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Neural network and quiver representation
New ingredient: non-linear functions at vertices.
We observe many of these functions are closely related with symplectomorphisms.

Thm: 
௘ೣ೔

ଵା∑ ௘
ೣೕ 

ೕ

⎯⎯⎯⎯⎯⎯⎯: ℝ௡ → ℝ௡ that comes from the symplectomorphism (ℂ௡, 𝜔ℙ೙) → (ℂ௡, 𝜔ୱ୲ୢ)

satisfies the universal approximation property. 

I.

An AG formulation of computing machine
New ingredient: ℂ-near-ring.
Want to make well-defined action on [𝑅(𝐴)/𝐺].

Thm: there exists a chain map 𝐷𝑅ȉ൫𝐴ሚ൯ → ቀΩȉ൫𝑅(𝐴)൯ቁ
ீ

.

II.

Metrics on framed quiver moduli
Formulate learning algorithm over framed quiver moduli.
Metrics on the universal bundles and moduli space would be important.
Thm: 

III.

𝐻௜ = ൭ ෍ ൫𝑤ఊ𝑒௧(ఊ)൯൫𝑤ఊ𝑒௧(ఊ)൯
∗

 

௛(ఊ)ୀ௜

൱

ିଵ

gives a well-defined metric on 𝒱௜ → ℳ, whose Ricci curvature induces a Kaehler metric on ℳ௡ሬ⃗ ,ௗ⃗.

Uniformization of metrics
Want to relate with usual algorithm over Euclidean space.
Use duality of symmetric spaces to construct non-compact duals of quiver moduli.

Thm:
We have the non-compact dual moduli ℳି ⊂ ℳ with metric 𝐻ℳష ≔ −√−1

⎯⎯⎯ 
∑ 𝜕𝜕̅ log det 𝐻௜

ି 
௜ .

IV.

There exists a (non-holomorphic) isometry, which respects the real structure:

(𝑀ି, 𝐻ெష) ≅ ቌෑ Grି(𝑚௜, 𝑑௜)

 

௜

, ໄ 𝐻ୋ୰ష(௠೔,ௗ೔)

 

௜

ቍ

where 𝑚௜ = 𝑛௜ + ∑ dim 𝑉௧(௔)
 
௔:௛(௔)ୀ௜ .

Neural network and quiver representation

Fix a directed graph 𝑄.  Associate to
vertex: vector space
arrow: linear map.

That is, a quiver representation 𝑤.

Fix a collection of vertices 𝑖୧୬, 𝑖୭୳୲, and 𝑉௜౟౤
, 𝑉௜౥౫౪

.

To approximate any given continuous function 
𝑓: 𝐾 → 𝑉௜౥౫౪

(where 𝐾 ⊂
ୡ୮୲

𝑉௜౟౤
) by using a representation 𝑤.

Fix 𝛾 ∈ 𝑖୭୳୲ ⋅ ℂ𝑄 ⋅ 𝑖୧୬.

Get a linear function 𝑓ఊ,௪: 𝑉௜౟౤
→ 𝑉௜౥౫౪

.

Linear approximation 𝑓ఊ,௪ is not good enough!

Introduce non-linear `activation functions' at vertices.
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Compose with these activation functions and get 
network function
𝑓ఊ෥,௪: 𝑉௜౟౤

→ 𝑉௜౥౫౪

for every 𝑤 ∈ Rep(𝑄).

Minimize

𝐶(𝑉) = ห𝑓ఊ෥,௪ − 𝑓ห
ଶ

௅మ(௄)

by taking a (stochastic) gradient descent on the vector space 
Rep(𝑄).

So a neural network is essentially:
a quiver representation, together with 
a fixed choice of non-linear functions on the representing vector 
spaces, and a fixed path.

Relation between quiver representations and neural network 
was observed by [Armenta-Jodoin 20].

AI neural network has achieved great success in many fields of 
science and daily life.

Related to lot of areas in math:
Representation theory, stochastic analysis, Riemannian 
geometry, Morse theory, mathematical physics…

Are there any deeper geometric structures in the subject?1.
Can modern geometry provide new insight for the theory and 
find enhancement of methods?

2.

Fundamental motivating questions:

Main difference between neural network and quiver 
representations is:
there are non-linear activation functions.

Interesting relation with toric geometry:

The sigmoid function 
ଵ

ଵା௘షೣ⎯⎯⎯⎯⎯can be obtained from the moment 

map ℙଵ → ℝ.

Similarly the algebraic sigmoid 
௭

ඥଵା|௭|మ⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯is a symplectomorphism 

൫ℂ, 𝜔ℙభ൯ → (ℂ, 𝜔ୱ୲ୢ).

Using tropical rescaling, we show that a higher dimensional 
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consisting of linear operations of the machine.•

An AG formulation of computing machine

𝑨: associative algebra.

States of the machine(before observation).•
𝑽: a vector space (basis-free).  

Linear operations on the state space.•
Consider 𝑨-module structures 𝒘: 𝑨 → 𝖌𝖑(𝑽).

In reality, data are observed and recorded in fixed basis!
Framing 𝒆:
𝐹 = 𝐹୧୬ ⊕ 𝐹୭୳୲ ⊕ 𝐹௛ (with fixed basis), with linear maps

𝐹୧୬ ⊕ 𝐹୭୳୲: vector spaces of all possible inputs and outputs.•
𝐹௛: Physical memory for the machine.•
𝑒: to observe and record the states.•

𝑒: 𝐹 → 𝑉.

The triple (𝑉, 𝑤, 𝑒) is called a framed 𝐴-module.

Similarly the algebraic sigmoid 
௭

ඥଵା|௭|మ  is a symplectomorphism 

൫ℂ, 𝜔ℙభ൯ → (ℂ, 𝜔ୱ୲ୢ).

Using tropical rescaling, we show that a higher dimensional 
analog can also be used as activation functions 
[arXiv:2101.11487].

Another gap between quiver and neural network:

In math, we work with moduli space of representations:
ℳ ≔ Rep(𝑄)//ఞ Aut.

Isomorphic objects should produce the same result.

However, this is not true for 𝒇𝜸෥,𝒘 given as above:

Any useful non-linear functions 𝜎: 𝑉௜ → 𝑉௜ are NOT equivariant
under GL(𝑉௜): 
𝜎(𝑔 ⋅ 𝑣) ≠ 𝑔 ⋅ 𝜎(𝑣).
Then 𝑓ఊ෥,௪ does not descend to [𝑤] ∈ ℳ.

A crucial gap between neural network and representation 
theory!

It poses an obstacle for carrying out machine learning using 
moduli space of quiver representations.

[arXiv:2101.11487] provided a simple solution to overcome 
this.
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𝑒: to observe and record the states.•

The triple (𝑉, 𝑤, 𝑒) is called a framed 𝐴-module.

An algorithm.•
Fix 𝜸 ∈ 𝑨.

For each 𝑣 ∈ 𝐹୧୬, have 𝑓ఊ: 𝐹୧୬ → 𝐹୭୳୲,

The `machine function'.
Given an input signal 𝑣, send it to machine by 𝑒୧୬; 
then perform operations according to 𝛾; 
then output by the adjoint of 𝑒୭୳୲.)

•

Metric is needed to define the adjoint.•

𝒇𝜸(𝒗) ≔ 𝒆𝐨𝐮𝐭
∗ ൫𝜸 ⋅ 𝒆𝐢𝐧(𝒗)൯.

So far, everything is linear.

In real applications, need
non-linear operations 𝜎ଵ, … , σே: 𝑉 → 𝑉.

A non-linear algorithm.•

Then enlarge 𝐴 to a near-ring 𝐴ሚ = 𝐴{𝜎ଵ, … , 𝜎ே};
take 𝛾෤ ∈ 𝐴ሚ.

For every (𝑤, 𝑒) ∈ 𝑅,

have 𝑓(௪,௘)
ఊ෥

: 𝐹୧୬ → 𝐹୭୳୲ ,

Network function.•
𝑓(௪,௘)

ఊ෥ (𝑣) = 𝑒୭୳୲
∗ ቀ𝛾෤ ⋅(௪,௘) 𝑒୧୬(𝑣)ቁ .

Can do this over
vector space of framed modules:

Parameter space of the machine.•
𝑅 ≔ {(𝑤, 𝑒): 𝑤: 𝐴 → 𝔤𝔩(𝑉) alg. homo. ;  𝑒: 𝐹 → 𝑉}.

Math. and physics principle:
Isomorphic objects should produce the same 𝑓(௪,௘)

ఊ෥
.

If so,  𝑓(௪,௘)
ఊ෥

is defined for [𝑤, 𝑒] ∈ ℳ = [𝑅/𝐺].

Isomorphism here is 𝐺 = GL(𝑉):
(𝑉, 𝑤, 𝑒) ≅ (𝑉, 𝑔 ⋅ 𝑤, 𝑔 ⋅ 𝑒).

To satisfy this principle, need: 
the non-linear operations 𝜎: 𝑉 → 𝑉 to be GL(𝑉)-equivariant:

𝑔 ⋅ ൫𝜎(𝑣)൯ = 𝜎(𝑔 ⋅ 𝑣).

Impossible for any useful function 𝜎!

A main obstacle to realize machine learning using moduli theory.  

universal bundle
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Solution:

Rather than taking 𝜎 as a single linear map 𝑉 → 𝑉,
𝜎 is instead a fiber-bundle map on 𝒱 → 𝒱, where 𝒱 is the 
universal bundle over ℳ.

Then the equivariance equation is indeed for 𝜎(௪,௘) over 𝑅 × 𝑉:

𝑔 ⋅ ቀ𝜎(௪,௘)(𝑣)ቁ = 𝜎(௚⋅௪,௚⋅௘)(𝑔 ⋅ 𝑣)

instead of

𝑔 ⋅ ൫𝜎(𝑣)൯ = 𝜎(𝑔 ⋅ 𝑣).

(No hope if we look for 𝜎 independent of (𝑤, 𝑒) since 𝒱 is non-
trivial.)

To cook up an explicit fiber bundle map,
use equivariant metric:
Equip 𝑉 with Hermitian metric ℎ(௪,௘) for every (𝑤, 𝑒) ∈ 𝑅, in a 

GLௗ-equivariant way: 
ℎ(௚⋅௪,௚⋅௘)(𝑔 ⋅ 𝑢, 𝑔 ⋅ 𝑣) = ℎ(௪,௘)(𝑢, 𝑣).

(Note that we are NOT asking for GLௗ-invariance ℎ(𝑔 ⋅ 𝑢, 𝑔 ⋅ 𝑣) =
ℎ(𝑢, 𝑣) for a single ℎ, which is IMPOSSIBLE!)

Given ANY 𝜎ி: 𝐹 → 𝐹, we cook up 𝜎(௪,௘)

using the equivariant metric and framing:

𝜎(௪,௘)(𝑣) ≔ 𝑒 ⋅ 𝜎 
ி ቀℎ(௪,௘)(𝑒ଵ, 𝑣), … , ℎ(௪,௘)(𝑒௡, 𝑣)ቁ .

Observe and record the state using 𝑒, do the non-linear 
operation, and then send it back as state.

•

So the non-linear operation is on 𝐹 rather than on 𝑉!•

Let's conclude with the following definition.

Def.
An activation module consists of:
(1) a noncommutative algebra 𝐴 and vector spaces 𝑉, 𝐹;

𝜎௝
ி: 𝐹 → 𝐹;

(2) a collection of possibly non-linear functions

(3) A family of metrics ℎ(௪,௘) on 𝑉 over the space 𝑅 of framed 𝐴-

modules which is GL(𝑉)-equivariant.

Now we need a near-ring to encapsulate all possible operations.
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Given an algebra 𝐴, we can form a near ring
𝐴{𝜎ଵ, … , 𝜎ே}.
ex. 𝛾෤ = 𝑎଴ + 𝑎ଵ𝜎ଵ ∘ ൫𝑎ଵ,଴ + 𝑎ଵ,ଵ𝜎ଵ,ଵ ∘ 𝑎ଵ,ଵ,଴൯ + 𝑎ଶ𝜎ଶ ∘ 𝑎ଶ,଴.

Assume the above setting of activation module.  Set

𝐴ሚ ≔ ቀMatி൫𝐴መୢ୭୳ୠ୪ୣ൯ቁ {𝜎ଵ, … , 𝜎ே}

where

𝐴መୢ୭୳ୠ୪ୣ is the doubling of ℂ𝑄෠; (so has 𝑒∗, 𝑎∗)

Matி൫𝐴መୢ୭୳ୠ୪ୣ൯ is algebra of 𝑛-by-𝑛 matrices, whose entries are 

cycles in ℂ𝑄෠ based at the framing vertex ∞.

Doubling is a standard procedure in construction of Nakajima's 
quiver variety.

We consider 𝐴ሚ-module struture on 𝐹.

Prop.
Each point in [𝑅/𝐺] gives a well-defined map
𝐴ሚ → Map(𝐹).
That is, we have

𝐴ሚ → Γ൫ℳ, Map(𝐹)൯.

Note: [𝑅/𝐺] is moduli of 𝐴-modules, NOT the doubling.
The actions of 𝑒∗, 𝑎∗ on 𝐹 ⊕ 𝑉 are produced by the adjoint with 
respect to
ℎ (the equivariant family of metrics on 𝑉).

Have differential forms for nc algebra 𝑨
[Connes; Cuntz-Quillen; Kontsevich; Ginzburg…].  

DR∗(𝐴) → Ω∗൫𝑅(𝐴)൯
ீ

.

Study moduli spaces for all dimension vectors at the same time!
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𝑑ଶ = 0.

We extend such notions to the near-ring 𝐴ሚ.

(The number of leaves is required to be ≤ form degree.)
Also have 𝑑ଶ = 0.

In particular, the function

න ቚ𝑓(௪,௘)
ఊ෥ (𝑣) − 𝑓(𝑣)ቚ

ଶ 

௄

𝑑𝑣

and its differential are induced from 0-form and 1-form on 𝐴ሚ.
Central object in machine learning.

Thus the learning is governed by geometric objects on 𝐴ሚ!
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Metric for framed quiver moduli

Fix 𝑄.  𝐴 = ℂ𝑄.

Framed representation:
Vertex: 𝑉௜

Arrow: 𝑤௔

together with 𝑒௜: ℂ௡೔ → 𝑉௜ (called framing).

𝑅 = Rep௡ሬ⃗ ,ௗ⃗ ≔ Repௗ⃗ × ໄ Hom௞(ℂ௡೔, 𝑉௜)

 

௜∈ொబ

.

𝑑 is dim. of rep. 
𝑛ሬ⃗ is dim. of framing.

ℳ ≔ Rep௡ሬ⃗ ,ௗ⃗//ఞGLௗ⃗.

Smooth moduli space of framed quiver representations.
[Kings; Nakajima; Crawley-Boevey; Reineke]

Stability condition:
no proper subrepresentation of 𝑉 contains Im 𝑒.

ℳ௡ሬ⃗ ,ௗ⃗ ≔ {stable framed rep. (𝑉, 𝑒)}/𝐺𝐿ௗ⃗.

Typical example:
𝐺𝑟(𝑛, 𝑑).

Remark: ℳ௡ሬ⃗ ,ௗ⃗ is the usual GIT quotient for a bigger quiver 𝑄෠

which has one more vertex ∞ than 𝑄,
together with 𝑛௜ arrows from ∞ to 𝑖.

Put dim=1 over the vertex ∞.  Then take the character 
Θ = −∞∗ for slope stability 𝛩(𝛼⃗)/𝛴𝛼⃗.

Topology of ℳ௡ሬ⃗ ,ௗ⃗ is well-known.

Thm. [Reineke]
Suppose 𝑄 has no oriented cycle.  Then ℳ௡ሬ⃗ ,ௗ⃗ is an iterated 

Grassmannian bundle, and it embeds to quiver Grassmannian.

𝒱௜: universal bundle over vertex 𝑖.

Thm.  
Fix 𝑖 ∈ 𝑄଴.  

𝐻௜: Rep௡ሬ⃗ ,ௗ⃗ → End൫ℂௗ೔൯,

𝑤, 𝑒 ↦ ൭ ෍ 𝑤ఊ𝑒௧ ఊ 𝑤ఊ𝑒௧ ఊ
∗

 

௛ ఊ ୀ௜

൱

ିଵ
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Fix 𝑖 ∈ 𝑄଴.  

𝐻௜: Rep௡ሬ⃗ ,ௗ⃗ → End൫ℂௗ೔൯,

(𝑤, 𝑒) ↦ ൭ ෍ ൫𝑤ఊ𝑒௧(ఊ)൯൫𝑤ఊ𝑒௧(ఊ)൯
∗

 

௛(ఊ)ୀ௜

൱

ିଵ

gives a well-defined metric on 𝒱௜ → ℳ.

Moreover, the Ricci curvature 𝑖 ∑ ∂𝜕̅ 
௜ log det 𝐻௜

of the resulting metric on ⨂ 𝑈௜
 
௜∈ொబ

defines a Kaehler metric on 

ℳ௡ሬ⃗ ,ௗ⃗.

Then we can run learning algorithm over 
ℳ௡ሬ⃗ ,ௗ⃗.

𝐴ሚ → Γ ቌෑ ℳ(௞)

 

௞

, Map(𝐹)ቍ ,

𝛾෤ ↦ 𝑓(௪,௘)
ఊ෥ (𝑣) = 𝐻௜൫𝑒୭୳୲, 𝛾෤ ∘(௪,௘) 𝑒୧୬ ⋅ 𝑣൯

In application, take 𝑛ሬ⃗ ≥ 𝑑.
Write the framing as 𝑒(௜) = ൫ϵ(௜)  𝑏(௜)൯.

By using the quiver automorphism, ϵ(௜) can be made as Id. 

whenever ϵ(௜) is invertible.

This gives a chart:
Rep௡ሬ⃗ ିௗ⃗,ௗ⃗ ↪ ℳ௡ሬ⃗ ,ௗ⃗.

Restricting the above 𝐻௜൫𝑒୭୳୲, 𝛾෤ ∘[௪,௘] 𝑒୧୬ ⋅ 𝑣൯ to this chart, 

pretending the metrics are all trivial, 
it recovers the usual Euclidean setup!

Question:
How to give the vector space Rep௡ሬ⃗ ିௗ⃗,ௗ⃗ have a more intrinsic 

interpretation?

Yes, by considering uniformization.

Question:
How to relate this moduli formulation
back to the original setup over 
Euclidean space of representations?
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Uniformization

For Gr(𝑛, 𝑑) = 𝑈(𝑛)/𝑈(𝑑)𝑈(𝑛 − 𝑑), 
has Hermitian symmetric dual
Grି(𝑛, 𝑑) = 𝑈(𝑑, 𝑛 − 𝑑)/𝑈(𝑑)𝑈(𝑛 − 𝑑)

= ൛Spacelike subspace in ℝௗ,௡ିௗൟ ⊂
𝐁𝐨𝐫𝐞𝐥

Gr(𝑛, 𝑑).

Ex. Hyperbolic disc 𝐷 ⊂ ℂℙଵ.
Hyperbolic <--> spherical.

Such symmetric dual and embedding was studied 
uniformly for general symmetric spaces 
by [Chen-Huang-Leung].

By [Reineke], framed quiver moduli ℳ௡,ௗ is an iterated 

Grassmannian bundle.

What is its `non-compact dual'?

𝑄෠: the quiver with one more vertex denoted as ∞.

Assume 𝑛ሬ⃗ > 𝑑.  Write 𝑒(௜) = ൫𝜖 
(௜) 𝑏(௜)൯.

For each 𝑖, define

𝐻௜
ି = ൭ ෍ (−1)௦(ఊ)𝛾𝛾∗

 

௛(ఊ)ୀ௜

൱

ିଵ

= ቆ𝜌௜ ቆ
𝐼ௗ೔

0
 

0
−𝐼ே೔ିௗ೔

ቇ 𝜌௜
∗ቇ

ିଵ

where 𝛾 is a path in 𝑄෠ with 𝑡(𝛾) = ∞; 

𝑠(𝛾) = 1 for 𝛾 = 𝜖௝
(௜)

, and −1 for all other 𝛾.

𝑅ି ≔ ൛(𝑤, 𝑒) ∈ 𝑅௡,ௗ:  𝐻௜
ି is positive definite for all 𝑖ൟ.

Lemma.
∅ ≠ 𝑅ି ⊂ ൛(𝑤, 𝑒): 𝜖 

(௜) is invertible ∀𝑖ൟ ⊂ 𝑅௦.

Lemma.
𝑅ି is 𝐺ௗ-invariant.

ℳି ≔ 𝑅ି/𝐺ௗ.
The moduli of space-like framed representations.

𝐻௜
ି defines Hermitian metric on the universal bundle 

𝒱௜ → ℳି.
•
Theorem 1.
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𝒱௜ → ℳି.
𝐻ெష ≔ −𝑖 ∑ 𝜕𝜕̅ log det 𝐻௜

ି 
  defines a Kaehler metric on 

𝑀ି.
•

There exists a (non-holomorphic) isometry, which 
respects the real structure:

(𝑀ି, 𝐻ெష) ≅ ቌෑ Grି(𝑚௜, 𝑑௜)

 

௜

, ໄ 𝐻ୋ୰ష(௠೔,ௗ೔)

 

௜

ቍ

where 𝑚௜ = 𝑛௜ + ∑ dim 𝑉௧(௔)
 
௔:௛(௔)ୀ௜ .

•

There is a canonical identification of 𝒱௜ → ℳି with 
𝒱ୋ୰ష(௠೔,ௗ೔) → ∏ Grି(𝑚௜, 𝑑௜) 

௜ covering the isometry.
•

Remark:
Grି(𝑚, 𝑑) = ൛𝑏 ∈ Matௗ×(௠ିௗ): 𝑏𝑏∗ < 𝐼ௗൟ  has non-positive 

curvature (invariant under parallel transport).

In the same manner like before, have network function

𝑓(௪,௘)
ఊ෥ (𝑣) = 𝐻௜൫𝑒௢௨௧, 𝛾෤ ∘[௪,௘] 𝑒௜௡ ⋅ 𝑣൯

over (𝑀ି, 𝐻்).

Remark:
Machine learning using hyperbolic geometry has recently 
attracted a lot of research in learning graphs and word 
embeddings.
Most has focused on taking hyperbolic metric in the fiber 
direction.

Homogeneous spaces have also been introduced in the 
fiber direction [Cohen; Geiger; Weiler], to make use of 
symmetry of input data.

Here, we introduce ML over the moduli space and its 
non-compact dual, which universally exists for all neural 
network models.

A parallel Euclidean story:
Take 

𝐻௜
଴ = ൬𝜌௜ ൬

𝐼ௗ೔

0
 
0
0

൰ 𝜌௜
∗൰

ିଵ

.

That is, we assign positive sign to 𝜖௝
(௜)

and 0 (instead of -1) 

to all other paths of 𝑄෠.

𝑅଴ ≔ ൛(𝑤, 𝑒) ∈ 𝑅௡,ௗ:  𝐻௜
଴ is positive definite for all 𝑖ൟ.

Prop.
𝑅଴//ఞ𝐺ௗ = Rep௡ିௗ,ௗ

a vector space.
Also 𝐻௜ defines trivial metric on 𝑉௜|ெబ.
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That is,
𝐑𝐞𝐩𝒏ି𝒅,𝒅 ⊂ 𝓜𝒏,𝒅 is the moduli of framed positive-def. 
representations with respect to 𝑯𝒊

𝟎.

This recovers the usual Euclidean machine learning.

Conclusion:
ℳ, ℳି, ℳ଴ (spherical, hyperbolic, Euclidean) are the 
moduli of framed positive-definite representations with 
respect to 
𝐻௜ = (𝜌௜𝜌௜

∗)ିଵ, 

𝐻௜
ି = ൬𝜌௜ ൬

𝐼ௗ೔

0
 

0
−𝐼

൰ 𝜌௜
∗൰

ିଵ

,

𝐻௜
଴ = 𝐻௜

଴ = ൬𝜌௜ ൬
𝐼ௗ೔

0
 
0
0

൰ 𝜌௜
∗൰

ିଵ

respectively.

Can connect them in a family:

൬𝜌௜ ൬
𝐼ௗ೔

0
 
0
𝑡𝐼

൰ 𝜌௜
∗൰

ିଵ

.

To train machine to classify these pictures into 10 classes.
Want to compare the results of using trivial and non-trivial metrics in the 
moduli space of framed quiver representations.

Experiments
Let's experiment with metrics on the moduli space of representations.

Metric on universal bundles:

𝐻௜ = (𝜌௜ℐ𝜌௜
∗)ିଵ = ቆ𝐼ௗ೔

−
𝑤௜෦𝑤௜෦∗

𝑀
⎯⎯⎯⎯⎯ቇ

ିଵ

.

Metrics on moduli spaces:

ℎℳ = −𝑀 ቌ෍ 𝑡𝑟൫(𝜌௜ℐ𝜌௜
∗)ିଵ(𝜕𝜌௜)ℐ(𝜕𝜌௜)∗൯

 

௜

− ෍ 𝑡𝑟൫(𝜌௜ℐ𝜌௜
∗)ିଵ𝜌௜ℐ(𝜕𝜌௜)∗(𝜌௜ℐ𝜌௜

∗)ିଵ(𝜕𝜌௜)ℐ𝜌௜
∗൯

 

௜

ቍ .

(𝑀 = ∞ <-> Euclidean; 𝑀 > 0 <-> the non-compact dual ℳି; 𝑀 < 0 <-> ℳ.) 
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Another test:
Use only dense layers for the same dataset.
Compare trivial and non-trivial metrics.

Conclusion:

The actual model in the experiment:

Abelianize to simplify the computation:
Take (ℂ×)ௗ in place of 𝐺𝐿(𝑑) in ℳ = 𝑅//𝐺𝐿(𝑑).
This means taking rep. (of a bigger quiver) with dimension vector (1, … , 1).
Then metrics on universal bundles are recorded as 1 × 1 matrices.

𝐻௜ = (𝜌௜ℐ𝜌௜
∗)ିଵ = ቆ𝐼ௗ೔

−
𝑤௜෦𝑤௜෦∗

𝑀
⎯⎯⎯⎯⎯ቇ

ିଵ

= ቆ1 −
|𝑤௜෦|ଶ

𝑀
⎯⎯⎯⎯⎯ቇ

ିଵ

 if 𝑑௜ = 1.

ℎℳ = −𝑀 ⋅ ቌ෍ 𝑡𝑟൫(𝜌௜ℐ𝜌௜
∗)ିଵ(𝜕𝜌௜)ℐ(𝜕𝜌௜)∗൯

 

௜

− ෍ 𝑡𝑟൫(𝜌௜ℐ𝜌௜
∗)ିଵ𝜌௜ℐ(𝜕

 

௜

ℎ
௪෥ೖೕ

బ,భ
௪෥೜೛

భ,బ
ℳ = ໄ 𝐻௞௝

(௜)
ቆ𝛿௝௣ +

1

𝑀
⎯⎯⋅ 𝑤෥௣

∗ ⋅ 𝐻(௜) ⋅ 𝑤෥௝ቇ

 

௜

.

After Abelianize:

ℎ௟
ℳ = 𝐻௟ ቆ𝐼 +

1

𝑀
⎯⎯𝐻௟𝑤෥௟

∗𝑤෥௟ቇ .

(grad 𝑓)௟ =
1

𝐻௟
⎯⎯ 𝜕௪෥೗

𝑓 −
൫𝜕௪෥೗

𝑓 ⋅ 𝑤෥௟
∗൯ 𝑤෥௟

𝑀 + |𝑤෥௟|ଶ𝐻௟
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯.
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Conclusion:
in this case, 𝑀 < 0 (curvature ≥ 0) behaves around 1% 
better than 𝑀 = 0 and 𝑀 > 0.

The method of running ML over moduli spaces and 
their non-compact duals is UNIVERSAL and works in 
practice

•

Geometric structures on near-ring 𝐴ሚ is a new subject 
and govern machine learning over the moduli

•

To lay the algebraic foundation of computing machine, 
and find new applications of geometry.

•
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