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The systolic ratio in metric geometry

Any closed Riemannian manifold (M, g) admits closed geodesics
(Lusternik-Fet, 1951).

Question: How long can a shortest closed geodesic be, once the
volume has been normalized?

What is the supremum of the systolic ratio

ρsys(M, g) :=
min{length(γ, g)n | γ closed geodesic on (M, g)}

vol(M, g)

of the n-dimensional closed Riemannian manifold (M, g) over the
space of all Riemannian metrics g?
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Some classical answers

If M is not simply connected: Look for non-contractible closed
curves minimizing length (always closed geodesics).

Loewner, 1949: ρsys(T2, ·) is maximized by the flat torus R2/Γ,
where Γ ⊂ R2 is the lattice generated by two sides of an equilateral
triangle.

Pu, 1952: ρsys(RP2, ·) is maximized by the round metric.

Gromov, 1983: ρsys(Σk , g) ≤ C (log k)2

k for every k ≥ 2 and every
metric g on Σk (orientable closed surface of genus k).

Gromov, 1983: If the n-dimensional closed manifold M is essential
(i.e. [M] 6= 0 in K (π1(M), 1)), then ρsys(M, g) ≤ Cn.
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The two-sphere

Croke, 1988: ρsys(S
2, g) ≤ C .

The optimal C lies in the interval [2
√

3, 2
√

8)
(Calabi-Croke’s sphere + Rotman, 2006)

The round metric on S2 has systolic ratio π < 2
√

3 and does not
maximize ρsys.

However:

A.-Bramham-Hryniewicz-Salomão, 2018: The round metric is a
local maximizer of ρsys in the C 2-topology of metrics.
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Zoll metrics

A metric g on the manifold M is said to be
Zoll if all its geodesics are closed and have the
same length.

On S2: Huge set of Zoll metrics (Zoll, 1903, Funk, 1913,
Guillemin, 1976). [On RP2 only one (Green, 1961)]

All Zoll metrics on S2 have systolic ratio π (Weinstein, 1974). [Pu
⇒ Green]

A.-Bramham-Hryniewicz-Salomão, 2018: Zoll metrics on S2 are
the local maximizers of ρsys in the C 2-topology of metrics.

Remark 1: Two Riemannian metrics on M having conjugated
geodesic flows have the same systolic ratio.

Remark 2: Any two Zoll metrics on S2 have conjugate geodesic
flows (up to rescaling).
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Contact forms and their Reeb flows

Contact form α on closed (2n − 1)-manifold W , i.e. α ∧ dαn−1

volume form.

Volume of (W , α): vol(W , α) :=
∫
W α ∧ dαn−1.

Reeb vector field Rα: ıRαdα = 0, ıRαα = 1.

Example 1: W = S∗
gM = {p ∈ T ∗M | g∗(p, p) = 1}, unit

cotangent sphere bundle with contact form α = p dq|S∗
g M .

The flow of Rα is the geodesic flow. The volume vol(S∗
gM, α) is

the Riemannian volume of M times n!ωn.

Example 2: W closed hypersurface in R2n \ {0} transverse to the

radial direction, contact form α = 1
2

∑n
j=1(xj dyj − yj dxj)

∣∣∣
W

.

The flow of Rα is the Hamiltonian flow on {H = 1} of the
positively 2-homogeneous Hamiltonian H such that W = {H = 1}.
The volume vol(W , α) is the Euclidean volume of the region
bounded by W times n!.
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The systolic ratio of a contact form

The Weinstein conjecture states that any Reeb vector field on a
closed manifold has periodic orbits.

Systolic ratio of (W , α):

ρsys(W , α) :=
Tmin(α)n

vol(W , α)
,

Tmin(α) := minimum of all periods of closed orbits of Rα.

Scale invariance: ρsys(W , cα) = ρsys(W , α) for every c > 0.

By Example 1, the contact systolic ratio generalizes the metric
one: ρsys(S

∗
gM, α) = 1

n!ωn
ρsys(M, g).
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Zoll contact forms

The contact form α0 is said to be Zoll if all the orbits of Rα0 are
closed and have the same period.

Boothby-Wang, 1958: α0 Zoll on W ⇒ Basis B of circle bundle
π : W → B induced by S1-action of Rα0 has integral symplectic
form ω such that dα0 = T0π

∗ω, and hence ρsys(W , α0) = 1
N ,

where N := 〈[ω]n−1, [B]〉 ∈ N is the Euler number.
Main example: S2n−1 with standard contact form α0, whose Reeb
orbits are the fibers of the Hopf fibration π : S2n−1 → CPn−1, and
ρsys(S

2n−1, α0) = 1.

Álvarez Paiva-Balacheff, 2014:
• Any contact form that is a local maximizer of ρsys must be

Zoll.

• Is the converse true?
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Local systolic maximality of Zoll contact forms

Theorem 1 (A.-Benedetti, 2020). Let α0 be a Zoll contact form on
the closed manifold W . Then α0 has a C 3-neighborhood U in the
space of contact forms on W such that

ρsys(W , α) ≤ ρsys(W , α0) ∀α ∈ U ,

with equality if and only if α is Zoll.

C 3-local maximality of Zoll contact forms in dimension 3: For
W = S3: A.-Bramham-Hryniewicz-Salomão, 2018. For any closed
3-manifold: Benedetti-Kang, 2019.

Corollary 1. Zoll Riemannian metrics are local maximizers of the
metric systolic ratio in the C 3-topology (answering question of
Berger, 1970).
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A conjecture of Viterbo

Conjecture (Viterbo, 2000 - reformulation). For every smooth
convex body K ⊂ R2n containing the origin in its interior we have

ρsys(∂K , α) ≤ 1

with equality if and only K is symplectomorphic to a ball.

Artstein-Avidan, Milman, Ostrover, 2008: ρsys(∂K , α) ≤ C .

Artstein-Avidan, Karasev, Ostrover, 2014: Viterbo’s conjecture
implies the Mahler conjecture (1939): if K ⊂ Rn is a centrally
symmetric convex body then vol(K )vol(K ◦) ≥ 4n/n!.

Corollary 2. There exists a C 3-neighborhood U of the ball in the
space of smooth convex bodies in R2n such that

ρsys(∂K , α) ≤ 1 ∀K ∈ U ,

with equality if and only if K is symplectomorphic to a ball.
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Shadows of symplectic balls

Corollary 3. Symplectic diffeomorphisms on R2n that are close to
linear ones satisfy a non-squeezing property in all the intermediate
dimensions.

See Bonus slides.
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Global unboundedness of the contact systolic ratio

Theorem 2. Let ξ be a contact structure on a closed manifold W .
Then there exist contact forms α on W such that kerα = ξ having
arbitrarily large systolic ratio.

Proven by A.-Bramham-Hryniewicz-Salomão (2019) for
3-manifolds and by Sağlam (2020) in arbitrary dimensions.

In particular: There exists smooth starshaped domains in R2n

whose boundary has arbitrarily high systolic ratio, although in the
convex case the systolic ratio has a uniform upper bound
(conjecturally equal to one).

There exist W ⊂ T ∗M fiberwise transverse to the radial direction
such that ρsys(W , p dq|W ) is arbitrarily large (whereas when W
bounds a fiberwise convex set and M is essential, then
ρsys(W , p dq|W ) has a uniform upper bound, by Gromov).
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Proof of Theorem 1 in a simple case

M closed (2n− 1)-dimensional manifold with Zoll contact form α0.
Normalization: Tmin(α0) = 1.

Assume that the contact form α of M has the form

α = Sα0,

where S : M → (0,+∞) is a function that is constant on the
orbits of Rα0 .

Since dα = dS ∧α0 + S dα0, every closed orbit γ of Rα0 consisting
of critical points of S is a closed orbit of Rα of period S(γ)

.

Therefore:

vol(M, α)

=

∫
M
Sn α0 ∧ dαn−1

0 ≥ (minS)n
∫
M
α0 ∧ dαn−1

0

= (minS)nvol(M, α0) ≥ Tmin(α)nvol(M, α0),

and hence ρsys(M, α) = Tmin(α)
n

vol(M,α) ≤
1

vol(M,α0)
= ρsys(M, α0). �
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A normal form for contact forms close to Zoll ones

Theorem 3 (A.-Benedetti, 2020). If α is C 2-close to the Zoll
contact form α0 then there is a diffeomorphism u : M → M such
that

u∗α = Sα0 + η + df ,

where:

(i) S : M → (0,+∞) is constant on the orbits of Rα0 ;

(ii) f : M → R;

(iii) η is a one-form such that ıRα0
η = 0;

(iv) ıRα0
dη = F [dS ], where F : T ∗M → T ∗M is an endomorphism

lifting the identity.

u close to the identity and S − 1, f , η, F small if α− α0 small.

The proof builds on results on normal forms for vector fields from
the seventies (Bottkol, Moser).
Key fact: Any orbit γ of Rα0 consisting of critical points of S is a
closed orbit of Ru∗α of period S(γ)Tmin(α0).
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The volume formula

Proposition. β = Sα0 + η + df with S , η, f as before. Then

vol(M, β) =

∫
M
p(x ,S(x))α0 ∧ dαn−1

0 ,

where p : M × R→ R is polynomial in its second variable,

p(x , s) = sn +
n−1∑
j=1

pj(x)s j ,

with coefficients pj : M → R satisfying∫
M
pj α0 ∧ dαn−1

0 = 0, ∀j = 1, 2, . . . , n − 1.

Moreover, pj is C 0-small when η and F are small in suitable norms.
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Proof of Theorem 1

Normalization Tmin(α0) = 1. By Theorem 3, we can put α in
normal form: u∗α = Sα0 + η + df . By the Proposition, we have

vol(M, α) = vol(M, u∗α) =

∫
M
p(x ,S(x))α0 ∧ dαn−1

0 .

By the form of the polynomial function p and the bounds on its
coefficients, s 7→ p(x , s) is strictly increasing for s close to 1.
Therefore:∫

M
p(x , S(x))α0 ∧ dαn−1

0 ≥
∫
M
p(x ,minS)α0 ∧ dαn−1

0 .

Since all the coefficients pj of p have integral zero, except for the
coefficient of sn, which is 1,∫

M
p(x ,minS)α0 ∧ dαn−1

0 = (minS)nvol(M, α0)

≥ Tmin(α)nvol(M, α0),

and we conclude as in the simple case treated before. �
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Shadows of symplectic balls, I

Standard symplectic form ω0 =
∑n

j=1 dxj ∧ dyj on R2n.

Gromov’s non-squeezing theorem (1985): V symplectic 2-plane in
(R2n, ω0), PV symplectic projector onto V , B unit ball in R2n.
Then

area(PVϕ(B), ω0|V ) ≥ π

for any symplectomorphism ϕ : B ↪→ R2n.

A.-Matveyev, 2013: If V is a symplectic 2k-plane with 1 < k < n
and ε > 0, then there exists a symplectomorphism ϕ : B ↪→ R2n

such that
vol(PVϕ(B), ωk

0 |V ) < ε.

(building on results of Guth, 2008).
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Shadows of symplectic balls, II

Linear symplectomorphisms: If Φ : R2n → R2n is a linear
symplectomorphism, then

vol(PV Φ(B), ωk
0 |V ) =

πk

w(Φ−1(V ))
,

where

w(X ) :=
|ωk

0 [u1, u2, . . . , u2k ]|
k!|u1 ∧ u2 ∧ · · · ∧ u2k |

, u1, u2, . . . , u2k basis of X ∈ Gr2k(R2n).

Wirtinger inequality: w(X ) ≤ 1, and = 1 if and only if X is a
complex subspace. Therefore:

vol(PV Φ(B), ωk
0 |V ) ≥ πk ,

for every linear symplectomorphism Φ : R2n → R2n.
Corollary 3. There exists a C 3

loc-neighborhood U of the set of linear
mappings in the space of all smooth symplectomorphisms of R2n

such that for every symplectic 2k-plane V ⊂ R2n we have

vol(PVϕ(B), ωk
0 |V ) ≥ πk ,

for every ϕ ∈ U .
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