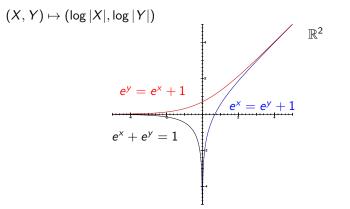
Correspondence Theorem between Holomorphic Discs and Tropical Discs on (Log)-Calabi-Yau Surfaces

Yu-Shen Lin

Boston University

Lisbon Geometry Seminar, May 4, 2021

• The image of $\{X+Y+1=0\}\subseteq (\mathbb{C}^*)^2$ under the projection

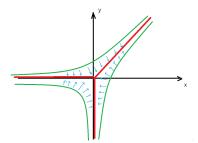


• Mikhalkin considers the following self-diffeomorphism

$$(\mathbb{C}^*)^2 \xrightarrow{H_t} (\mathbb{C}^*)^2$$
$$(X, Y) \mapsto (|X|^{\frac{1}{\log t}} \frac{X}{|X|}, |Y|^{\frac{1}{\log t}} \frac{Y}{|Y|})$$

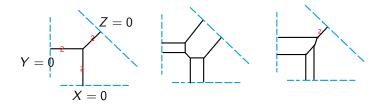
- This induces a new complex structure J_t .
- Metrically, this is the spirit of SYZ degeneration.

• The image of X + Y + 1 = 0 under $Log \circ H_t$



converges (in the sense of Gromov-Hausdorff) to a tropical curve.

• Degree 2 tropical rational curves



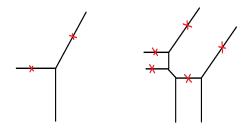
Observation:

- degree of rational curve = # of unbounded edges toward a fixed direction
- (balancing condition) At each vertex v,
 - v_i : primitive integral vector tangent to the edge adjacent to v.

$$\sum_i w_i v_i = 0$$

The tropical curves reflect the geometry.

- Generic two points determine a tropical line.
- Generic 5 points determine a tropical conic.



Theorem (Mikhalkin '03)

For toric surfaces,

of holomorphic curves = # of trivalent tropical curves counted with weights.

- For a vertex v, define $w_v = w_1 w_2 |v_1 \wedge v_2|$.
- Mikhalkin's weight of a tropical curve $= \prod w_v$.

Theorem (Nishinou-Seibert '04)

The correspondence theorem holds for all toric manifolds.

Calabi-Yau Manifolds and Special Lagrangians

- A complex manifold X is **Calabi-Yau** *n*-fold if there exists a Kähler form ω , a holomorphic volume form Ω such that $\omega^n = c\Omega \wedge \overline{\Omega}$.
- Examples:
 - (Yau) X = compact K"ahler w/trivial canonical bundle.
 - (Tian-Yau) $X = Y \setminus D$, w/ Y Fano and $D \in |-K_Y|$ smooth.
- A *n*-dim'l submanifold *L* is Lagrangian if $\omega|_L = 0$, special Lagrangian if $\Omega|_L = e^{i\theta} vol_L$.
- Examples:
 - "Straight lines" in elliptic curves.
 - e hyperKähler rotation of holo. curves on HK surfaces.

Conjecture (Strominger-Yau-Zaslow '96)

A Calabi-Yau manifold admits a special Lagrangian torus fibration.

Examples:

- Elliptic curve to S^1 .
- HyperKähler rotation of elliptic K3 surface.
- (Collins-Jacob-L '19) $X = Y \setminus D$, where Y compact surface $w/ -K_Y$ ample and $D \in |-K_Y|$ smooth.

 B_0 the complement of discriminant locus of SYZ base.

• (Hitchin) \exists integral affine structure on B_0 with

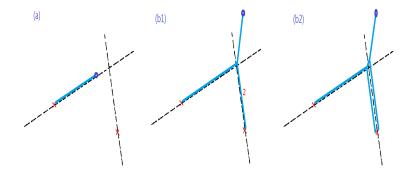
coordinates $f_i(u) = \int_{\gamma_i} Im\Omega$, $\partial \gamma_i \in H_1(L; \mathbb{Z})$ basis.

Lemma (Leung)

 L_{u_t} family of SLAG fibres bounding holo. discs of class γ , then u_t sit over an affine line l_{γ} .

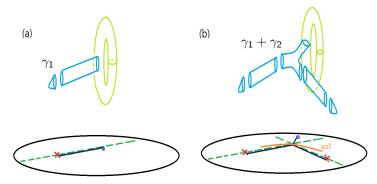
$$\int_{\gamma_{u_t}} \mathrm{Im}\Omega \Leftrightarrow f_{\gamma}(u_t) = 0.$$

Examples of tropical discs on HK surfaces



Lifting of Tropical Discs

• Every tropical disc has an associate relative class.



Tropical Counting Invariant

Definition

• Given a valency \leq 3 tropical disc (ϕ , T, w), the weight

$$\begin{aligned} \mathsf{Mult}(\phi) &:= \prod_{v \in G^{[0]} \setminus \{u\}: \phi(v) \in B_0} \mathsf{Mult}_v(\phi) \\ &\prod_{v \in G^{[0]}: \mathsf{Val}(v)=1} \frac{(-1)^{\mathsf{w}_v - 1}}{\mathsf{w}_v^2} \prod_{\bar{v} \in \bar{G}^{[0]} \setminus \{u\}: \bar{v} \in B_0} |\mathsf{Aut}(\mathbf{w}_{\bar{v}})|. \end{aligned}$$

The red part changes for singular fibres other than type I_1 .

Comparison of New and Old Tropical Geometry

Toric surfaces	HyperKähler surfaces
<i>Log</i> map	SYZ fibration
$\mathbb{R}^2=\mathbb{Z}^2\otimes\mathbb{R}$	integral affine structure
$t ightarrow\infty$	Large complex structure limit
adiabatic limit of pro-	Locus of SLAG fibres bounding holo. discs
jection of the holo.	
curves	
edges going to ∞ \Rightarrow	trivalent vertex \rightsquigarrow pair-of-pant
curve class	
	$edge \rightsquigarrow cylinder$
	1-vertex $ ightarrow$ cap
Mikhalkin weight	trivalent vertex \rightsquigarrow Mikhalkin weight
	1-valent vertex $\rightsquigarrow \frac{(-1)^{d-1}}{d^2}/$ "Aut"

Lagrangian Floer Theory

• (Fukaya-Oh-Ohta-Ono) A_{∞} structure on $H^*(L_u, \Lambda)$:

$$m_{k,\gamma}: H^*(L_u,\Lambda)^{\otimes k} \to H^*(L_u,\Lambda)$$

satisfying the A_{∞} relations.

• (Maurer-Cartan equation) $b \in H^1(L_u, \Lambda_+)$

$$m(e^b) := m_0 + m_1(b) + m_2(b, b) + \cdots = 0.$$

• (Maurer-Cartan space)

$$\mathcal{MC}(L_u) := \{b \in H^1(L_u) | m(e^b) = 0\} / \sim = H^1(L_u, \Lambda_+).$$

• (pseudo-isotopy, Fukaya '09) ϕ path between u and u'

$$H^1(L_u, \Lambda_+) = \mathcal{MC}(L_u) \stackrel{F_\phi}{
ightarrow} \mathcal{MC}(L_{u'}) = H^1(L_{u'}, \Lambda_+).$$

- F_{ϕ} records MI = 0 discs w/ boundaries on $L_{\phi(t)}$.
- F_{ϕ} is a homotopy invariant.
- Choose a basis $e_1, e_2 \in H_1(L_u, \mathbb{Z})$ and write $b = x_1e_1 + x_2e_2$, $F_{\phi}(b) = F_{\phi}(b)_1e_1 + F_{\phi}(b)_2e_2$.

KS Transformations and Open GW

Write
$$z^{\partial\gamma} = z_1^{\langle\partial\gamma, \mathbf{e}_1\rangle} z_2^{\langle\partial\gamma, \mathbf{e}_2\rangle}$$

Theorem (L '17)

The path ϕ passing through I_{γ} , then

$$\mathcal{K}_{\gamma} := \mathcal{F}_{\phi} : z^{\partial \gamma'} \mapsto z^{\partial \gamma'} f_{\gamma}^{\langle \gamma', \gamma
angle},$$

where $f_{\gamma} \in 1 + \mathbb{R}[[z^{\partial \gamma} T^{\omega(\gamma)}]].$

Define the **open Gromov-Witten invariants** $\tilde{\Omega}(\gamma; u)$

$$\log f_{\gamma}(u) = \sum_{d \geq 1} d\tilde{\Omega}(d\gamma; u) T^{d\omega(\gamma)},$$

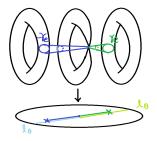
if ϕ passes through I_{γ} at u.

Near an I_1 Singular Fibre

Theorem (L. '13)

Let $u \in B_0$ be closed to a singularity. Let γ_e be the Lefschetz thimble and $d \in \mathbb{Z}$, then

$$\tilde{\Omega}(d\gamma_e, u) = rac{(-1)^{d-1}}{d^2}.$$



Theorem (L.'17)

If $\tilde{\Omega}(\gamma; u) \neq 0$, then there exists a tropical disc represent γ .

- If Ω(γ; u) constant along l_γ, then γ is a parallel transport of (multiple cover of) a Lefschetz thimble.
- Otherwise, $\gamma = \sum_{i} \gamma_{i}$ with $\tilde{\Omega}(\gamma_{i}; u_{1}) \neq 0$ for some $u_{1} \in I_{\gamma}$.
- Finite procedure due to Gromov compactness theorem and reduce to the first case.

Given the input as elliptic fibration $X \rightarrow$ via HK rotation.

- $\exists S^1$ -family $X_{\vartheta} \to B$ SLag fibrations.
- central charge $Z_{\gamma}(u) = \int_{\gamma} \Omega$, $\gamma \in H_2(X, L_u)$.
- wall of marginal stability divided B₀ into chambers.

$$\operatorname{Arg} Z_{\gamma_1} = \operatorname{Arg} Z_{\gamma_2}$$

Theorem (L '13)

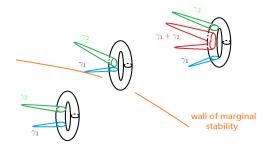
- $\tilde{\Omega}(\gamma; u)$ is locally constant.
- (reality condition) $\tilde{\Omega}(-\gamma; u) = \tilde{\Omega}(\gamma; u)$.

Wall-Crossing Phenomenon

Theorem (L. '13)

- An explicit example that $\tilde{\Omega}(\gamma; u)$ jumps when u varies.
- If γ_1, γ_2 primitive, then the jump is

 $\Delta \tilde{\Omega}(\gamma_1 + \gamma_2) = |\langle \partial \gamma_1, \partial \gamma_2 \rangle| \tilde{\Omega}(\gamma_1) \tilde{\Omega}(\gamma_2).$



Tropical/Holomorphic Correspondence

Theorem (L.'17)

The open Gromov-Witten invariants $\tilde{\Omega}(\gamma; u)$ satisfies the Kontsevich-Soibelman wall-crossing formula as u varies.

This is the mathematical realization of the proof of KS WCF of Cecotti-Vafa '09.

Theorem (L. '17)

Open Gromov-Witten invariants= Tropical discs counting

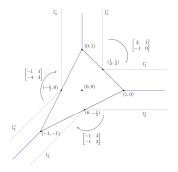
 $\tilde{\Omega}(\gamma; u) = \tilde{\Omega}^{trop}(\gamma; u).$

- Same initial data
- Satisfy the same wall-crossing formula

Towards the Equivalence of AG/SG Mirrors

Theorem (Bouseau '19, Lau-Lee-L., '20)

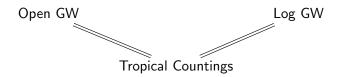
The complex affine structure of the SYZ fibration of $\mathbb{P}^2 \setminus E$ coincides with the one of Carl-Pomperla-Siebert.



Together with the result of Gräfnitz '20

Theorem (L. '20)

The open Gromov-Witten invariants of \mathbb{P}^2 coincide with log Gromov-Witten invariants w/maximal tangency.



Advantage: bypassing the comparison of VFCs.

THANK YOU!