Systolic questions in metric and symplectic geometry

Alberto Abbondandolo

Ruhr-University Bochum
Lisbon - May 25, 2021

The systolic ratio in metric geometry

The systolic ratio in metric geometry

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

The systolic ratio in metric geometry

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the volume has been normalized?

The systolic ratio in metric geometry

Any closed Riemannian manifold (M, g) admits closed geodesics (Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the volume has been normalized?

What is the supremum of the systolic ratio

$$
\rho_{\mathrm{sys}}(M, g):=\frac{\min \left\{\text { length }(\gamma, g)^{n} \mid \gamma \text { closed geodesic on }(M, g)\right\}}{\operatorname{vol}(M, g)}
$$

of the n-dimensional closed Riemannian manifold (M, g) over the space of all Riemannian metrics g ?

Some classical answers

Some classical answers

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Some classical answers

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).
Loewner, 1949: $\rho_{\text {sys }}\left(\mathbb{T}^{2}, \cdot\right)$ is maximized by the flat torus \mathbb{R}^{2} / Γ, where $\Gamma \subset \mathbb{R}^{2}$ is the lattice generated by two sides of an equilateral triangle.

Some classical answers

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).
Loewner, 1949: $\rho_{\text {sys }}\left(\mathbb{T}^{2}, \cdot\right)$ is maximized by the flat torus \mathbb{R}^{2} / Γ, where $\Gamma \subset \mathbb{R}^{2}$ is the lattice generated by two sides of an equilateral triangle.
$\mathrm{Pu}, 1952: \rho_{\text {sys }}\left(\mathbb{R P}^{2}, \cdot\right)$ is maximized by the round metric.

Some classical answers

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).
Loewner, 1949: $\rho_{\text {sys }}\left(\mathbb{T}^{2}, \cdot\right)$ is maximized by the flat torus \mathbb{R}^{2} / Γ, where $\Gamma \subset \mathbb{R}^{2}$ is the lattice generated by two sides of an equilateral triangle.
$\mathrm{Pu}, 1952: \rho_{\mathrm{sys}}\left(\mathbb{R}^{2}, \cdot\right)$ is maximized by the round metric.
Gromov, 1983: $\rho_{\mathrm{sys}}\left(\Sigma_{k}, g\right) \leq C \frac{(\log k)^{2}}{k}$ for every $k \geq 2$ and every metric g on Σ_{k} (orientable closed surface of genus k).

Some classical answers

If M is not simply connected: Look for non-contractible closed curves minimizing length (always closed geodesics).

Loewner, 1949: $\rho_{\text {sys }}\left(\mathbb{T}^{2}, \cdot\right)$ is maximized by the flat torus \mathbb{R}^{2} / Γ, where $\Gamma \subset \mathbb{R}^{2}$ is the lattice generated by two sides of an equilateral triangle.

Pu, 1952: $\rho_{\text {sys }}\left(\mathbb{R P}^{2}, \cdot\right)$ is maximized by the round metric.
Gromov, 1983: $\rho_{\text {sys }}\left(\Sigma_{k}, g\right) \leq C \frac{(\log k)^{2}}{k}$ for every $k \geq 2$ and every metric g on Σ_{k} (orientable closed surface of genus k).

Gromov, 1983: If the n-dimensional closed manifold M is essential (i.e. $[M] \neq 0$ in $K\left(\pi_{1}(M), 1\right)$), then $\rho_{\text {sys }}(M, g) \leq C_{n}$.

The two-sphere

The two-sphere

Croke, 1988: $\rho_{\mathrm{sys}}\left(S^{2}, g\right) \leq C$.

The two-sphere

Croke, 1988: $\rho_{\text {sys }}\left(S^{2}, g\right) \leq C$.

The optimal C lies in the interval $[2 \sqrt{3}, 2 \sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

The two-sphere

Croke, 1988: $\rho_{\text {sys }}\left(S^{2}, g\right) \leq C$.

The optimal C lies in the interval $[2 \sqrt{3}, 2 \sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

The round metric on S^{2} has systolic ratio $\pi<2 \sqrt{3}$ and does not maximize $\rho_{\text {sys }}$.

The two-sphere

Croke, 1988: $\rho_{\text {sys }}\left(S^{2}, g\right) \leq C$.

The optimal C lies in the interval $[2 \sqrt{3}, 2 \sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

The round metric on S^{2} has systolic ratio $\pi<2 \sqrt{3}$ and does not maximize $\rho_{\text {sys }}$.

However:

The two-sphere

Croke, 1988: $\rho_{\text {sys }}\left(S^{2}, g\right) \leq C$.

The optimal C lies in the interval $[2 \sqrt{3}, 2 \sqrt{8})$ (Calabi-Croke's sphere + Rotman, 2006)

The round metric on S^{2} has systolic ratio $\pi<2 \sqrt{3}$ and does not maximize $\rho_{\text {sys }}$.

However:
A.-Bramham-Hryniewicz-Salomão, 2018: The round metric is a local maximizer of $\rho_{\text {sys }}$ in the C^{2}-topology of metrics.

Zoll metrics

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^{2} : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On $\mathbb{R P}^{2}$ only one (Green, 1961)]

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^{2} : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On $\mathbb{R} \mathbb{P}^{2}$ only one (Green, 1961)]
All Zoll metrics on S^{2} have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S²: Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On $\mathbb{R} \mathbb{P}^{2}$ only one (Green, 1961)]

All Zoll metrics on S^{2} have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]
A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^{2} are the local maximizers of $\rho_{\text {sys }}$ in the C^{2}-topology of metrics.

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^{2} : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On $\mathbb{R P}^{2}$ only one (Green, 1961)]

All Zoll metrics on S^{2} have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]
A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^{2} are the local maximizers of $\rho_{\text {sys }}$ in the C^{2}-topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated geodesic flows have the same systolic ratio.

Zoll metrics

A metric g on the manifold M is said to be Zoll if all its geodesics are closed and have the same length.

On S^{2} : Huge set of Zoll metrics (Zoll, 1903, Funk, 1913, Guillemin, 1976). [On $\mathbb{R P}^{2}$ only one (Green, 1961)]
All Zoll metrics on S^{2} have systolic ratio π (Weinstein, 1974). [Pu \Rightarrow Green]
A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S^{2} are the local maximizers of $\rho_{\text {sys }}$ in the C^{2}-topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated geodesic flows have the same systolic ratio.

Remark 2: Any two Zoll metrics on S^{2} have conjugate geodesic flows (up to rescaling).

Contact forms and their Reeb flows

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.

Contact forms and their Reeb flows

Contact form α on closed $(2 n-1)$-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{g}^{*} M}$.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{g}^{*} M}$. The flow of R_{α} is the geodesic flow.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{8}^{*} M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}\left(S_{g}^{*} M, \alpha\right)$ is the Riemannian volume of M times $n!\omega_{n}$.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{8}^{*} M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}\left(S_{g}^{*} M, \alpha\right)$ is the Riemannian volume of M times $n!\omega_{n}$.

Example 2: W closed hypersurface in $\mathbb{R}^{2 n} \backslash\{0\}$ transverse to the radial direction, contact form $\alpha=\left.\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)\right|_{W}$.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{8}^{*} M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}\left(S_{g}^{*} M, \alpha\right)$ is the Riemannian volume of M times $n!\omega_{n}$.

Example 2: W closed hypersurface in $\mathbb{R}^{2 n} \backslash\{0\}$ transverse to the radial direction, contact form $\alpha=\left.\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)\right|_{W}$.
The flow of R_{α} is the Hamiltonian flow on $\{H=1\}$ of the positively 2 -homogeneous Hamiltonian H such that $W=\{H=1\}$.

Contact forms and their Reeb flows

Contact form α on closed ($2 n-1$)-manifold W, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.

Volume of $(W, \alpha): \operatorname{vol}(W, \alpha):=\int_{W} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Example 1: $W=S_{g}^{*} M=\left\{p \in T^{*} M \mid g^{*}(p, p)=1\right\}$, unit cotangent sphere bundle with contact form $\alpha=\left.p d q\right|_{S_{g}^{*} M}$. The flow of R_{α} is the geodesic flow. The volume $\operatorname{vol}\left(S_{g}^{*} M, \alpha\right)$ is the Riemannian volume of M times $n!\omega_{n}$.

Example 2: W closed hypersurface in $\mathbb{R}^{2 n} \backslash\{0\}$ transverse to the radial direction, contact form $\alpha=\left.\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)\right|_{W}$.
The flow of R_{α} is the Hamiltonian flow on $\{H=1\}$ of the positively 2 -homogeneous Hamiltonian H such that $W=\{H=1\}$. The volume $\operatorname{vol}(W, \alpha)$ is the Euclidean volume of the region bounded by W times n !.

The systolic ratio of a contact form

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α):

$$
\rho_{\mathrm{sys}}(W, \alpha):=\frac{T_{\min }(\alpha)^{n}}{\operatorname{vol}(W, \alpha)}
$$

$T_{\min }(\alpha):=$ minimum of all periods of closed orbits of R_{α}.

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α) :

$$
\rho_{\mathrm{sys}}(W, \alpha):=\frac{T_{\min }(\alpha)^{n}}{\operatorname{vol}(W, \alpha)}
$$

$T_{\min }(\alpha):=$ minimum of all periods of closed orbits of R_{α}. Scale invariance: $\rho_{\text {sys }}(W, c \alpha)=\rho_{\text {sys }}(W, \alpha)$ for every $c>0$.

The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a closed manifold has periodic orbits.

Systolic ratio of (W, α) :

$$
\rho_{\mathrm{sys}}(W, \alpha):=\frac{T_{\min }(\alpha)^{n}}{\operatorname{vol}(W, \alpha)},
$$

$T_{\min }(\alpha):=$ minimum of all periods of closed orbits of R_{α}. Scale invariance: $\rho_{\text {sys }}(W, c \alpha)=\rho_{\text {sys }}(W, \alpha)$ for every $c>0$.

By Example 1, the contact systolic ratio generalizes the metric one: $\rho_{\text {sys }}\left(S_{g}^{*} M, \alpha\right)=\frac{1}{n!\omega_{n}} \rho_{\text {sys }}(M, g)$.

Zoll contact forms

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$,

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(W, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(W, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(W, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
Álvarez Paiva-Balacheff, 2014:

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(W, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
Álvarez Paiva-Balacheff, 2014:

- Any contact form that is a local maximizer of $\rho_{\text {sys }}$ must be Zoll.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby-Wang, 1958: α_{0} Zoll on $W \Rightarrow$ Basis B of circle bundle $\pi: W \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{0} \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(W, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
Álvarez Paiva-Balacheff, 2014:

- Any contact form that is a local maximizer of $\rho_{\text {sys }}$ must be Zoll.
- Is the converse true?

Local systolic maximality of Zoll contact forms

Local systolic maximality of Zoll contact forms

Theorem 1 (A.-Benedetti, 2020). Let α_{0} be a Zoll contact form on the closed manifold W. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on W such that

$$
\rho_{\mathrm{sys}}(W, \alpha) \leq \rho_{\mathrm{sys}}\left(W, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.

Local systolic maximality of Zoll contact forms

Theorem 1 (A.-Benedetti, 2020). Let α_{0} be a Zoll contact form on the closed manifold W. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on W such that

$$
\rho_{\mathrm{sys}}(W, \alpha) \leq \rho_{\mathrm{sys}}\left(W, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.
C^{3}-local maximality of Zoll contact forms in dimension 3: For $W=S^{3}$: A.-Bramham-Hryniewicz-Salomão, 2018. For any closed 3-manifold: Benedetti-Kang, 2019.

Local systolic maximality of Zoll contact forms

Theorem 1 (A.-Benedetti, 2020). Let α_{0} be a Zoll contact form on the closed manifold W. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on W such that

$$
\rho_{\mathrm{sys}}(W, \alpha) \leq \rho_{\mathrm{sys}}\left(W, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.
C^{3}-local maximality of Zoll contact forms in dimension 3: For $W=S^{3}$: A.-Bramham-Hryniewicz-Salomão, 2018. For any closed 3-manifold: Benedetti-Kang, 2019.

Corollary 1. Zoll Riemannian metrics are local maximizers of the metric systolic ratio in the C^{3}-topology (answering question of Berger, 1970).

A conjecture of Viterbo

A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2 n}$ containing the origin in its interior we have

$$
\rho_{\mathrm{sys}}(\partial K, \alpha) \leq 1
$$

with equality if and only K is symplectomorphic to a ball.

A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2 n}$ containing the origin in its interior we have

$$
\rho_{\mathrm{sys}}(\partial K, \alpha) \leq 1
$$

with equality if and only K is symplectomorphic to a ball. Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{\mathrm{sys}}(\partial K, \alpha) \leq C$.

A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2 n}$ containing the origin in its interior we have

$$
\rho_{\mathrm{sys}}(\partial K, \alpha) \leq 1
$$

with equality if and only K is symplectomorphic to a ball. Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{\text {sys }}(\partial K, \alpha) \leq C$.
Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo's conjecture implies the Mahler conjecture (1939): if $K \subset \mathbb{R}^{n}$ is a centrally symmetric convex body then $\operatorname{vol}(K) \operatorname{vol}\left(K^{\circ}\right) \geq 4^{n} / n!$.

A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth convex body $K \subset \mathbb{R}^{2 n}$ containing the origin in its interior we have

$$
\rho_{\mathrm{sys}}(\partial K, \alpha) \leq 1
$$

with equality if and only K is symplectomorphic to a ball.
Artstein-Avidan, Milman, Ostrover, 2008: $\rho_{\text {sys }}(\partial K, \alpha) \leq C$.
Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo's conjecture implies the Mahler conjecture (1939): if $K \subset \mathbb{R}^{n}$ is a centrally symmetric convex body then $\operatorname{vol}(K) \operatorname{vol}\left(K^{\circ}\right) \geq 4^{n} / n!$.
Corollary 2. There exists a C^{3}-neighborhood \mathcal{U} of the ball in the space of smooth convex bodies in $\mathbb{R}^{2 n}$ such that

$$
\rho_{\mathrm{sys}}(\partial K, \alpha) \leq 1 \quad \forall K \in \mathcal{U}
$$

with equality if and only if K is symplectomorphic to a ball.

Shadows of symplectic balls

Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on $\mathbb{R}^{2 n}$ that are close to linear ones satisfy a non-squeezing property in all the intermediate dimensions.

Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on $\mathbb{R}^{2 n}$ that are close to linear ones satisfy a non-squeezing property in all the intermediate dimensions.

See Bonus slides.

Global unboundedness of the contact systolic ratio

Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that $\operatorname{ker} \alpha=\xi$ having arbitrarily large systolic ratio.

Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that $\operatorname{ker} \alpha=\xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that $\operatorname{ker} \alpha=\xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in $\mathbb{R}^{2 n}$ whose boundary has arbitrarily high systolic ratio,

Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that $\operatorname{ker} \alpha=\xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in $\mathbb{R}^{2 n}$ whose boundary has arbitrarily high systolic ratio, although in the convex case the systolic ratio has a uniform upper bound (conjecturally equal to one).

Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W. Then there exist contact forms α on W such that $\operatorname{ker} \alpha=\xi$ having arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for 3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in $\mathbb{R}^{2 n}$ whose boundary has arbitrarily high systolic ratio, although in the convex case the systolic ratio has a uniform upper bound (conjecturally equal to one).

There exist $W \subset T^{*} M$ fiberwise transverse to the radial direction such that $\rho_{\text {sys }}(W, p d q \mid w)$ is arbitrarily large (whereas when W bounds a fiberwise convex set and M is essential, then $\rho_{\text {sys }}(W, p d q \mid w)$ has a uniform upper bound, by Gromov).

Proof of Theorem 1 in a simple case

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)=\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)=\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1 in a simple case

M closed ($2 n-1$)-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and hence $\rho_{\mathrm{sys}}(M, \alpha)=\frac{\boldsymbol{T}_{\min }(\alpha)^{n}}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}\left(M, \alpha_{0}\right)}=\rho_{\mathrm{sys}}\left(M, \alpha_{0}\right)$.

Proof of Theorem 1 in a simple case

M closed ($2 n-1$)-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and hence $\rho_{\mathrm{sys}}(M, \alpha)=\frac{T_{\min }(\alpha)^{n}}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}\left(M, \alpha_{0}\right)}=\rho_{\mathrm{sys}}\left(M, \alpha_{0}\right)$.

A normal form for contact forms close to Zoll ones

A normal form for contact forms close to Zoll ones
Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:

A normal form for contact forms close to Zoll ones
Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;

A normal form for contact forms close to Zoll ones
Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;

A normal form for contact forms close to Zoll ones
Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;

A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f,
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{0}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.

A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f,
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha_{0}}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.
u close to the identity and $S-1, f, \eta, F$ small if $\alpha-\alpha_{0}$ small.

A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.
u close to the identity and $S-1, f, \eta, F$ small if $\alpha-\alpha_{0}$ small.
The proof builds on results on normal forms for vector fields from the seventies (Bottkol, Moser).

A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.
u close to the identity and $S-1, f, \eta, F$ small if $\alpha-\alpha_{0}$ small.
The proof builds on results on normal forms for vector fields from the seventies (Bottkol, Moser).
Key fact: Any orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of $R_{u^{*} \alpha}$ of period $S(\gamma) T_{\min }\left(\alpha_{0}\right)$.

The volume formula

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before.

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

with coefficients $p_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\int_{M} p_{j} \alpha_{0} \wedge d \alpha_{0}^{n-1}=0, \quad \forall j=1,2, \ldots, n-1 .
$$

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

with coefficients $p_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\int_{M} p_{j} \alpha_{0} \wedge d \alpha_{0}^{n-1}=0, \quad \forall j=1,2, \ldots, n-1 .
$$

Moreover, p_{j} is C^{0}-small when η and F are small in suitable norms.

Proof of Theorem 1

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$.

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$.

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 .

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}=(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\begin{aligned}
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1} & =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \\
& \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 3, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\begin{aligned}
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1} & =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \\
& \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and we conclude as in the simple case treated before.

Shadows of symplectic balls, I

Shadows of symplectic balls, I

Standard symplectic form $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ on $\mathbb{R}^{2 n}$.

Shadows of symplectic balls, I

Standard symplectic form $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ on $\mathbb{R}^{2 n}$.
Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $\left(\mathbb{R}^{2 n}, \omega_{0}\right), P_{V}$ symplectic projector onto V, B unit ball in $\mathbb{R}^{2 n}$. Then

$$
\operatorname{area}\left(P_{V} \varphi(B), \omega_{0} \mid v\right) \geq \pi
$$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$.

Shadows of symplectic balls, I

Standard symplectic form $\omega_{0}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}$ on $\mathbb{R}^{2 n}$.
Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $\left(\mathbb{R}^{2 n}, \omega_{0}\right), P_{V}$ symplectic projector onto V, B unit ball in $\mathbb{R}^{2 n}$. Then

$$
\operatorname{area}\left(P_{V} \varphi(B), \omega_{0} \mid v\right) \geq \pi
$$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$.
A.-Matveyev, 2013: If V is a symplectic $2 k$-plane with $1<k<n$ and $\epsilon>0$, then there exists a symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$ such that

$$
\operatorname{vol}\left(P_{V} \varphi(B), \omega_{0}^{k} \mid v\right)<\epsilon
$$

(building on results of Guth, 2008).

Shadows of symplectic balls, II

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

where

$$
\begin{aligned}
& w n e r e \\
& w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) .
\end{aligned}
$$

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)},
$$

$w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k}$ basis of $X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right)$.
Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace.

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$$
\begin{aligned}
& \text { where }: \frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) \text {. }
\end{aligned}
$$

Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace. Therefore:

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every linear symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$.

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k}$ basis of $X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right)$.
Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace. Therefore:

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every linear symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$.
Corollary 3. There exists a $C_{\text {loc }}^{3}$-neighborhood \mathcal{U} of the set of linear mappings in the space of all smooth symplectomorphisms of $\mathbb{R}^{2 n}$ such that for every symplectic $2 k$-plane $V \subset R^{2 n}$ we have

$$
\operatorname{vol}\left(P_{V \varphi}(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every $\varphi \in \mathcal{U}$.

