A Smale-Barden manifold admitting K-contact but not Sasakian structure arXiv:2011.05783

Vicente Muñoz

Universidad de Málaga

9 February 2021 Geometria em Lisboa Seminar, IST

Smale-Barden manifold K-contact but not Sasakian

- Kähler and symplectic structures
- 2 Sasakian and K-contact structures
- 3 Smale-Barden manifolds
- 4 Seifert circle bundles
- 5 Statement of main result
- 6 Construction of K-contact manifold
- 7 The Smale-Barden manifold is not Sasakian

Main objective

Describe and classify (compact) manifolds with different geometrical structures.

Let *M* be a smooth manifold, $J \in \text{End}(TM)$ with $J^2 = -\text{id}$, *J* is called almost-complex structure, (T_pM, J) are complex vector spaces.

Nijenhius tensor

$$N_J(X, Y) := [X, Y] + [JX, JY] - J[JX, Y] - J[X, JY]$$

Theorem (Newlander-Niremberg)

If $N_J = 0$ then (M, J) has a complex atlas. We say that J is integrable.

Kähler manifolds

A 2*n*-dimensional Kähler manifold (M, J, ω) consists of:

- (M, J) a complex manifold, $J \in \text{End}(TM)$, $J^2 = -\text{id}$, $N_J = 0$,
- $h: T_pM \times T_pM \to \mathbb{C}$ a hermitian metric, $h = g + i\omega$, g is a riemannian metric, $\omega \in \Omega^2(M)$,
- $\omega(u, v) = g(u, J v)$ (compatibility of ω and J),
- g(Ju, Jv) = g(u, v),
- $\omega \in \Omega^{1,1}(M)$ the Kähler form. Locally, $\omega = \frac{-i}{2} \sum h_{i\bar{j}} dz_i \wedge d\bar{z}_j$, where $h = \sum h_{i\bar{j}} dz_i \cdot d\bar{z}_j$
- ω is non-degenerate, i.e. $\omega^n > 0$,
- $d\omega = 0$.

S is Kähler $\iff \nabla J = 0$, i.e. *S* is a riemannian manifold with holonomy contained in U(n).

Definition

A symplectic manifold (M, ω) is a smooth 2*n*-manifold with $\omega \in \Omega^2(M)$, with $\omega^n > 0$ and $d\omega = 0$.

A symplectic manifold (M, ω) admits a compatible almost-complex structure *J*.

In general it is not integrable.

 (M, J, ω) is called almost-Kähler.

We have the following inclusion

 $\{K\ddot{a}hler manifolds\} \subset \{symplectic manifolds\}$

which has been largely studied (Thurston, Gompf, McDuff, Tralle-Oprea, Babenko-Taimanov, Fernández-M, Cavalcanti, Bazzoni, etc).

Kähler vs. symplectic

Main techniques to find manifolds which admit symplectic but not Kähler structures:

- Parity of odd-degree Betti numbers,
- hard Lefschetz property,
- Kähler fundamental groups,
- formality (rational homotopy theory),
- in dimension 2n = 4, Enriques classification of complex surfaces.

In odd dimensions, we have several types of geometric structures that parallel this situation:

Kähler ⊂ Symplectic | | Sasakian ⊂ K-contact

Question

Determine which manifolds admit Sasakian and K-contact structures. Find manifolds which admit K-contact structures but not Sasakian structures. Let *M* be a (2n + 1)-dimensional manifold.

An almost contact metric structure is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution.
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

The almost contact structure (η, ξ, ϕ, g) is *contact metric* if $F = d\eta$ (so η is a contact form, i.e., $\eta \wedge (d\eta)^n \neq 0$).

Definition

A *Sasakian structure* is a contact metric structure (η, ξ, ϕ, g) whose Nijenhuis tensor satisfies $N_{\phi} = -d\eta \otimes \xi$.

$$N_{\phi}(X,Y) := \phi^{2}[X,Y] + [\phi X,\phi Y] - \phi[\phi X,Y] - \phi[X,\phi Y].$$

Definition of Sasakian structure

The vector field ξ is a Killing vector field, and the transversal structure is "Kähler".

Alternative definition

Let $X = C(M) = M \times \mathbb{R}$, $g_{C(M)} = t^2g + dt^2$, be the *cone of* M. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = t \frac{\partial}{\partial t}$. Then J is integrable, $N_J = 0 \iff N_{\phi} = -d\eta \otimes \xi$. So M is Sasakian $\iff C(M)$ is Kähler.

Definition

Let *M* be a (2n + 1)-dimensional manifold. A K-contact structure is a contact metric structure (η, ξ, ϕ, g) where ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.

The Killing condition makes sense of a "transversal structure"

The transversal structure to the Reeb foliation is "symplectic" (or more precisely, "almost-Kähler").

Question (Boyer-Galicki)

Are there (compact) manifolds with K-contact structure but with no Sasakian structures?

Main techniques:

- In dimensions $2n + 1 \ge 7$. Topological properties:
 - parity of odd-degree Betti numbers,
 - hard Lefschetz property,
 - Sasaki fundamental groups,
 - formality.

(Boyer-Galicki, Cappelletti Montano-de Nicola-Marrero-Yudin, Hajduk-Tralle, Biswas-Fernández-M-Tralle, etc).

 In dimension 2n + 1 = 5. Classification of complex surfaces (Boyer-Galicki, Kollár, M-Rojo-Tralle, Cañas-M-Rojo-Viruel).

3. Smale-Barden manifolds

Simply connected compact 5-dimensional manifolds were classified by Smale and by Barden.

Invariants:

Second homology group

$$H_2(M,\mathbb{Z}) = \mathbb{Z}^k \oplus \big(\underset{p,i}{\oplus} \mathbb{Z}_{p^i}^{c(p^i)} \big),$$

where $k = b_2(M)$. Moreover $c(p^i)$ is even except possibly for c(2).

• The Barden invariant: *i*(*M*) = *j*, where the second Stiefel-Whitney class map

$$w_2:H_2(M,\mathbb{Z}) o\mathbb{Z}_2$$

is zero on all but one summand \mathbb{Z}_{2^j} . If c(2) is odd then i(M) = 1. *M* is spin ($w_2 = 0$) if i(M) = 0.

4. Seifert bundles

Proposition (Rukimbira, M-Tralle)

Let M be a compact manifold with a Sasakian structure (resp. K-contact structure). Then M admits a Sasakian structure (resp. K-contact structure) foliated by circles.

Let $X = M/S^1$ be the space of orbits. Then

$$\pi: \mathbf{M} \longrightarrow \mathbf{X}.$$

is a Seifert bundle and X is a cyclic orbifold.

Seifert bundles

Locally we have (where $U = B_{\epsilon}(p) \cap \mathcal{D}_{p}$),

$$\pi: (S^1 \times U) / \mathbb{Z}_m \longrightarrow U / \mathbb{Z}_m$$

The local model around $x = \pi(p)$ is $\mathbb{C}^n/\mathbb{Z}_m$ with $\varepsilon = e^{2\pi i/m}$ $\varepsilon \cdot (s, z_1, \dots, z_n) = (\varepsilon s, \varepsilon^{l_1} z_1, \dots, \varepsilon^{l_n} z_n)$, for M $\varepsilon \cdot (z_1, \dots, z_n) = (\varepsilon^{l_1} z_1, \dots, \varepsilon^{l_n} z_n)$, for Xwhere $gcd(m, l_1, \dots, l_n) = 1$. The orbifold singularities of a cyclic orbifold *X* consist of:

- Isotropy (smooth) surfaces D_i with isotropy coefficient m_i.
 Modelled on C × {0} ⊂ C × (C/Z_{m_i}).
- If two isotropy surfaces intersect, they do in pairs, transversely, and the coefficients m_i, m_j satisfy gcd(m_i, m_j) = 1.
- Isotropy points with link a lens space S³/Z_d. They can appear isolated, at an isotropy surface or at the intersection of two isotropy surfaces.

If the coefficients m_i, m_j are not coprime, then $D_i \cap D_j = \emptyset$. The surfaces D_i intersect transversally.

Let $P \subset X$ be the singular points. Then at most two surfaces through each point of P.

- If *M* is Sasakian, then *X* is a Kähler cyclic orbifold. The isotropy locus are complex curves.
- If *M* is K-contact, them *X* is a symplectic cyclic orbifold. The isotropy locus are symplectic surfaces.

M is Sasakian (K-contact) when the (orbifold) Chern class of $\pi : M \to X$ is given by the (orbifold) Kähler (symplectic) form of (X, J, ω) ,

$$c_1(M) = [\omega] \in H^2_{orb}(X) = H^2(X, \mathbb{R}).$$

Note that always $c_1(M) \in H^2(X, \mathbb{Q})$.

Let $M \rightarrow X$ be a Seifert bundle over a 4-orbifold X, and let D_i be the isotropy surfaces.

Definition

The orbifold fundamental group is

$$\pi_1^{orb}(X) = \pi_1(X - \cup D_i) / \langle \gamma_i^{m_i} = 1 \rangle,$$

where γ_i is a small loop around the isotropy surface D_i .

We have an exact sequence

$$\cdots \rightarrow \pi_1(S^1) = \mathbb{Z} \rightarrow \pi_1(M) \rightarrow \pi_1^{orb}(X) \rightarrow 1$$

Proposition (Kollár)

Let $\pi : M \to X$ be a semi-regular Seifert circle bundle, with $D_i \subset X$ isotropy surfaces with coefficients m_i and genus g_i . Recall that $gcd(m_i, m_j) = 1$ if $D_i \cap D_j \neq \emptyset$.

Then

$$H_1(M,\mathbb{Z}) = 0 \iff \begin{cases} H_1(X,\mathbb{Z}) = 0, \\ H^2(X,\mathbb{Z}) \twoheadrightarrow \oplus H^2(D_i,\mathbb{Z}/m_i), \text{ surjective} \\ c_1(M/\mathbb{Z}_m) \in H^2(X,\mathbb{Z}) \text{ is primitive}, m = \text{lcm}(m_i). \end{cases}$$

Moreover, $H_2(M, \mathbb{Z}) = \mathbb{Z}^k \oplus (\mathbb{Z}/m_i)^{2g_i}$, where $H_2(X, \mathbb{Z}) = \mathbb{Z}^{k+1}$.

We read the genus g_i , the isotropy coefficients m_i , and whether they are disjoint (if $gcd(m_i, m_j) > 1$) from $H_2(M, \mathbb{Z})$. We also read $b_2(X) = k + 1$.

Main Problem (Boyer-Galicki)

Construct a Smale-Barden manifold that admits a K-contact structure but not a Sasakian structure.

Partial results:

- M-Rojo.Tralle, Homology Smale-Barden manifolds with K-contact and Sasakian structures, Inter. Math. Research Notices, 2020, No. 21, 7397-7432. (homology Smale-Barden means H₁(M, ℤ) = 0).
- Cañas-M-Rojo-Viruel, A K-contact simply connected 5-manifold with no semi-regular Sasakian structure, Publ. Mathemàtiques. (semi-regular means P = Ø).

Main Theorem (arxiv:2011.05783)

There exists a Smale-Barden manifold which admits a K-contact structure but does not admit a Sasakian structure.

6. Construction of K-contact manifold

Take a rational elliptic surface with three nodal curves and one singular fiber of type I_9 (cycle of 9 rational curves of self-intersection -2). Take a Gompf connected sum of two copies

 $\chi = 24$ hence $b_2 = 22$. Perturb ω to make the Lagrangian (-2)-spheres \rightarrow symplectic. Contract chain of 17 rational curves and the two (-2)-curves.

Construction of K-contact manifold

Get orbifold with 3 singular points, 3 disjoint symplectic tori, $b_2 = 3$.

Take the isotropy surfaces to be:

•
$$T_0 = T$$
, $T_1 = 2T + D$, $T_n = nT_1$, with $g_n = n^2 + 1$

•
$$T'_0 = T', T'_1 = 2T' + D', T'_m = mT'_1$$
, with $g_m = m^2 + 1$

• $A = 2F + 9E_1 + 8(C_1 + C_1') + 7(C_2 + C_2') + \ldots + (C_8 + C_8')$, with $g_A = 10$.

Construction of K-contact manifold

Choose different primes p_{nm} , and isotropy coefficients (*N* large):

$$m_{T_n} = \prod_{m=0}^{N} p_{nm},$$
$$m_{T'_m} = \prod_{n=0}^{N} p_{nm}^2,$$
$$m_A = \prod_{n,m=0}^{N} p_{nm}^3.$$

The Seifert bundle $M \rightarrow X$ is a K-contact Smale-Barden manifold which is spin and its homology is

$$H_2(M,\mathbb{Z}) = \mathbb{Z}^2 \oplus \bigoplus_{n,m=0}^N \left(\mathbb{Z}_{p_{nm}}^{2n^2+2} \oplus \mathbb{Z}_{p_{nm}^2}^{2m^2+2} \oplus \mathbb{Z}_{p_{nm}^3}^{20} \right).$$

If *M* admits a Sasakian structure, then it admits a Sasakian structure foliated by circles.

Hence $M \rightarrow Y$ is a Seifert bundle.

As

Y is a complex manifold with cyclic singularities $P \subset Y$.

$$H_2(M,\mathbb{Z}) = \mathbb{Z}^2 \oplus \bigoplus_{n,m=0}^N \left(\mathbb{Z}_{p_{nm}}^{2n^2+2} \oplus \mathbb{Z}_{p_{nm}^2}^{2m^2+2} \oplus \mathbb{Z}_{p_{nm}^3}^{20} \right)$$

 $b_2(Y) = 3.$ The isotropy locus: for each $n, m \in \{1, 2, ..., N\}$, there are $D_1^{nm}, D_2^{nm}, D_3^{nm}$, disjoint complex curves of genus g_n, g_m, g_A .

Universal bounds

Step 1. #P universally bounded

•
$$K + D_1 + D_2 + D_3$$
 effective,
 $\mathcal{O}(K) \rightarrow \mathcal{O}(K + D_1 + D_2 + D_3) \rightarrow \oplus \mathcal{O}_{D_i}(K_{D_i}),$
 $g_i \ge 1$ and $H^1 = 0.$

- $K + D_1 + D_2 + D_3$ log canonical.
- $K + D_1 + D_2 + D_3$ nef (this is tricky).

Then $e_{orb}(Y - (D_1 \cup D_2 \cup D_3)) \ge 0 \implies$ bound on #P.

Step 2. Number of $\{g_n, g_m, g_A\}$ with curves through singular points \rightarrow bounded.

Step 3. Let $D_1^2 = m_1$, $D_2^2 = -m_2$, $D_3^2 = -m_3$. They are integer if the D_i do not pass through singular points.

$$K^2 = rac{(2g_n - 2 - m_1)^2}{m_1} - rac{(2g_m - 2 + m_2)^2}{m_2} - rac{(18 + m_3)^2}{m_3}$$

Then $-C_1 \leq K^2 \leq C_2$, universally bounded.

Case $K^2 < 0$

The canonical bundle is

$$K = \frac{2g_n - 2 - m_1}{m_1} D_1 - \frac{2g_m - 2 + m_2}{m_2} D_2 - \frac{18 + m_3}{m_3} D_3$$

It cannot be K < 0 since $K + D_2$ is effetive. Hence $0 < m_1 < 2g_n - 2 = 2n^2$.

We use $\{g_n, 1, g_A\}$ and using bounds of

$$K^2 = rac{(2g_n - 2 - m_1)^2}{m_1} - m_2 - rac{(18 + m_3)^2}{m_3},$$

we bound possible denominators of K^2

Changing numerator $2g_n - 2 = 2n^2$, we produce a diophantine equation with no solutions.

Case $K^2 > 0$

Can select sets S_a of fixed size for $\{g_n, g_a, g_A\}$, $n \in S_a$, such that $(D_1^{na}, D_2^{na}, D_3^{na})$ are not projectively equivalent.

 $(Q_n, R_n, S_n) = (D_1^{na}/\sqrt{(D_1^{na})^2}, D_2^{na}/\sqrt{(D_2^{na})^2}, D_3^{na}/\sqrt{(D_3^{na})^2})$ basis of hyperbolic space. They are ϵ -apart.

Recall $K^2 = \frac{(2g_n - 2 - m_1)^2}{m_1} - \frac{(2g_m - 2 + m_2)^2}{m_2} - \frac{(18 + m_3)^2}{m_3}.$ $\frac{(2g_n - 2 - m_1)^2}{m_1}$ bounded $\implies K \cdot Q_n = \frac{K \cdot D_1}{\sqrt{D_1^2}}$ bounded (in grey region).

Bound in number of basis (Q_n, R_n, S_n) using hyperbolic area.

