A Smale-Barden manifold admitting K-contact but not Sasakian structure arXiv:2011.05783

Vicente Muñoz
Universidad de Málaga

9 February 2021
Geometria em Lisboa Seminar, IST

Smale-Barden manifold K-contact but not Sasakian

(1) Kähler and symplectic structures
(2) Sasakian and K-contact structures
(3) Smale-Barden manifolds

4 Seifert circle bundles
(5) Statement of main result

6 Construction of K-contact manifold
(7) The Smale-Barden manifold is not Sasakian

1. Kähler and symplectic structures

Main objective

Describe and classify (compact) manifolds with different geometrical structures.

Let M be a smooth manifold,
$J \in \operatorname{End}(T M)$ with $J^{2}=-$ id,
J is called almost-complex structure,
$\left(T_{p} M, J\right)$ are complex vector spaces.
Nijenhius tensor

$$
N_{J}(X, Y):=[X, Y]+[J X, J Y]-J[J X, Y]-J[X, J Y]
$$

Theorem (Newlander-Niremberg)

If $N_{J}=0$ then (M, J) has a complex atlas. We say that J is integrable.

Kähler manifolds

A $2 n$-dimensional Kähler manifold (M, J, ω) consists of:

- (M, J) a complex manifold, $J \in \operatorname{End}(T M), J^{2}=-\mathrm{id}, N_{J}=0$,
- $h: T_{p} M \times T_{p} M \rightarrow \mathbb{C}$ a hermitian metric, $h=g+i \omega$, g is a riemannian metric, $\omega \in \Omega^{2}(M)$,
- $\omega(u, v)=g(u, J v)$ (compatibility of ω and J),
- $g(J u, J v)=g(u, v)$,
- $\omega \in \Omega^{1,1}(M)$ the Kähler form.

Locally, $\omega=\frac{-i}{2} \sum h_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}$, where $h=\sum h_{i \bar{j}} d z_{i} \cdot d \bar{z}_{j}$

- ω is non-degenerate, i.e. $\omega^{n}>0$,
- $d \omega=0$.
S is Kähler $\Longleftrightarrow \nabla J=0$,
i.e. S is a riemannian manifold with holonomy contained in $\mathrm{U}(n)$.

Symplectic manifolds

Definition

A symplectic manifold (M, ω) is a smooth $2 n$-manifold with $\omega \in \Omega^{2}(M)$, with $\omega^{n}>0$ and $d \omega=0$.

A symplectic manifold (M, ω) admits a compatible almost-complex structure J.
In general it is not integrable.
(M, J, ω) is called almost-Kähler.
We have the following inclusion

$$
\{\text { Kähler manifolds }\} \subset\{\text { symplectic manifolds }\}
$$

which has been largely studied (Thurston, Gompf, McDuff, Tralle-Oprea, Babenko-Taimanov, Fernández-M, Cavalcanti, Bazzoni, etc).

Kähler vs. symplectic

Main techniques to find manifolds which admit symplectic but not Kähler structures:

- Parity of odd-degree Betti numbers,
- hard Lefschetz property,
- Kähler fundamental groups,
- formality (rational homotopy theory),
- in dimension $2 n=4$, Enriques classification of complex surfaces.

2. Sasakian and K-contact structures

In odd dimensions, we have several types of geometric structures that parallel this situation:

Question

Determine which manifolds admit Sasakian and K-contact structures. Find manifolds which admit K-contact structures but not Sasakian structures.

Definition of Sasakian structure

Let M be a $(2 n+1)$-dimensional manifold.
An almost contact metric structure is given by (η, ξ, ϕ, g), where:

- η is a 1 -form, $\mathcal{D}=$ ker η codimension one distribution.
- ξ is a nowhere vanishing vector field with $\eta(\xi)=1$. So $T M=\mathcal{D} \oplus\langle\xi\rangle$.
- $\phi: T M \rightarrow T M, \phi^{2}=-\mathrm{id}+\xi \otimes \eta$. So $\phi(\xi)=0$ and $\left.\phi\right|_{\mathcal{D}}$ is an almost-complex structure.
- g is a Riemannian metric with $g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$. Thus $T M=\mathcal{D} \oplus\langle\xi\rangle$ is orthogonal, and ϕ is isometric on \mathcal{D}.
The fundamental 2-form is $F(X, Y)=g(\phi X, Y)$.
So $F(\phi X, \phi Y)=F(X, Y)$ and $\eta \wedge F^{n} \neq 0$.
Equivalently, M is almost contact if and only if $T M$ has a reduction of structure group to $\mathrm{U}(n) \times\{1\} \subset \mathrm{SO}(2 n+1)$.

Definition of Sasakian structure

The almost contact structure (η, ξ, ϕ, g) is contact metric if $F=d \eta$ (so η is a contact form, i.e., $\eta \wedge(d \eta)^{n} \neq 0$).

Definition

A Sasakian structure is a contact metric structure (η, ξ, ϕ, g) whose Nijenhuis tensor satisfies $N_{\phi}=-d \eta \otimes \xi$.

$$
N_{\phi}(X, Y):=\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]
$$

Definition of Sasakian structure

The vector field ξ is a Killing vector field, and the transversal structure is "Kähler".

Alternative definition

Let $X=C(M)=M \times \mathbb{R}, g_{C(M)}=t^{2} g+d t^{2}$, be the cone of M.
Let $J: T X \rightarrow T X,\left.J\right|_{\mathcal{D}}=\phi, J(\xi)=t \frac{\partial}{\partial t}$.
Then J is integrable, $N_{J}=0 \Longleftrightarrow N_{\phi}=-d \eta \otimes \xi$.
So M is Sasakian $\Longleftrightarrow C(M)$ is Kähler.

K-contact structures

Definition

Let M be a $(2 n+1)$-dimensional manifold.
A K-contact structure is a contact metric structure (η, ξ, ϕ, g) where ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi} g=0$.

The Killing condition makes sense of a "transversal structure"
The transversal structure to the Reeb foliation is "symplectic" (or more precisely, "almost-Kähler").

Sasakian vs. K-contact structures

Question (Boyer-Galicki)

Are there (compact) manifolds with K-contact structure but with no Sasakian structures?

Main techniques:

- In dimensions $2 n+1 \geq 7$. Topological properties:
- parity of odd-degree Betti numbers,
- hard Lefschetz property,
- Sasaki fundamental groups,
- formality.
(Boyer-Galicki, Cappelletti Montano-de Nicola-Marrero-Yudin, Hajduk-Tralle, Biswas-Fernández-M-Tralle, etc).
- In dimension $2 n+1=5$. Classification of complex surfaces (Boyer-Galicki, Kollár, M-Rojo-Tralle, Cañas-M-Rojo-Viruel).

3. Smale-Barden manifolds

Simply connected compact 5-dimensional manifolds were classified by Smale and by Barden.

Invariants:

- Second homology group

$$
H_{2}(M, \mathbb{Z})=\mathbb{Z}^{k} \oplus\left(\underset{p, i}{\oplus} \mathbb{Z}_{p^{\prime}}^{c\left(p^{\prime}\right)}\right),
$$

where $k=b_{2}(M)$. Moreover $c\left(p^{i}\right)$ is even except possibly for $c(2)$.

- The Barden invariant: $i(M)=j$, where the second Stiefel-Whitney class map

$$
w_{2}: H_{2}(M, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}
$$

is zero on all but one summand $\mathbb{Z}_{2 j}$. If $c(2)$ is odd then $i(M)=1$. M is spin $\left(w_{2}=0\right)$ if $i(M)=0$.

4. Seifert bundles

Proposition (Rukimbira, M-Tralle)

Let M be a compact manifold with a Sasakian structure (resp. K-contact structure). Then M admits a Sasakian structure (resp. K-contact structure) foliated by circles.

Let $X=M / S^{1}$ be the space of orbits. Then

$$
\pi: M \longrightarrow X
$$

is a Seifert bundle and X is a cyclic orbifold.

Seifert bundles

Locally we have (where $U=B_{\epsilon}(p) \cap \mathcal{D}_{p}$),

$$
\pi:\left(S^{1} \times U\right) / \mathbb{Z}_{m} \longrightarrow U / \mathbb{Z}_{m}
$$

The local model around $x=\pi(p)$ is $\mathbb{C}^{n} / \mathbb{Z}_{m}$ with $\varepsilon=e^{2 \pi i / m}$

$$
\begin{aligned}
& \varepsilon \cdot\left(s, z_{1}, \ldots, z_{n}\right)=\left(\varepsilon s, \varepsilon^{l_{1}} z_{1}, \ldots, \varepsilon^{l_{n}} z_{n}\right), \text { for } M \\
& \varepsilon \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(\varepsilon^{l_{1}} z_{1}, \ldots, \varepsilon^{l_{n}} z_{n}\right), \text { for } X
\end{aligned}
$$

where $\operatorname{gcd}\left(m, I_{1}, \ldots, I_{n}\right)=1$.

Cyclic orbifolds

The orbifold singularities of a cyclic orbifold X consist of:

- Isotropy (smooth) surfaces D_{i} with isotropy coefficient m_{i}. Modelled on $\mathbb{C} \times\{0\} \subset \mathbb{C} \times\left(\mathbb{C} / \mathbb{Z}_{m_{i}}\right)$.
- If two isotropy surfaces intersect, they do in pairs, transversely, and the coefficients m_{i}, m_{j} satisfy $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$.
- Isotropy points with link a lens space S^{3} / \mathbb{Z}_{d}. They can appear isolated, at an isotropy surface or at the intersection of two isotropy surfaces.
If the coefficients m_{i}, m_{j} are not coprime, then $D_{i} \cap D_{j}=\emptyset$.
The surfaces D_{i} intersect transversally.
Let $P \subset X$ be the singular points. Then at most two surfaces through each point of P.

Sasakian and K-contact Seifert bundles

- If M is Sasakian, then X is a Kähler cyclic orbifold. The isotropy locus are complex curves.
- If M is K-contact, them X is a symplectic cyclic orbifold. The isotropy locus are symplectic surfaces.
M is Sasakian (K-contact) when the (orbifold) Chern class of $\pi: M \rightarrow X$ is given by the (orbifold) Kähler (symplectic) form of (X, J, ω),

$$
c_{1}(M)=[\omega] \in H_{o r b}^{2}(X)=H^{2}(X, \mathbb{R})
$$

Note that always $c_{1}(M) \in H^{2}(X, \mathbb{Q})$.

Fundamental group

Let $M \rightarrow X$ be a Seifert bundle over a 4-orbifold X, and let D_{i} be the isotropy surfaces.

Definition

The orbifold fundamental group is

$$
\pi_{1}^{\text {orb }}(X)=\pi_{1}\left(X-\cup D_{i}\right) /\left\langle\gamma_{i}^{m_{i}}=1\right\rangle
$$

where γ_{i} is a small loop around the isotropy surface D_{i}.

We have an exact sequence

$$
\cdots \rightarrow \pi_{1}\left(S^{1}\right)=\mathbb{Z} \rightarrow \pi_{1}(M) \rightarrow \pi_{1}^{\text {orb }}(X) \rightarrow 1
$$

Topology of Seifert bundles

Proposition (Kollár)

Let $\pi: M \rightarrow X$ be a semi-regular Seifert circle bundle, with $D_{i} \subset X$ isotropy surfaces with coefficients m_{i} and genus g_{i}. Recall that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ if $D_{i} \cap D_{j} \neq \emptyset$.
Then
$H_{1}(M, \mathbb{Z})=0 \Longleftrightarrow\left\{\begin{array}{l}H_{1}(X, \mathbb{Z})=0, \\ H^{2}(X, \mathbb{Z}) \rightarrow \oplus H^{2}\left(D_{i}, \mathbb{Z} / m_{i}\right), \text { surjective } \\ c_{1}\left(M / \mathbb{Z}_{m}\right) \in H^{2}(X, \mathbb{Z}) \text { is primitive, } m=\operatorname{lcm}\left(m_{i}\right) .\end{array}\right.$
Moreover, $H_{2}(M, \mathbb{Z})=\mathbb{Z}^{k} \oplus\left(\mathbb{Z} / m_{i}\right)^{2 g_{i}}$, where $H_{2}(X, \mathbb{Z})=\mathbb{Z}^{k+1}$.
We read the genus g_{i}, the isotropy coefficients m_{i}, and whether they are disjoint (if $\operatorname{gcd}\left(m_{i}, m_{j}\right)>1$) from $H_{2}(M, \mathbb{Z})$.
We also read $b_{2}(X)=k+1$.

5. Statement of main result

Main Problem (Boyer-Galicki)

Construct a Smale-Barden manifold that admits a K-contact structure but not a Sasakian structure.

Partial results:

- M-Rojo.Tralle, Homology Smale-Barden manifolds with K-contact and Sasakian structures, Inter. Math. Research Notices, 2020, No. 21, 7397-7432. (homology Smale-Barden means $H_{1}(M, \mathbb{Z})=0$).
- Cañas-M-Rojo-Viruel, A K-contact simply connected 5-manifold with no semi-regular Sasakian structure, Publ. Mathemàtiques. (semi-regular means $P=\emptyset$).

Main Theorem (arxiv:2011.05783)

There exists a Smale-Barden manifold which admits a K-contact structure but does not admit a Sasakian structure.

6. Construction of K-contact manifold

Take a rational elliptic surface with three nodal curves and one singular fiber of type l_{9} (cycle of 9 rational curves of self-intersection -2). Take a Gompf connected sum of two copies

$\chi=24$ hence $b_{2}=22$.
Perturb ω to make the Lagrangian (-2)-spheres \rightarrow symplectic.
Contract chain of 17 rational curves and the two (-2)-curves.

Construction of K-contact manifold

Get orbifold with 3 singular points, 3 disjoint symplectic tori, $b_{2}=3$.

Take the isotropy surfaces to be:

- $T_{0}=T, T_{1}=2 T+D, T_{n}=n T_{1}$, with $g_{n}=n^{2}+1$
- $T_{0}^{\prime}=T^{\prime}, T_{1}^{\prime}=2 T^{\prime}+D^{\prime}, T_{m}^{\prime}=m T_{1}^{\prime}$, with $g_{m}=m^{2}+1$
- $A=2 F+9 E_{1}+8\left(C_{1}+C_{1}^{\prime}\right)+7\left(C_{2}+C_{2}^{\prime}\right)+\ldots+\left(C_{8}+C_{8}^{\prime}\right)$, with $g_{A}=10$.

Construction of K-contact manifold

Choose different primes $p_{n m}$, and isotropy coefficients (N large):

$$
\begin{aligned}
m_{T_{n}} & =\prod_{m=0}^{N} p_{n m} \\
m_{T_{m}^{\prime}} & =\prod_{n=0}^{N} p_{n m}^{2} \\
m_{A} & =\prod_{n, m=0}^{N} p_{n m}^{3}
\end{aligned}
$$

The Seifert bundle $M \rightarrow X$ is a K-contact Smale-Barden manifold which is spin and its homology is

$$
H_{2}(M, \mathbb{Z})=\mathbb{Z}^{2} \oplus \bigoplus_{n, m=0}^{N}\left(\mathbb{Z}_{p_{n m}}^{2 n^{2}+2} \oplus \mathbb{Z}_{p_{n m}^{2}}^{2 m^{2}+2} \oplus \mathbb{Z}_{p_{n m}^{3}}^{20}\right)
$$

7. The Smale-Barden manifold is not Sasakian

If M admits a Sasakian structure, then it admits a Sasakian structure foliated by circles.
Hence $M \rightarrow Y$ is a Seifert bundle.
Y is a complex manifold with cyclic singularities $P \subset Y$.
As

$$
H_{2}(M, \mathbb{Z})=\mathbb{Z}^{2} \oplus \bigoplus_{n, m=0}^{N}\left(\mathbb{Z}_{p_{n m}}^{2 n^{2}+2} \oplus \mathbb{Z}_{p_{n m}^{2}}^{2 m^{2}+2} \oplus \mathbb{Z}_{p_{n m}^{3}}^{20}\right)
$$

$b_{2}(Y)=3$.
The isotropy locus: for each $n, m \in\{1,2, \ldots, N\}$, there are $D_{1}^{n m}, D_{2}^{n m}, D_{3}^{n m}$, disjoint complex curves of genus g_{n}, g_{m}, g_{A}.

Universal bounds

Step 1. \#P universally bounded

- $K+D_{1}+D_{2}+D_{3}$ effective, $\mathcal{O}(K) \rightarrow \mathcal{O}\left(K+D_{1}+D_{2}+D_{3}\right) \rightarrow \oplus \mathcal{O}_{D_{i}}\left(K_{D_{i}}\right)$, $g_{i} \geq 1$ and $H^{1}=0$.
- $K+D_{1}+D_{2}+D_{3}$ log canonical.
- $K+D_{1}+D_{2}+D_{3}$ nef (this is tricky).

Then $e_{\text {orb }}\left(Y-\left(D_{1} \cup D_{2} \cup D_{3}\right)\right) \geq 0 \Longrightarrow$ bound on $\# P$.
Step 2. Number of $\left\{g_{n}, g_{m}, g_{A}\right\}$ with curves through singular points \rightarrow bounded.
Step 3. Let $D_{1}^{2}=m_{1}, D_{2}^{2}=-m_{2}, D_{3}^{2}=-m_{3}$. They are integer if the D_{i} do not pass through singular points.

$$
K^{2}=\frac{\left(2 g_{n}-2-m_{1}\right)^{2}}{m_{1}}-\frac{\left(2 g_{m}-2+m_{2}\right)^{2}}{m_{2}}-\frac{\left(18+m_{3}\right)^{2}}{m_{3}}
$$

Then $-C_{1} \leq K^{2} \leq C_{2}$, universally bounded.

Case $K^{2} \leq 0$

The canonical bundle is

$$
K=\frac{2 g_{n}-2-m_{1}}{m_{1}} D_{1}-\frac{2 g_{m}-2+m_{2}}{m_{2}} D_{2}-\frac{18+m_{3}}{m_{3}} D_{3}
$$

It cannot be $K<0$ since $K+D_{2}$ is effetive. Hence
$0<m_{1}<2 g_{n}-2=2 n^{2}$.
We use $\left\{g_{n}, 1, g_{A}\right\}$ and using bounds of

$$
K^{2}=\frac{\left(2 g_{n}-2-m_{1}\right)^{2}}{m_{1}}-m_{2}-\frac{\left(18+m_{3}\right)^{2}}{m_{3}}
$$

we bound possible denominators of K^{2}
Changing numerator $2 g_{n}-2=2 n^{2}$, we produce a diophantine equation with no solutions.

Case $K^{2}>0$

Can select sets \mathcal{S}_{a} of fixed size for $\left\{g_{n}, g_{a}, g_{A}\right\}, n \in \mathcal{S}_{a}$, such that $\left(D_{1}^{n a}, D_{2}^{n a}, D_{3}^{n a}\right)$ are not projectively equivalent.
$\left(Q_{n}, R_{n}, S_{n}\right)=\left(D_{1}^{n a} / \sqrt{\left(D_{1}^{n a}\right)^{2}}, D_{2}^{n a} / \sqrt{\left(D_{2}^{n a}\right)^{2}}, D_{3}^{n a} / \sqrt{\left(D_{3}^{n a}\right)^{2}}\right)$ basis of hyperbolic space. They are ϵ-apart.
Recall $K^{2}=\frac{\left(2 g_{n}-2-m_{1}\right)^{2}}{m_{1}}-\frac{\left(2 g_{m}-2+m_{2}\right)^{2}}{m_{2}}-\frac{\left(18+m_{3}\right)^{2}}{m_{3}}$. $\frac{\left(2 g_{n}-2-m_{1}\right)^{2}}{m_{1}}$ bounded $\Longrightarrow K \cdot Q_{n}=\frac{K \cdot D_{1}}{\sqrt{D_{1}^{2}}}$ bounded (in grey region). Bound in number of basis (Q_{n}, R_{n}, S_{n}) using hyperbolic area.

Q.E.D.

