltonian H such that W = {H = 1}.

The volume vol(W, «) is the Euclidean volume of the region
bounded by W times n!.
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The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a
closed manifold has periodic orbits.

Systolic ratio of (W, a):
Tmin(a)n
sys W, = o v
Pays(W, ) vol(W, «)
Tmin(@) := minimum of all periods of closed orbits of R,.
Scale invariance: pgys(W, ca) = psys(W, ) for every ¢ > 0.

By Example 1, the contact systolic ratio generalizes the metric
one: psys(SgM, ) = #wnpsys(l\/l,g).
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Zoll contact forms

The contact form «p is said to be Zoll if all the orbits of R, are
closed and have the same period.

Boothby-Wang, 1958: «g Zoll on W = Basis B of circle bundle
7 : W — B induced by Sl-action of R,, has integral symplectic
form w such that doy = Tom*w, and hence pgys(W, o) = %
where N := ([w]""1,[B]) € N is the Euler number.
Main example: $2"~1 with standard contact form ag, whose Reeb
orbits are the fibers of the Hopf fibration 7 : $2"~1 — CP"!, and
PsyS(SZH_laaﬂ) =1
Alvarez Paiva-Balacheff, 2014:

® Any contact form that is a local maximizer of pgys must be

Zoll.

® |s the converse true?
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Local systolic maximality of Zoll contact forms

Theorem 1 (A.-Benedetti, 2020). Let ag be a Zoll contact form on
the closed manifold W. Then ag has a C3-neighborhood I/ in the
space of contact forms on W such that

pSyS(W') Oé) S pSyS(W7 aO) va € u:
with equality if and only if « is Zoll.

C3-local maximality of Zoll contact forms in dimension 3: For
W = S3: A.-Bramham-Hryniewicz-Salom3o, 2018. For any closed
3-manifold: Benedetti-Kang, 2019.

Corollary 1. Zoll Riemannian metrics are local maximizers of the
metric systolic ratio in the C3-topology (answering question of
Berger, 1970).
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A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth
convex body K C R?" containing the origin in its interior we have

psys(0K,a) <1

with equality if and only K is symplectomorphic to a ball.
Artstein-Avidan, Milman, Ostrover, 2008: pgsys(OK, o) < C.

Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo's conjecture
implies the Mahler conjecture (1939): if K C R" is a centrally
symmetric convex body then vol(K)vol(K®) > 4"/n!.

Corollary 2. There exists a C3-neighborhood U/ of the ball in the
space of smooth convex bodies in R?” such that

psys(0K,a) <1 VK el,

with equality if and only if K is symplectomorphic to a ball.
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linear ones satisfy a non-squeezing property in all the intermediate
dimensions.



Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on R?” that are close to
linear ones satisfy a non-squeezing property in all the intermediate
dimensions.

See Bonus slides.
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Global unboundedness of the contact systolic ratio

Theorem 2. Let £ be a contact structure on a closed manifold W.
Then there exist contact forms o on W such that ker a« = £ having
arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salom&o (2019) for
3-manifolds and by Saglam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in R?”
whose boundary has arbitrarily high systolic ratio, although in the
convex case the systolic ratio has a uniform upper bound
(conjecturally equal to one).

There exist W C T*M fiberwise transverse to the radial direction
such that pgys(W, pdq|w) is arbitrarily large (whereas when W
bounds a fiberwise convex set and M is essential, then
psys(W, p dg|w) has a uniform upper bound, by Gromov).
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M closed (2n — 1)-dimensional manifold with Zoll contact form ayg.
Normalization: Tin(cg) = 1.
Assume that the contact form « of M has the form

a = Sap,

where S : M — (0,+00) is a function that is constant on the
orbits of Ry,.

Since dov = dS AN ag + S dav, every closed orbit «y of R,, consisting
of critical points of S is a closed orbit of R, of period S(7).
Therefore:

vol(M, «) :/ S"ag Adag™t > (min 5)”/ ag A daf™!
M M
= (min S)"vol(M, ap) > Tmin()"vol(M, ap),

Tmin "
and hence pSyS(M’ Q) = vol(/\(/lojgt) < vol(l\l/l,ao) - psys(M; O(O)' -
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A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If a is C%-close to the Zoll
contact form «q then there is a diffeomorphism v : M — M such

that
u'a = Sag +n + df,

where:
(i) S: M — (0,4+00) is constant on the orbits of Ry,;
(i) f- M—=R;
(iii) n is a one-form such that vz, 7 = 0;
(iv) R, dn = F[dS], where F: T*M — T*M is an endomorphism
lifting the identity.
u close to the identity and S — 1, f, n, F small if & — g small.

The proof builds on results on normal forms for vector fields from
the seventies (Bottkol, Moser).

Key fact: Any orbit v of R,, consisting of critical points of S is a
closed orbit of Ry+o of period S(7) Tmin(co)-
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The volume formula

Proposition. = Sag + 1+ df with S, n, f as before. Then
vol(M, 3) = / p(x, S(x)) a0 A dafi L,
M
where p: M x R — R is polynomial in its second variable,
n—1 .
p(x,5) = 5"+ 3 B
j=1
with coefficients p; : M — R satisfying
/ pjao Adaft =0, Vj=1,2,...,n—1.
JMm

Moreover, p; is CY%small when n and F are small in suitable norms.
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Proof of Theorem 1

Normalization Tin(c) = 1. By Theorem 3, we can put « in
normal form: u*a = Sag + 1 + df. By the Proposition, we have

vol(M, o) = vol(M, u*a) = / p(x, S(x)) ag A daf ™t
M

By the form of the polynomial function p and the bounds on its
coefficients, s — p(x,s) is strictly increasing for s close to 1.
Therefore:

/ p(x, S(x)) ap A daf ™t > / p(x,min S) ag A dag L.
M M

Since all the coefficients p; of p have integral zero, except for the
coefficient of s”, which is 1,

/ p(x, min §) ag A dag~* = (min S)"vol(M, a)
M
> Tonin(@)"vol(M, ap),

and we conclude as in the simple case treated before. ]
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Standard symplectic form wo = Y 7_; dx; A dy; on R>".

Gromov's non-squeezing theorem (1985): V symplectic 2-plane in
(R2",wp), Py symplectic projector onto V, B unit ball in R?".
Then

area( Pyo(B),wolv) > 7

for any symplectomorphism ¢ : B < R?".

A.-Matveyev, 2013: If V is a symplectic 2k-plane with 1 < k < n
and € > 0, then there exists a symplectomorphism ¢ : B < R?"
such that

vol(Pyp(B),wk|v) < e.

(building on results of Guth, 2008).
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Linear symplectomorphisms: If ® : R?" — R2" is a linear
symplectomorphism, then

k
Py d(B),wh|y) = ——
VO( v ( )7wO|V) W((D_l(\/))’
where K[, o]
w(X) = -9 172000 T2k Ui, o, ..., toy basis of X € Grox(R?").

kNug A A A o]
Wirtinger inequality: w(X) <1, and =1 if and only if X is a
complex subspace. Therefore:

vol(Py ®(B),wg|v) > 7,

for every linear symplectomorphism ¢ : R2" — R?",

Corollary 3. There exists a Clic—neighborhood U of the set of linear
mappings in the space of all smooth symplectomorphisms of R>"
such that for every symplectic 2k-plane V C R?” we have

vol(Pvi(B),wglv) = 7,

for every p € U.



