Kaehler geometry of quiver moduli in
application to machine learning

with George Jeffreys

I. Neural network and quiver representation
New ingredient: non-linear functions at vertices.
We observe many of these functions are closely related with symplectomorphisms.
X
Thm: 1+; Lex,. :R™ —» R" that comes from the symplectomorphism (C", wpn) - (C*, wgq)
i
satisfies the universal approximation property.

II. An AG formulation of computing machine
New ingredient: C-near-ring.
Want to make well-defined action on [R(A)/G].
- G
Thm: there exists a chain map DR'(4) - (ﬂ‘(R(A))) .

III. Metrics on framed quiver moduli
Formulate learning algorithm over framed quiver moduli.
Metrics on the universal bundles and moduli space would be important.
Thm:

-1
H; = ( D" (e wen) )
h(y)=i

gives a well-defined metric onV; » M, whose Ricci curvature induces a Kaehler metric on M 5.
IV. Uniformization of metrics

Want to relate with usual algorithm over Euclidean space.

Use duality of symmetric spaces to construct non-compact duals of quiver moduli.

Thm:

We have the non-compact dual moduli M~ c M with metric Hy- = —V—1,; 0 log det H; .

There exists a (non-holomorphic) isometry, which respects the real structure:

(M~,Hy-) = (1_[ Gr~(my;,d;), @ HGr’('m.,dﬁ)

wherem; =n; + 2a:h(a)=idim Vi) -

Neural network and quiver representation
(O
=
/»*0’\\\,"

Fix a directed graph Q. Associate to
vertex: vector space
arrow: linear map.

inputs output

That is, a quiver representation w.

Fix a collection of vertices ip, oy, and V;, , V;

out”

To approximate any given continuous function
f: K- Vi

cpt . .
(where K c V;, ) by using a representation w.

out

Fixy €iout - CQ - ijp. )
inputs output

Get a linear function f, ,,: Vy, = V.-

Linear approximation f, ,, is not good enough!

Introduce non-linear “activation functions' at vertices.
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Some sigmoid functions compared. In the drawing all &
functions are normalized in such a way that their slope at
the origin is 1.

Compose with these activation functions and get
network function

f7'W: Viin - Viout

for every w € Rep(Q).

Minimize
2
C(V) = |f)7,w _fl LZ(K)

by taking a (stochastic) gradient descent on the vector space

Rep(Q).

So a neural network is essentially:

a quiver representation, together with

a fixed choice of non-linear functions on the representing vector
spaces, and a fixed path.

Relation between quiver representations and neural network
was observed by [Armenta-Jodoin 20].

Al neural network has achieved great success in many fields of
science and daily life.

Related to lot of areas in math:
Representation theory, stochastic analysis, Riemannian
geometry, Morse theory, mathematical physics...

Fundamental motivating questions:

1. Are there any deeper geometric structures in the subject?

2. Can modern geometry provide new insight for the theory and
find enhancement of methods?

Main difference between neural network and quiver

representations is:
[

there are non-linear activation functions. !
_

Interesting relation with toric geometry: 0

1 .
— can be obtained from the moment

The sigmoid function —
1+e

map P! - R.

Similarly the algebraic sigmoid ——Z;—Z is a symplectomorphism

J1+z]
((C,a)ﬂm) - (C, wstq)-

ITcino tranical recraline we chaw that a hicher dimencinnal

'




- - J1+|z|4

(C wp1) = (C, wsea)- LR

Using tropical rescaling, we show that a higher dimensional

analog can also be used as activation functions < C. .

[ I.

Another gap between quiver and neural network:

In math, we work with moduli space of representations:
M = Rep(Q)//, Aut.

Isomorphic objects should produce the same result.

However, this is not true for f3,, given as above:

Any useful non-linear functions o: V; = V; are NOT equivariant
under GL(V;):

o(g-v) #g- o).

Then f;,, does not descend to [w] € M.

A crucial gap between neural network and representation
theory!

It poses an obstacle for carrying out machine learning using
moduli space of quiver representations.

[arXiv:2101.11487] provided a simple solution to overcome
this.

An AG formulation of computing machine

A: associative algebra.
e consisting of linear operations of the machine.

V:a vector space (basis-free).
e States of the machine(before observation). F R« }-b
n

Consider A-module structures w: 4 — gI(V). e\ l /

e Linear operations on the state space.

In reality, data are observed and recorded in fixed basis!

Framing e: \/
F = Fp, @ Fyue @ Fp, (with fixed basis), with linear maps

e:F -V,

¢ Fi, @ F,y¢: vector spaces of all possible inputs and outputs.

e F},: Physical memory for the machine.

e e: to observe and record the states.

The triple (V,w, e) is called a framed A-module.
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The triple (V,w, e) is called a framed A-module.

Fixy € A.
¢ An algorithm.

For each v € Fj,, have fY: Fj, = Foup

fr@) = eou(y - en(@)).

¢ The ‘'machine function'.

Given an input signal v, send it to machine by e;,;

then perform operations according to y;
then output by the adjoint of ey;.)
¢ Metric is needed to define the adjoint.

So far, everything is linear.

In real applications, need

non-linear operations o4, ...,op:V = V.

Then enlarge A to a near-ring A = A{oy, ..., oy };
take 7 € A.

¢ A non-linear algorithm.

For every (w,e) € R,

have f(}‘;,,e): Fin = Fout»

ey @) = egut (7 -ower €m®).
¢ Network function.

>

Can do this over

vector space of framed modules:

R :={(w,e):w:A4 - gl(V) alg.homo.; e:F - V}.
¢ Parameter space of the machine.

Math. and physics principle:

Isomorphic objects should produce the same f(zv o)

If so, f(zv,e) is defined for [w,e] € M = [R/G].

Isomorphism here is G = GL(V):
V,we)=(l,g-w,g-e).

To satisfy this principle, need:

the non-linear operations a: V — V to be GL(V)-equivariant:

g- (o) =a(g-v).

Impossible for any useful function ¢!
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universal bundle

A main obstacle to realize machine learning using moduli theory.



Solution:

Rather than taking o as a single linear map V = V,
o is instead a fiber-bundle map on V = PV, where V is the
universal bundle over M. \/ T \

Then the equivariance equation is indeed for o, ¢) over R X V:

g (J(W,e)(v)) = O-(g-w,g-e)(g V)

instead of \ /
g+ (o)) = alg - v).

(No hope if we look for ¢ independent of (w, e) since V is non-

trivial.) m

To cook up an explicit fiber bundle map,
use equivariant metric:
Equip V with Hermitian metric h,, ) for every (w,e) € R,ina
GL4-equivariant way:
hgw,ge)(g-w g-v) =huewv).
(Note that we are NOT asking for GL4-invariance h(g - u, g - v) =
h(u,v) for a single h, which is IMPOSSIBLE!)
F
¢

Given ANY ¢f: F - F, we cook up O(w,e) e
using the equivariant metric and framing: \\/

U(w,e) (1]) =e- O'F (h(w,e) (61, 1]), ey h(w,e) (en, U)) . A C \I

¢ Observe and record the state using e, do the non-linear
operation, and then send it back as state.
¢ So the non-linear operation is on F rather than on V!

Let's conclude with the following definition.

Fin Foul Fm

Def.
An activation module consists of: F
(1) a noncommutative algebra A and vector spaces V, F; ng«
(2) a collection of possibly non-linear functions

ojF :F - F;
(3) A family of metrics h,¢) on V over the space R of framed A- AC Ve her)
modules which is GL(V)-equivariant.

Now we need a near-ring to encapsulate all possible operations.
Definition 1.11. A near-ring is a set A with two binary operations +, o called addition and
multiplication such that

(1) A is a group under addition.
(2) Multiplication is associative.




(3) Right multiplication is distributive over addition:
(x+y)oz=xo0z+yoz
forall x,y,z € A.
In this paper, the near-ring we use will be required to satisfy that:
() (A,+)is a vector space over F = C, with ¢ - (x o y) = (¢ - x) o yforall ¢ € C and

X,y €A
(5) There exists 1 € Asuch that lox=x=xo1 1

b0
Given an algebra A, we can form a near ring \, "
A{Jl, ...,O-N}. { ’;(I,\ {

ex.7 = ag + a101 © (10 + 41,1011 © a1,10) + 020, © azp. a@ O
1.0 .

Assume the above setting of activation module. Set

A= (Matp (Ad"“ble)) {o1, ..., 0n}

where

Adouble j5 the doubling of CQ; (so has e*, a*)

Matg (/idouble) is algebra of n-by-n matrices, whose entries are 0 » Q ¢
cycles in CQ based at the framing vertex o.

Doubling is a standard procedure in construction of Nakajima's
quiver variety.

We consider A-module struture on F.

Prop.

Each pointin [R/G] gives a well-defined map
A - Map(F).

That is, we have

A - 1(M,Map(F)).

Note: [R/G] is moduli of A-modules, NOT the doubling.

The actions of e*,a* on F @ V are produced by the adjoint with
respect to

h (the equivariant family of metrics on V).

Have differential forms for nc algebra A
[Connes; Cuntz-Quillen; Kontsevich; Ginzburg...].

DR*(4) - Q*(R(4))°.

Study moduli spaces for all dimension vectors at the same time!




The noncommutative differential forms can be described as follows. Consider the quo-
tient vector space A = A/K (which is no longer an algebra). We think of elements in A as
differentials. Define

D) = @ DA, D), =Aehe... 0k
n€Zag
where 7 copies of A appear in D(A),, and the tensor product is over the ground field K.
We should think of elements in A as matrix-valued differential one-forms. Note that X A X
may not be zero, and X A Y # =Y A X in general for matrix-valued differential forms X, Y.
The differential d,, : D(A), — D(A),, is defined as

dulae TS @ Tyt @,
The product D(A), ® D(A),—1-, = D(A),,—; is more tricky:
(@W®ar®...®dy) (A1 ®Uuz2 ® ... @ Up)
n
) =(=1)"a0a) @@ ® ... Q@ Uy + Z(—l)”_‘tm RAQ.. QA1 Q...Q0n

i=1

which can be understood by applying the Leibniz rule on the terms @a;;;. Note that we
have chosen representatives ¢; € A fori = 1,..., n + 1 on the RHS, but the sum is inde-
pendent of choice of representatives (while the product @a;;; itself depends on represen-
tatives).

d?=0.

The Karoubi-de Rham complex is defined as
(10) DRA) v QUAE
where [a,b] := ab — (—=1)"/ba is the graded commutator for a graded algebra. d descends
to be a well-defined differential on DR®*(A). Note that DR*(A) is not an algebra since
[£2°(A), 2°(A)] is not an ideal. DR*(A) is the non-commutative analog for the space of de
Rham forms. Moreover, there is a natural map by taking trace to the space of G-invariant
differential forms on the space of representations R(A):

AR

) DRVA) = @R

We extend such notions to the near-ring A.

Theorem 1.40. There exists a degree-preserving map
DR*(A) — (Q"(R.Map (F. F)))°
which commutes with d on the two sides, and equals to the map (14): DR*(Matg(A)) —

(Q°(R,End (F)))® when restricted to DR*(Matg(A)). Here, Map (F, F) denotes the trivial
bundle Map (F, F) X R, and the action of G = GL(V) on fiber direction is trivial.
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as azday a3 agdas
1 ()
Y%, @ D, @ D%, @
a, dazl aj fl“:l ayda,
[ ) [ ] [ ]
1 1 1
a one-form a two-form another two-form

FIGURE 3.

(The number of leaves is required to be < form degree.)
Also have d? = 0.

In particular, the function

[ @ = s av
K

and its differential are induced from 0-form and 1-form on 4.
Central object in machine learning.

Thus the learning is governed by geometric objects on A!
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Metric for framed quiver moduli
Fix Q. 4 = COQ.

Framed representation:

Vertex: V;

Arrow: w,

together with e;: C" — V; (called framing).

R = Repj ; == Rep; X @ Hom,, (C™, ;).
i€Qo

d is dim. of rep.

7 is dim. of framing.

M = Repﬁ’d//XGLd.

Smooth moduli space of framed quiver representations.
[Kings; Nakajima; Crawley-Boevey; Reineke]

Stability condition:

no proper subrepresentation of V contains Im e.

M ; = {stable framed rep. (V, e)}/GL .

Typical example:
Gr(n,d).

. * o0
which has one more vertex oo than Q,

together with n; arrows from oo to i. \.
Y]
3

Remark: M is the usual GIT quotient for a bigger quiver \IL. l\

Put dim=1 over the vertex co. Then take the character
© = —oo* for slope stability @(a)/2a.

Topology of M ; is well-known. Cr 4
s 3}
Thm. [Reineke] L
Suppose @Q has no oriented cycle. Then My g is an iterated Gr- E
Grassmannian bundle, and it embeds to quiver Grassmannian. L l

Gr

V;: universal bundle over vertex i.

Thm.
Fixi € Qo.
H;:Rep.. 5 > End(C%), 4

/| I AL ;



FIX 1 € Y.

H;:Rep; 5 — End(C%),

w,e) = D (e (wyen)’

h(y)=i
gives a well-defined metric on V; - M.

1

Moreover, the Ricci curvature i }; 39 log det H;
of the resulting metric on ®;¢,, U; defines a Kaehler metric on

M

Ad:

Then we can run learning algorithm over
Mﬁ’&.

A>T nM(k),Map(F) )
k

Vi f(}‘:v,g) ) = Hi(eout:)7 °(w,e) €in ° U)

Question:

How to relate this moduli formulation
back to the original setup over
Euclidean space of representations?

In application, take 7i > d.
Write the framing as e®® = (e p®).

By using the quiver automorphism, € can be made as Id.
whenever € is invertible.

This gives a chart:
Rep;_ggq = Mjg-

Restricting the above Hl-(eout, ¥ °[w,e] €in * v) to this chart,
pretending the metrics are all trivial,
it recovers the usual Euclidean setup!

Question:
How to give the vector space Repﬁ_&ﬁ have a more intrinsic

interpretation?

Yes, by considering uniformization.




Uniformization

For Gr(n,d) = U(n)/U(d)U(n — d), C
has Hermitian symmetric dual
Gr-(n,d)=Ud,n—d)/U(dUn—d)

Borel

= {Spacelike subspace in R*"*~4} ""'C Gr(n, d).

Ex. Hyperbolic disc D ¢ CP?.
Hyperbolic <--> spherical.

Such symmetric dual and embedding was studied
uniformly for general symmetric spaces
by [Chen-Huang-Leung].

By [Reineke], framed quiver moduli M, 4 is an iterated
Grassmannian bundle.

What is its ‘'non-compact dual'?

(Q: the quiver with one more vertex denoted as oo.

Assume i > d. Writee® = (e(i) b(i)). \]L»

For each i, define J ]\L/e " \[i,

v

-1 I 0 -1 4
- = —1)5SW) )y * = p. ("4 *
Hi _< Z D™y ) - <pl<0 _INi—di>pi>
h(y)=i

where y is a path in § with t(y) = oo;
s(y)=1fory = ej(l), and —1 for all othery.

R~ :={(w,e) € R, 4 Hi is positive definite for all i}.

Lemma.
@ # R~ < {(w,e):e@ isinvertible Vi} < R*.

Lemma.
R™ is G4-invariant.

M~ =R /G,
The moduli of space-like framed representations.

Theorem 1.
¢ H; defines Hermitian metric on the universal bundle

>\



Vi ->M". B
* Hy- == —i),00logdet H; defines a Kaehler metric on
M~.

¢ There exists a (non-holomorphic) isometry, which
respects the real structure:

o) = ([ [ 6rmodd, €D Hor-eman
i i

where m; = n; + Za:h(a):i dim Vy(q) .
e There is a canonical identification of V; = M~ with
Vor-(myap — [ Gr™(m;, d;) covering the isometry.

Remark:
Gr=(m,d) = {b € Matgy(m-q): bb* < I} has non-positive
curvature (invariant under parallel transport).

In the same manner like before, have network function
f(}‘jv’g) ) = Hi(eoutv 4 °lw,e] €in * 1])
over (M~, Hp).

Remark:

Machine learning using hyperbolic geometry has recently
attracted a lot of research in learning graphs and word
embeddings.

Most has focused on taking hyperbolic metric in the fiber
direction.

Homogeneous spaces have also been introduced in the
fiber direction [Cohen; Geiger; Weiler], to make use of
symmetry of input data.

Here, we introduce ML over the moduli space and its
non-compact dual, which universally exists for all neural
network models.

A parallel Euclidean story:
Take

Ig, 0\ .\ "
=0 (s -

That is, we assign positive sign to e].(i) and 0 (instead of -1)
to all other paths of §.

R := {(w,e) € R, 4: H is positive definite for all i}.

Prop.

R°//4Gq = Repp_qq

a vector space.

Also H; defines trivial metric on V;|o.



That is,
Rep,_qq4 C M, 4 is the moduli of framed positive-def.
representations with respect to H ?.

This recovers the usual Euclidean machine learning.

Conclusion:

M, M~, M (spherical, hyperbolic, Euclidean) are the
moduli of framed positive-definite representations with
respect to

H; = (pip))71, )
_ I;. 0 Y
i = (e 5))et)

-1
H? =H? = (Pi (Igi 8) p;‘) respectively.

Can connect them in a family:

o)
<p1<0 tr)Pi)

Experiments

Let's experiment with metrics on the moduli space of representations.

from keras.datasets import cifarie

Using TensorFlow backend.

B

o g ) )

N E
20

L) K] [

To train machine to classify these pictures into 10 classes.
Want to compare the results of using trivial and non-trivial metrics in the
moduli space of framed quiver representations.

32x32x3

.33 1F

CNN {303
|w0cr i SoQ m(mJ g m
<320 x50 7 3

’-gnVZBX‘NQ &wzqa—.lmms\: J"l»-\U:ZoKZM?D9(’5"‘91)0(!091).

exX.

Dence

Deatt

i ﬂ:}?xs

Metric on universal bundles:

~—*\ —1
wiw;
Hy = (piIp)™" = (Idi - )

M
Metrics on moduli spaces:

A

hae = —M Z tr((oiIpi) ™ (0p)I(9p)") — Z tr((p9p) " pid (0p)* (piTp; )~ (Bp)Tp;)

(M = oo <-> Euclidean; M > 0 <-> the non-compactdual M ~; M < 0 <-> M)



Abelianize to simplify the computation:

Take (€*) in place of GL(d) in M = R//GL(d).

This means taking rep. (of a bigger quiver) with dimension vector (1, ..., 1).
Then metrics on universal bundles are recorded as 1 X 1 matrices.

The actual model in the experiment:

inputs = keras.Input(shape=input_shape) inputs = keras.Input(shape=input_shape)
y = hypConv2D(5@, kernel_size=(3, 3),padding='same')(inputs) y = EuclidConv2D(5@, kernel_size=(3, 3),padding='same')(inputs)
y = layers.MaxPooling2D(pool_size=(2, 2))(y) y = layers.MaxPooling2D(pool_size=(2, 2))(y)
y = hypConv2D(75, kernel_size=(3, 3),padding="same"')(y) y = EuclidConv2D(75, kernel_size=(3, 3),padding="'same')(y)
y = layers.MaxPooling2D(pool_size=(2, 2))(y) ¥ = layers.MaxPooling2D(pool_size=(2, 2))(y)
y = Dropout(8.25)(y) y = Dropout(8.25)(y)
y = hypConv2D(125, kernel_size=(3, 3),padding="same")(y) y = EuclidConv2D(125, kernel_size=(3, 3),padding='same")(y)
y = layers.MaxPooling2D(pool_size=(2, 2))(y) y = layers.MaxPooling2D(pool_size=(2, 2))(y)
y = Dropout(8.25)(y) y = Dropout(®.25)(y)
y = layers.Flatten()(y) y = layers.Flatten()(y)
y = hypMDenseb(500)(y) y = Denseb(500)(y)
y = Activation(activations.relu)(y) y = Activation(activations.relu)(y)
y = Dropout(8.4)(y) y = Dropout(@.4)(y)
y = hypMDenseb(250) (y) y = Denseb(258)(y)
y = Activation(activations.relu)(y) y = Activation(activations.relu)(y)
y = Dropout(8.3)(y) y = Dropout(®.3)(y)
y = hypMDenseb(n_classes)(y) y = Denseb(num_classes)(y)
outputs = layers.Softmax()(y) outputs = layers.Softmax()(y)
model = hypModel(inputs=inputs, outputs=outputs) model = EuclidModel(inputs=inputs, outputs=outputs)
model. compile(optimiz, dam”, loss="categorical_crossentropy”, metrics=["accuracy"]) model.compile(optimizer="adam", loss="categorical_crossentropy”, metrics=["accuracy"])
history = model.fit(x_train, y_train, batch_size=128, epochs=5@, validation_split=0.1) history = model.fit(x_train, y_train, batch_size=128, epochs=50, validation_split=0.1)
~ o\ —1
def call(self, x): £\—1 w;w;

Hinv = 1 - tf.math.reduce_sum(tf.math.square(self.kernel),[0,1,2]) / self.M 111 - (pigﬁﬁ ) - Idi - M

y = K.conv2d(x, self.kernel,padding=self.padding)

return keras.activations.relu(y/Hinv) |iE7|2 -1

L .
, ) =(1——+ ifd; = 1.
#hyperbolic gradient for 1st conv2d Layer A4

#g_ 1 = H i (Id - H_1 wtilde_1i wtilde_i"*)
#g_i7(-1) wtilde i = partial_i /H_i - (partial_i dot wtilde_i) wtilde i/(M+[wtilde_i]
Hlinv = 1 - tf.math.reduce_sum(tf.math.square(trainable_vars[@]),[0,1,2]) / M1

grads[0] = grads[@] * Hlinv \ 1 N 1
- tf.multiply(tf.reduce_sum(tf.multiply(trainable_vars[@],grads[0]),[©,1,2]),\ h]v[ =—-M- Z tT((pLgpl) (6pl)7(6pl) ) - Z tr((plﬂpl) plﬂ(a
i

trainable_vars[0]) \

|/ (M1+tf.divide(tf.reduce_sum(tf.square(trainable_vars[@]),[0,1,2]),Hlinv)) i
Mo O (5 + 1 e HO . 5,
hwz,}wég—®1‘lkj §]p+M Wp H W] .
i

After Abelianize:

W = b, (14 = Hwiw N =
l l Mt L

(0w, f - W) W
M + | |2H,

ax = CNNflow.iloc[8:,:].plot() ax = CNNvValAcc.plot.box() ax = CNNtestAcc.plot.box() 1
os0 oms (grad f); = —
H,

0810
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Another test:
Use only dense layers for the same dataset.
Compare trivial and non-trivial metrics.

initM = float(-36)
inputs = keras.Input(shape=input_shape)
= layers.Flatten()(inputs)
)ypMDenseb (500) (y)
ctivation(activations.relu)(y)
= hypMDenseb(258)(y)
= Activation(activations.relu)(y)
= hypMDenseb(n_classes)(y)|
outputs = layers.Softmax()(y)
model = hypModel (inputs=inputs, outputs=outputs)
model. compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
history = model.fit(x_train, y_train, batch_size=128, epochs=50, validation_split=e.l

y
y
y
y
y

<

ax = Denseflow.iloc[10:,:].plot() ax = DenseValAcc.plot.box()

— h22Dense
05t EDense °
0ss5
053 0ss0
0545
052 T
0540
051
0535
050 0s30 1
W 5 2 % M B 4 & 0 e vy
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Conclusion:
in this case, M < 0 (curvature = 0) behaves around 1%
better than M = 0 and M > 0.

¢ The method of running ML over moduli spaces and
their non-compact duals is UNIVERSAL and works in
practice

e Geometric structures on near-ring 4 is a new subject
and govern machine learning over the moduli

¢ To lay the algebraic foundation of computing machine,
and find new applications of geometry.

c:\>Thank you for listening,




