Systolic questions in metric and symplectic geometry

Alberto Abbondandolo

Ruhr-University Bochum

Lisbon - May 25, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲□▶▲圖▶★≧▶★≧▶ ≧ のQで

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the volume has been normalized?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the volume has been normalized?

What is the supremum of the systolic ratio

$$\rho_{\rm sys}(M,g) := \frac{\min\{ {\rm length}(\gamma,g)^n \mid \gamma \text{ closed geodesic on } (M,g) \}}{{\rm vol}(M,g)}$$

of the *n*-dimensional closed Riemannian manifold (M, g) over the space of all Riemannian metrics g?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Loewner, 1949: $\rho_{\rm sys}(\mathbb{T}^2, \cdot)$ is maximized by the flat torus \mathbb{R}^2/Γ , where $\Gamma \subset \mathbb{R}^2$ is the lattice generated by two sides of an equilateral triangle.

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Loewner, 1949: $\rho_{\rm sys}(\mathbb{T}^2, \cdot)$ is maximized by the flat torus \mathbb{R}^2/Γ , where $\Gamma \subset \mathbb{R}^2$ is the lattice generated by two sides of an equilateral triangle.

Pu, 1952: $\rho_{sys}(\mathbb{RP}^2, \cdot)$ is maximized by the round metric.

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Loewner, 1949: $\rho_{\rm sys}(\mathbb{T}^2, \cdot)$ is maximized by the flat torus \mathbb{R}^2/Γ , where $\Gamma \subset \mathbb{R}^2$ is the lattice generated by two sides of an equilateral triangle.

Pu, 1952: $\rho_{sys}(\mathbb{RP}^2, \cdot)$ is maximized by the round metric.

Gromov, 1983: $\rho_{sys}(\Sigma_k, g) \leq C \frac{(\log k)^2}{k}$ for every $k \geq 2$ and every metric g on Σ_k (orientable closed surface of genus k).

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Loewner, 1949: $\rho_{\rm sys}(\mathbb{T}^2, \cdot)$ is maximized by the flat torus \mathbb{R}^2/Γ , where $\Gamma \subset \mathbb{R}^2$ is the lattice generated by two sides of an equilateral triangle.

Pu, 1952: $\rho_{sys}(\mathbb{RP}^2, \cdot)$ is maximized by the round metric.

Gromov, 1983: $\rho_{sys}(\Sigma_k, g) \leq C \frac{(\log k)^2}{k}$ for every $k \geq 2$ and every metric g on Σ_k (orientable closed surface of genus k).

Gromov, 1983: If the *n*-dimensional closed manifold M is essential (i.e. $[M] \neq 0$ in $K(\pi_1(M), 1)$), then $\rho_{sys}(M, g) \leq C_n$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Croke, 1988: $\rho_{sys}(S^2, g) \leq C$.

Croke, 1988: $\rho_{sys}(S^2, g) \le C$.

The optimal C lies in the interval $[2\sqrt{3}, 2\sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

イロト 不得 トイヨト イヨト

э

Croke, 1988: $\rho_{sys}(S^2, g) \le C$.

The optimal C lies in the interval $[2\sqrt{3}, 2\sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

(日) (四) (日) (日) (日)

The round metric on S^2 has systolic ratio $\pi < 2\sqrt{3}$ and does not maximize $\rho_{\rm sys}.$

Croke, 1988: $\rho_{sys}(S^2, g) \le C$.

The optimal C lies in the interval $[2\sqrt{3}, 2\sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The round metric on S^2 has systolic ratio $\pi < 2\sqrt{3}$ and does not maximize $\rho_{\rm sys}.$

However:

Croke, 1988: $\rho_{\rm sys}(S^2, g) \le C$.

The optimal C lies in the interval $[2\sqrt{3}, 2\sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

The round metric on S^2 has systolic ratio $\pi < 2\sqrt{3}$ and does not maximize $\rho_{\rm sys}$.

However:

A.-Bramham-Hryniewicz-Salomão, 2018: The round metric is a local maximizer of ρ_{sys} in the C^2 -topology of metrics.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On S^2 : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On \mathbb{RP}^2 only one (Green, 1961)]

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^2 : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On \mathbb{RP}^2 only one (Green, 1961)]

All Zoll metrics on S^2 have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^2 : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On \mathbb{RP}^2 only one (Green, 1961)]

All Zoll metrics on S^2 have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]

A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^2 are the local maximizers of ρ_{sys} in the C^2 -topology of metrics.

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^2 : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On \mathbb{RP}^2 only one (Green, 1961)]

All Zoll metrics on S^2 have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]

A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^2 are the local maximizers of ρ_{sys} in the C^2 -topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated geodesic flows have the same systolic ratio.

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^2 : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On \mathbb{RP}^2 only one (Green, 1961)]

All Zoll metrics on S^2 have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]

A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^2 are the local maximizers of ρ_{sys} in the C^2 -topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated geodesic flows have the same systolic ratio.

Remark 2: Any two Zoll metrics on S^2 have conjugate geodesic flows (up to rescaling).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : vol $(W, \alpha) := \int_W \alpha \wedge d\alpha^{n-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : vol (W, α) := $\int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : vol (W, α) := $\int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p dq|_{S_{\alpha}^*M}$.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : vol (W, α) := $\int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p dq|_{S_g^*M}$. The flow of R_{α} is the geodesic flow.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : $\operatorname{vol}(W, \alpha) := \int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p \, dq \mid_{S_g^*M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}(S_g^*M, \alpha)$ is the Riemannian volume of M times $n!\omega_n$.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : $\operatorname{vol}(W, \alpha) := \int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p \, dq|_{S_g^*M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}(S_g^*M, \alpha)$ is the Riemannian volume of M times $n!\omega_n$.

Example 2: *W* closed hypersurface in $\mathbb{R}^{2n} \setminus \{0\}$ transverse to the radial direction, contact form $\alpha = \frac{1}{2} \sum_{j=1}^{n} (x_j \, dy_j - y_j \, dx_j) \Big|_{W}$.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : $\operatorname{vol}(W, \alpha) := \int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p \, dq|_{S_g^*M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}(S_g^*M, \alpha)$ is the Riemannian volume of M times $n!\omega_n$.

Example 2: *W* closed hypersurface in $\mathbb{R}^{2n} \setminus \{0\}$ transverse to the radial direction, contact form $\alpha = \frac{1}{2} \sum_{j=1}^{n} (x_j \, dy_j - y_j \, dx_j) \Big|_W$. The flow of R_{α} is the Hamiltonian flow on $\{H = 1\}$ of the positively 2-homogeneous Hamiltonian *H* such that $W = \{H = 1\}$.

Contact form α on closed (2n-1)-manifold W, i.e. $\alpha \wedge d\alpha^{n-1}$ volume form.

Volume of (W, α) : $\operatorname{vol}(W, \alpha) := \int_W \alpha \wedge d\alpha^{n-1}$. Reeb vector field R_{α} : $\imath_{R_{\alpha}} d\alpha = 0$, $\imath_{R_{\alpha}} \alpha = 1$. Example 1: $W = S_g^* M = \{p \in T^*M \mid g^*(p, p) = 1\}$, unit cotangent sphere bundle with contact form $\alpha = p \, dq|_{S_g^*M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}(S_g^*M, \alpha)$ is the Riemannian volume of M times $n!\omega_n$.

Example 2: *W* closed hypersurface in $\mathbb{R}^{2n} \setminus \{0\}$ transverse to the radial direction, contact form $\alpha = \frac{1}{2} \sum_{j=1}^{n} (x_j \, dy_j - y_j \, dx_j) \Big|_W$. The flow of R_{α} is the Hamiltonian flow on $\{H = 1\}$ of the positively 2-homogeneous Hamiltonian *H* such that $W = \{H = 1\}$. The volume $\operatorname{vol}(W, \alpha)$ is the Euclidean volume of the region bounded by *W* times *n*!.

(ロト・日本・モン・モン・モージョンの)

The systolic ratio of a contact form

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α) :

$$\rho_{\rm sys}(W,\alpha) := \frac{T_{\rm min}(\alpha)^n}{{\rm vol}(W,\alpha)},$$

 $T_{\min}(\alpha) := \min$ of all periods of closed orbits of R_{α} .

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α) :

$$\rho_{\rm sys}(W,\alpha) := \frac{T_{\rm min}(\alpha)^n}{{\rm vol}(W,\alpha)},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $T_{\min}(\alpha) := \text{minimum of all periods of closed orbits of } R_{\alpha}.$ Scale invariance: $\rho_{sys}(W, c\alpha) = \rho_{sys}(W, \alpha)$ for every c > 0.

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α) :

$$\rho_{\rm sys}(W,\alpha) := \frac{T_{\rm min}(\alpha)^n}{{\rm vol}(W,\alpha)},$$

 $T_{\min}(\alpha) := \text{minimum of all periods of closed orbits of } R_{\alpha}.$ Scale invariance: $\rho_{\text{sys}}(W, c\alpha) = \rho_{\text{sys}}(W, \alpha)$ for every c > 0. By Example 1, the contact systolic ratio generalizes the metric one: $\rho_{\text{sys}}(S_g^*M, \alpha) = \frac{1}{n!\omega_n}\rho_{\text{sys}}(M, g).$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0 \pi^* \omega$,

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0 \pi^* \omega$, and hence $\rho_{\text{sys}}(W, \alpha_0) = \frac{1}{N}$, where $N := \langle [\omega]^{n-1}, [B] \rangle \in \mathbb{N}$ is the Euler number.

A D N A 目 N A E N A E N A B N A C N

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0 \pi^* \omega$, and hence $\rho_{\text{sys}}(W, \alpha_0) = \frac{1}{N}$, where $N := \langle [\omega]^{n-1}, [B] \rangle \in \mathbb{N}$ is the Euler number. Main example: S^{2n-1} with standard contact form α_0 , whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2n-1} \to \mathbb{CP}^{n-1}$, and $\rho_{\text{sys}}(S^{2n-1}, \alpha_0) = 1$.

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0\pi^*\omega$, and hence $\rho_{\rm sys}(W, \alpha_0) = \frac{1}{N}$, where $N := \langle [\omega]^{n-1}, [B] \rangle \in \mathbb{N}$ is the Euler number. Main example: S^{2n-1} with standard contact form α_0 , whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2n-1} \to \mathbb{CP}^{n-1}$, and $\rho_{\rm sys}(S^{2n-1}, \alpha_0) = 1$.

Alvarez Paiva-Balacheff, 2014:

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0 \pi^* \omega$, and hence $\rho_{\text{sys}}(W, \alpha_0) = \frac{1}{N}$, where $N := \langle [\omega]^{n-1}, [B] \rangle \in \mathbb{N}$ is the Euler number. Main example: S^{2n-1} with standard contact form α_0 , whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2n-1} \to \mathbb{CP}^{n-1}$, and $\rho_{\text{sys}}(S^{2n-1}, \alpha_0) = 1$.

Álvarez Paiva-Balacheff, 2014:

- Any contact form that is a local maximizer of $\rho_{\rm sys}$ must be Zoll.

The contact form α_0 is said to be Zoll if all the orbits of R_{α_0} are closed and have the same period.

Boothby-Wang, 1958: α_0 Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \to B$ induced by S^1 -action of R_{α_0} has integral symplectic form ω such that $d\alpha_0 = T_0 \pi^* \omega$, and hence $\rho_{\text{sys}}(W, \alpha_0) = \frac{1}{N}$, where $N := \langle [\omega]^{n-1}, [B] \rangle \in \mathbb{N}$ is the Euler number. Main example: S^{2n-1} with standard contact form α_0 , whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2n-1} \to \mathbb{CP}^{n-1}$, and $\rho_{\text{sys}}(S^{2n-1}, \alpha_0) = 1$.

Álvarez Paiva-Balacheff, 2014:

- Any contact form that is a local maximizer of $\rho_{\rm sys}$ must be Zoll.

• Is the converse true?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem 1 (A.-Benedetti, 2020). Let α_0 be a Zoll contact form on the closed manifold W. Then α_0 has a C^3 -neighborhood \mathcal{U} in the space of contact forms on W such that

$$\rho_{\rm sys}(W,\alpha) \le \rho_{\rm sys}(W,\alpha_0) \qquad \forall \alpha \in \mathcal{U},$$

with equality if and only if α is Zoll.

Theorem 1 (A.-Benedetti, 2020). Let α_0 be a Zoll contact form on the closed manifold W. Then α_0 has a C^3 -neighborhood \mathcal{U} in the space of contact forms on W such that

$$\rho_{\rm sys}(W,\alpha) \le \rho_{\rm sys}(W,\alpha_0) \qquad \forall \alpha \in \mathcal{U},$$

with equality if and only if α is Zoll.

 C^3 -local maximality of Zoll contact forms in dimension 3: For $W = S^3$: A.-Bramham-Hryniewicz-Salomão, 2018. For any closed 3-manifold: Benedetti-Kang, 2019.

Theorem 1 (A.-Benedetti, 2020). Let α_0 be a Zoll contact form on the closed manifold W. Then α_0 has a C^3 -neighborhood \mathcal{U} in the space of contact forms on W such that

$$\rho_{\rm sys}(W,\alpha) \le \rho_{\rm sys}(W,\alpha_0) \qquad \forall \alpha \in \mathcal{U},$$

with equality if and only if α is Zoll.

 C^3 -local maximality of Zoll contact forms in dimension 3: For $W = S^3$: A.-Bramham-Hryniewicz-Salomão, 2018. For any closed 3-manifold: Benedetti-Kang, 2019.

Corollary 1. Zoll Riemannian metrics are local maximizers of the metric systolic ratio in the C^3 -topology (answering question of Berger, 1970).

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ の Q @

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2n}$ containing the origin in its interior we have

 $\rho_{\rm sys}(\partial K, \alpha) \leq 1$

with equality if and only K is symplectomorphic to a ball.

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2n}$ containing the origin in its interior we have

 $\rho_{\rm sys}(\partial K, \alpha) \leq 1$

with equality if and only K is symplectomorphic to a ball.

Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{sys}(\partial K, \alpha) \leq C$.

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2n}$ containing the origin in its interior we have

 $\rho_{\rm sys}(\partial K, \alpha) \leq 1$

with equality if and only K is symplectomorphic to a ball.

Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{sys}(\partial K, \alpha) \leq C$.

Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo's conjecture implies the Mahler conjecture (1939): if $K \subset \mathbb{R}^n$ is a centrally symmetric convex body then $vol(K)vol(K^{\circ}) \ge 4^n/n!$.

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2n}$ containing the origin in its interior we have

 $\rho_{\rm sys}(\partial K, \alpha) \leq 1$

with equality if and only K is symplectomorphic to a ball.

Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{sys}(\partial K, \alpha) \leq C$.

Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo's conjecture implies the Mahler conjecture (1939): if $K \subset \mathbb{R}^n$ is a centrally symmetric convex body then $vol(K)vol(K^\circ) \ge 4^n/n!$.

Corollary 2. There exists a C^3 -neighborhood \mathcal{U} of the ball in the space of smooth convex bodies in \mathbb{R}^{2n} such that

$$\rho_{\text{sys}}(\partial K, \alpha) \leq 1 \quad \forall K \in \mathcal{U},$$

with equality if and only if K is symplectomorphic to a ball.

Shadows of symplectic balls

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ の Q @

Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on \mathbb{R}^{2n} that are close to linear ones satisfy a non-squeezing property in all the intermediate dimensions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on \mathbb{R}^{2n} that are close to linear ones satisfy a non-squeezing property in all the intermediate dimensions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

See Bonus slides.

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that ker $\alpha = \xi$ having arbitrarily large systolic ratio.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that ker $\alpha = \xi$ having arbitrarily large systolic ratio.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that ker $\alpha = \xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in \mathbb{R}^{2n} whose boundary has arbitrarily high systolic ratio,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that ker $\alpha = \xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in \mathbb{R}^{2n} whose boundary has arbitrarily high systolic ratio, although in the convex case the systolic ratio has a uniform upper bound (conjecturally equal to one).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that ker $\alpha = \xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in \mathbb{R}^{2n} whose boundary has arbitrarily high systolic ratio, although in the convex case the systolic ratio has a uniform upper bound (conjecturally equal to one).

There exist $W \subset T^*M$ fiberwise transverse to the radial direction such that $\rho_{sys}(W, p \, dq|_W)$ is arbitrarily large (whereas when Wbounds a fiberwise convex set and M is essential, then $\rho_{sys}(W, p \, dq|_W)$ has a uniform upper bound, by Gromov).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

.

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of M has the form

 $\alpha = S\alpha_0,$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$.

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $vol(M, \alpha)$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M,\alpha) = \int_M S^n \, \alpha_0 \wedge d \, \alpha_0^{n-1}$$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of M has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M,\alpha) = \int_M S^n \,\alpha_0 \wedge d\alpha_0^{n-1} \geq (\min S)^n \int_M \alpha_0 \wedge d\alpha_0^{n-1}$$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M,\alpha) = \int_{M} S^{n} \alpha_{0} \wedge d\alpha_{0}^{n-1} \ge (\min S)^{n} \int_{M} \alpha_{0} \wedge d\alpha_{0}^{n-1}$$
$$= (\min S)^{n} \operatorname{vol}(M,\alpha_{0})$$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M,\alpha) = \int_{M} S^{n} \alpha_{0} \wedge d\alpha_{0}^{n-1} \ge (\min S)^{n} \int_{M} \alpha_{0} \wedge d\alpha_{0}^{n-1}$$
$$= (\min S)^{n} \operatorname{vol}(M,\alpha_{0}) \ge T_{\min}(\alpha)^{n} \operatorname{vol}(M,\alpha_{0}),$$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M, \alpha) = \int_{M} S^{n} \alpha_{0} \wedge d\alpha_{0}^{n-1} \geq (\min S)^{n} \int_{M} \alpha_{0} \wedge d\alpha_{0}^{n-1}$$

= $(\min S)^{n} \operatorname{vol}(M, \alpha_{0}) \geq T_{\min}(\alpha)^{n} \operatorname{vol}(M, \alpha_{0}),$

and hence $\rho_{\text{sys}}(M, \alpha) = \frac{T_{\min}(\alpha)^n}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}(M, \alpha_0)} = \rho_{\text{sys}}(M, \alpha_0).$

M closed (2n-1)-dimensional manifold with Zoll contact form α_0 . Normalization: $T_{\min}(\alpha_0) = 1$.

Assume that the contact form α of ${\it M}$ has the form

 $\alpha = S\alpha_0,$

where $S: M \to (0, +\infty)$ is a function that is constant on the orbits of R_{α_0} .

Since $d\alpha = dS \wedge \alpha_0 + S d\alpha_0$, every closed orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$\operatorname{vol}(M,\alpha) = \int_{M} S^{n} \alpha_{0} \wedge d\alpha_{0}^{n-1} \geq (\min S)^{n} \int_{M} \alpha_{0} \wedge d\alpha_{0}^{n-1}$$
$$= (\min S)^{n} \operatorname{vol}(M,\alpha_{0}) \geq T_{\min}(\alpha)^{n} \operatorname{vol}(M,\alpha_{0}),$$

and hence $\rho_{\text{sys}}(M, \alpha) = \frac{T_{\min}(\alpha)^n}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}(M, \alpha_0)} = \rho_{\text{sys}}(M, \alpha_0).$

A normal form for contact forms close to Zoll ones

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

$$u^*\alpha = S\alpha_0 + \eta + df,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where:

$$u^*\alpha = S\alpha_0 + \eta + df,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where:

(i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ;

$$u^*\alpha = S\alpha_0 + \eta + df,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where:

(i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$;

$$u^*\alpha = S\alpha_0 + \eta + df,$$

where:

(i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$; (iii) η is a one-form such that $\imath_{R_{\alpha_0}} \eta = 0$;

$$u^*\alpha = S\alpha_0 + \eta + df,$$

where:

(i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$; (iii) η is a one-form such that $\imath_{R_{\alpha_0}} \eta = 0$; (iv) $\imath_{R_{\alpha_0}} d\eta = F[dS]$, where $F: T^*M \to T^*M$ is an endomorphism lifting the identity.

$$u^*\alpha = S\alpha_0 + \eta + df,$$

where:

(i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$; (iii) η is a one-form such that $\imath_{R_{\alpha_0}} \eta = 0$; (iv) $\imath_{R_{\alpha_0}} d\eta = F[dS]$, where $F: T^*M \to T^*M$ is an endomorphism lifting the identity.

u close to the identity and S - 1, f, η , F small if $\alpha - \alpha_0$ small.

$$u^*\alpha = S\alpha_0 + \eta + df,$$

where:

- (i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$; (iii) η is a one-form such that $\imath_{R_{\alpha_0}} \eta = 0$; (iv) \imath_{P} $d\eta = F[dS]$, where $F: T^*M \to T^*M$ is an endomorphic
- (iv) $\imath_{R_{\alpha_0}} d\eta = F[dS]$, where $F : T^*M \to T^*M$ is an endomorphism lifting the identity.

u close to the identity and S – 1, f, η , F small if $\alpha - \alpha_0$ small.

The proof builds on results on normal forms for vector fields from the seventies (Bottkol, Moser).

$$u^*\alpha = S\alpha_0 + \eta + df,$$

where:

- (i) $S: M \to (0, +\infty)$ is constant on the orbits of R_{α_0} ; (ii) $f: M \to \mathbb{R}$;
- (iii) η is a one-form such that $\imath_{R_{\alpha_0}}\eta = 0$;
- (iv) $\imath_{R_{\alpha_0}} d\eta = F[dS]$, where $F : T^*M \to T^*M$ is an endomorphism lifting the identity.
- *u* close to the identity and S 1, *f*, η , *F* small if $\alpha \alpha_0$ small.

The proof builds on results on normal forms for vector fields from the seventies (Bottkol, Moser).

Key fact: Any orbit γ of R_{α_0} consisting of critical points of S is a closed orbit of $R_{u^*\alpha}$ of period $S(\gamma)T_{\min}(\alpha_0)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

(ロ)、(型)、(E)、(E)、 E) の(()

Proposition. $\beta = S\alpha_0 + \eta + df$ with S, η , f as before.

Proposition. $\beta = S\alpha_0 + \eta + df$ with S, η , f as before. Then

$$\operatorname{vol}(M,\beta) = \int_M p(x,S(x)) \, \alpha_0 \wedge d \alpha_0^{n-1},$$

where $p: M \times \mathbb{R} \to \mathbb{R}$ is polynomial in its second variable,

$$p(x,s) = s^n + \sum_{j=1}^{n-1} p_j(x)s^j,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proposition. $\beta = S\alpha_0 + \eta + df$ with S, η , f as before. Then

$$\operatorname{vol}(M,\beta) = \int_M p(x,S(x)) \, \alpha_0 \wedge d \alpha_0^{n-1},$$

where $p: M \times \mathbb{R} \to \mathbb{R}$ is polynomial in its second variable,

$$p(x,s) = s^n + \sum_{j=1}^{n-1} p_j(x)s^j,$$

with coefficients $p_i: M \to \mathbb{R}$ satisfying

$$\int_{M} p_j \alpha_0 \wedge d\alpha_0^{n-1} = 0, \qquad \forall j = 1, 2, \dots, n-1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Proposition. $\beta = S\alpha_0 + \eta + df$ with S, η , f as before. Then

$$\operatorname{vol}(M,\beta) = \int_M p(x,S(x)) \, \alpha_0 \wedge d \alpha_0^{n-1},$$

where $p: M \times \mathbb{R} \to \mathbb{R}$ is polynomial in its second variable,

$$p(x,s) = s^n + \sum_{j=1}^{n-1} p_j(x)s^j,$$

with coefficients $p_i: M \to \mathbb{R}$ satisfying

$$\int_{\mathcal{M}} p_j \alpha_0 \wedge d\alpha_0^{n-1} = 0, \qquad \forall j = 1, 2, \dots, n-1.$$

Moreover, p_i is C^0 -small when η and F are small in suitable norms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Normalization $T_{\min}(\alpha_0) = 1$.

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^* \alpha = S \alpha_0 + \eta + df$.

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M,\alpha) = \operatorname{vol}(M,u^*\alpha) = \int_M p(x,S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M, \alpha) = \operatorname{vol}(M, u^* \alpha) = \int_M p(x, S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M, \alpha) = \operatorname{vol}(M, u^* \alpha) = \int_M p(x, S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}.$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1. Therefore:

$$\int_{\mathcal{M}} p(x, S(x)) \alpha_0 \wedge d\alpha_0^{n-1} \geq \int_{\mathcal{M}} p(x, \min S) \alpha_0 \wedge d\alpha_0^{n-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M, \alpha) = \operatorname{vol}(M, u^* \alpha) = \int_M p(x, S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}.$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1. Therefore:

$$\int_{M} p(x, S(x)) \alpha_0 \wedge d\alpha_0^{n-1} \geq \int_{M} p(x, \min S) \alpha_0 \wedge d\alpha_0^{n-1}.$$

Since all the coefficients p_j of p have integral zero, except for the coefficient of s^n , which is 1,

$$\int_M p(x,\min S) \alpha_0 \wedge d\alpha_0^{n-1} = (\min S)^n \operatorname{vol}(M,\alpha_0)$$

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M, \alpha) = \operatorname{vol}(M, u^* \alpha) = \int_M p(x, S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}.$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1. Therefore:

$$\int_{M} p(x, S(x)) \alpha_0 \wedge d\alpha_0^{n-1} \geq \int_{M} p(x, \min S) \alpha_0 \wedge d\alpha_0^{n-1}.$$

Since all the coefficients p_j of p have integral zero, except for the coefficient of s^n , which is 1,

$$\int_{M} p(x,\min S) \alpha_0 \wedge d\alpha_0^{n-1} = (\min S)^n \operatorname{vol}(M,\alpha_0)$$

 $\geq T_{\min}(\alpha)^n \operatorname{vol}(M, \alpha_0),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Normalization $T_{\min}(\alpha_0) = 1$. By Theorem 3, we can put α in normal form: $u^*\alpha = S\alpha_0 + \eta + df$. By the Proposition, we have

$$\operatorname{vol}(M, \alpha) = \operatorname{vol}(M, u^* \alpha) = \int_M p(x, S(x)) \, \alpha_0 \wedge d \, \alpha_0^{n-1}.$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1. Therefore:

$$\int_{M} p(x, S(x)) \alpha_0 \wedge d\alpha_0^{n-1} \geq \int_{M} p(x, \min S) \alpha_0 \wedge d\alpha_0^{n-1}.$$

Since all the coefficients p_j of p have integral zero, except for the coefficient of s^n , which is 1,

$$\int_{M} p(x,\min S) \alpha_0 \wedge d\alpha_0^{n-1} = (\min S)^n \operatorname{vol}(M,\alpha_0)$$

 $\geq T_{\min}(\alpha)^n \operatorname{vol}(M, \alpha_0),$

and we conclude as in the simple case treated before.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Standard symplectic form $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ on \mathbb{R}^{2n} .

Standard symplectic form $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ on \mathbb{R}^{2n} .

Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $(\mathbb{R}^{2n}, \omega_0)$, P_V symplectic projector onto V, B unit ball in \mathbb{R}^{2n} . Then

 $\operatorname{area}(P_V\varphi(B),\omega_0|_V) \geq \pi$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2n}$.

Standard symplectic form $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ on \mathbb{R}^{2n} .

Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $(\mathbb{R}^{2n}, \omega_0)$, P_V symplectic projector onto V, B unit ball in \mathbb{R}^{2n} . Then

 $\operatorname{area}(P_V\varphi(B),\omega_0|_V) \geq \pi$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2n}$.

A.-Matveyev, 2013: If V is a symplectic 2k-plane with 1 < k < nand $\epsilon > 0$, then there exists a symplectomorphism $\varphi : B \hookrightarrow \mathbb{R}^{2n}$ such that

$$\operatorname{vol}(P_V\varphi(B),\omega_0^k|_V)<\epsilon.$$

(building on results of Guth, 2008).

$$\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V)=\frac{\pi^k}{w(\Phi^{-1}(V))},$$

where

 $w(X) := \frac{|\omega_0^k[u_1, u_2, \dots, u_{2k}]|}{k!|u_1 \wedge u_2 \wedge \dots \wedge u_{2k}|}, \ u_1, u_2, \dots, u_{2k} \text{ basis of } X \in \mathrm{Gr}_{2k}(\mathbb{R}^{2n}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V)=rac{\pi^k}{w(\Phi^{-1}(V))},$$

where

 $w(X) := \frac{|\omega_0^k[u_1, u_2, \dots, u_{2k}]|}{k!|u_1 \wedge u_2 \wedge \dots \wedge u_{2k}|}, \ u_1, u_2, \dots, u_{2k} \text{ basis of } X \in \mathrm{Gr}_{2k}(\mathbb{R}^{2n}).$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Wirtinger inequality: $w(X) \le 1$, and = 1 if and only if X is a complex subspace.

$$\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V)=rac{\pi^k}{w(\Phi^{-1}(V))},$$

where

 $w(X) := \frac{|\omega_0^k[u_1, u_2, \dots, u_{2k}]|}{k!|u_1 \wedge u_2 \wedge \dots \wedge u_{2k}|}, \ u_1, u_2, \dots, u_{2k} \text{ basis of } X \in \mathrm{Gr}_{2k}(\mathbb{R}^{2n}).$

Wirtinger inequality: $w(X) \le 1$, and = 1 if and only if X is a complex subspace. Therefore:

 $\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V) \geq \pi^k,$

for every linear symplectomorphism $\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$.

$$\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V)=rac{\pi^k}{w(\Phi^{-1}(V))},$$

where

 $w(X) := \frac{|\omega_0^k[u_1, u_2, \dots, u_{2k}]|}{k!|u_1 \wedge u_2 \wedge \dots \wedge u_{2k}|}, \ u_1, u_2, \dots, u_{2k} \text{ basis of } X \in \mathrm{Gr}_{2k}(\mathbb{R}^{2n}).$

Wirtinger inequality: $w(X) \le 1$, and = 1 if and only if X is a complex subspace. Therefore:

 $\operatorname{vol}(P_V\Phi(B),\omega_0^k|_V) \geq \pi^k,$

for every linear symplectomorphism $\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$. Corollary 3. There exists a C^3_{loc} -neighborhood \mathcal{U} of the set of linear mappings in the space of all smooth symplectomorphisms of \mathbb{R}^{2n} such that for every symplectic 2k-plane $V \subset \mathbb{R}^{2n}$ we have

$$\operatorname{vol}(P_V\varphi(B),\omega_0^k|_V) \geq \pi^k,$$

for every $\varphi \in \mathcal{U}$.