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Plan of lecture: 1.

I will first introduce the stabilized embedding conjecture, that concerns
the question of when one ellipsoid embeds symplectically into another.

To solve it, we need to show that certain obstructions exist.

The most geometrically direct way to do this is to show that certain
J-holomorphic curves exist in four dimensions. I will then describe four or
five different ways to construct such curves.



Introduction: 2.

We work in R2n = Cn (and mostly with n = 2) with the standard symplectic
form

ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn, xj + iyj = zj ∈ C.
A symplectomorphism is a diffeomorphism that preserves the symplectic form.
The boundary ∂E of an ellipsoid E with center 0 is given by the level set of a
positive definite quadratic form. After a symplectic linear transformation and
appropriate scaling, they can be put in the following normal form

E(a1, . . . , an) :=
{

z ∈ Cn
∣∣ ∑

i

π|zi |2

ai
≤ 1
}
, 0 < a1 ≤ a2 ≤ · · · ≤ an.

Question: When does E(a1, . . . , an) embed symplectically in E(b1, . . . , bn)?

If such exists, we write E(a1, . . . , an)
s
↪→E(b1, . . . , bn).

The answer is known in dimension four, but unknown in general, (and there are

no good conjectures about what happens in the general case.)



Embedding 4-dim’l Ellipsoids 3.

Let E(a, b) be the ellipsoid

{(z1, z2) : π
( |z1|2

a
+ |z2|2

b

)
≤ 1}.

Hofer conjectured around 2010 that

∃ intE(a, b)
s
↪→intE(c, d) iff N (a, b) ≤ N (c, d).

Here N (a, b) is the set of all numbers ka + `b, k, ` ≥ 0, arranged with
multiplicities in increasing order. So
N (2, 2) = (0, 2, 2︸︷︷︸, 4, 4, 4︸ ︷︷ ︸, 6, 6, 6, 6︸ ︷︷ ︸, 8, 8, 8, 8, 8︸ ︷︷ ︸, . . . ), and

N (1, 4) = (0, 1, 2︸︷︷︸, 3, 4, 4︸ ︷︷ ︸, 5, 5, 6, 6︸ ︷︷ ︸, 7, 7, 8, 8, 8︸ ︷︷ ︸, . . . Thus N (1, 4) ≤ N (2, 2)

because the first sequence is termwise no larger than the second.

I An embedding N (1, 4)
s
↪→N (2, 2) can be constructed either indirectly

using symplectic inflation, or via an almost toric fibration.

I These numbers are the actions of the ECH generators: ECH = embedded
contact homology — a 4-dimensional Floer-type homology theory related
to gauge theory; whose generators are unions of closed orbits of the
boundary Hamiltonian flow.

I This conjecture proved by McDuff (2012).



The “ellipsoid into ball” capacity function 4.

For a ≥ 1 define c(a) := inf
{
µ : E(1, a) embeds sympl. in B4(µ) = E(µ, µ)

}
.

This function was calculated by McDuff–Schlenk (2012).
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I For a < τ 4 ≈ 6.7 (where τ = 1+
√

5
2

) there is an infinite staircase (with

numerics based on the Fibonacci numbers),

I for a ≥ 8 1
36

=
(

17
6

)2
, c(a) =

√
a – no obstruction except for volume

I τ 4 < a < 8 1
36

is a transitional region;

I there are rather few results or plausible guesses as to behavior in dim > 4.

The obvious analog of Hofer’s conjecture is false (Guth) since

E(1,S , S)
s
↪→E(3 + ε, 3 + ε, S3) for all S



The stabilized embedding problem: 5.

Define ck (a) = inf{µ : E(1, a)× R2k s
↪→ B4(µ)× R2k} , k ≥ 0.

I (Cristofaro-Gardiner – Hind The Fibonacci stairs stabilize!

i.e. ck (a) = c0(a) for 1 ≤ a ≤ τ 4.

I (Hind) If a > τ 4 and k > 0 then ck (a) ≤ 3a
1+a

by an explicit folding
construction

The volume obstruction c0(a) ≥
√

a disappears when k > 0 – and x = τ 4 is
exactly where the graphs of

√
x and f (x) = 3x

x+1
cross!

Here f is the graph of 3x
x+1

; the dotted graph is that of g(x) =
√

x and the
zigzag is the Fibonacci stairs, which goes between the two.

Conjecture: ck (a) = 3a
a+1

for all k and all a > τ 4.

True for all integers 3m − 1,m ≥ 1 (McD, 2018), for the ‘ghost stairs’
F4m+2

F4m−2
,m ≥ 1 (CGHM,2017) and finitely many other values (Siegel (2019)).



Embedding obstructions from curves: 6.

I Note that E(1, x)
s
↪→B4(µ) iff E(1, x)

s
↪→CP2(µ);

so we can compactify the target.

I given an embedding ι : E(1, x)
s
↪→CP2(µ)

(with x > 1, large µ);

I remove its image ι(E(1, x));
I complete the manifold CP2(µ)\ι(E(1, x))

by attaching a negative end of the form
∂E(1, x)× (−∞, 0] to obtain CP2

x ;

I Hofer analyzed the properties of finite energy
J-hol curves in noncompact spaces
such as CP2

x and showed that they have
negative ends asymptotic to
the periodic orbits on ∂E(1, x).

I if x is irrational, there are just two such orbits, the short one β of action 1
and the long one β̃ of action x > 1.

I every curve in CP2
x has positive action (or energy): so if it has degree d ,

and ends of total multiplicities m, m̃ on β, β̃ we must have dµ ≥ m + m̃x ,
i.e.µ ≥ m+m̃x

d
.



Criterion for persistence under stabilization : 7.

Theorem: [CG-H-M] If C is a genus zero curve in CP2
x with just one negative

end asymptotic to some multiple of the short orbit β and of Fredholm index 0,

then C persists under perturbations (eg of J and µ and ι : E(1, x)
s
↪→B4(µ))

and stabilization.

I If C has degree d and one end on βm (the m-fold cover of the short orbit
of ∂E(1, x) its index is 2(3d − 1−m − bm

x
c).

I If x = p/q + ε and C has degree d with one negative end of multiplicity p
on the β, p + b pq

p+ε′ c = p + q − 1, so that C has index 0 if 3d = p + q.

I The corresponding obstruction is dµ ≥ p so that (with ε→ 0) the
obstruction at x = p

q
is µ > p

p+q
3

= 3x
1+x

— just what we want!

I The genus zero and single end conditions on C are essential: for higher
genus curves or many ends the Fredholm index becomes negative as k
(the stabilization dim) increases so curves disappear for generic J.

I But C need not be embedded. So in general we are not dealing with the
curves of ECH (which are embedded and can have any genus).

I However, for the Fibonacci corners, the relevant curves C are embedded,
and so can be found by using ECH (as in [CG-H])



Constructing suitable curves I: 8.

given ι : E(1, x)→ CP2(µ), we can think of
CP2

x as the top part of the space got from
CP2(µ) by stretching the neck along ∂E(1, x).

Hence we can find curves in CP2
x

by starting with a curve C in CP2(µ)
(going through constraints in intE(1, x)),
and seeing what happens to it in the limit
as we stretch the neck along ∂E(1, x).
Since C must also intersect any line
in CP2(µ)\E(1, x), C must
split into (at least) two pieces, with top part in CP2

x .

I for the Fibonacci corners at
F2k+5

F2k+1
, we can blow up appropriately inside

E(1, x) and start with the exceptional obstructing curve that gives the
staircase obstruction. Using ECH methods, it is relatively easy to show
that, when we stretch the neck, the top has just one negative end.

[CG-H] did not compactify the target, instead looking at curves in the completed

cobordism X 1+

x , with top the distorted ball ∂B(µ, µ+ ε′) and bottom ∂E(1, x); they
also stabilize under conditions analogous to those given above.



Constructing suitable curves II : 9.
I for the ghost stairs, at x =

F4k+6

F4k+2
, we started in [CG-HM] with a family of

12 genus zero curves C with one double point, and use ECH methods to
show that when we stretch the neck at least three must have just one
negative end. This was hard. (When you stretch the neck the double point

might go into the neck or even be in the lower part of the curves.)

I in the ‘next case’, i.e. numbers of the form x = 11, 76/11, . . . , one would
have to start with a family of 620 genus zero curves, each with three
double points. – this does not seem promising.

I Hind–Kerman construct new curves C by attaching cylinders to known
genus zero curves with one end. This works for some integers of the form
x = 3m − 1.

I I constructed curves for all integers x = 3m − 1 by using the obstruction
bundle gluing developed by Hutchings–Taubes.

I The last two approaches are limited because it is hard to prove that
J-holomorphic cylinders with appropriate ends do exist, even in 4-dim.
Homological arguments show that you must have a broken cylinder, but to make

use of those you would need a much better understanding of how to glue

multiply covered and nonregular curves. (Note: often multiple covers of index

zero curves have negative index... and such negative curves cannot be avoided

simply by perturbing J, you need a proper regularization scheme such as would

be provided by SFT...)



Curves in CP2 satisfying local tangency constraints I: 10.

Here is a completely different approach suggested by Kyler Siegel.

I Consider the set J0 of J on CP2 that are integrable in a small nbhd
Op(p) of p, fix a smooth complex curve D ⊂ Op(p) through p, and
choose a holomorphic map g : (Op(p), p)→ (C, 0) s.t. D = g−1(0) and
dg(p) 6= 0.

I As in Cieliebak–Mohnke [CM], we say that u has tangency order m − 1 to
(D, p) at the marked point z (and say u satisfies 〈〈〈T m−1p〉〉〉 if

d j (g ◦ u ◦ f )

dζ j

∣∣
ζ=0

= 0 for j = 1, ...,m − 1, (1)

I As shown in [CM], 〈〈〈T m−1p〉〉〉 imposes a condition on curves of
codimension 2m. e.g., there is a unique degree 2 curve in CP2 that
satisfies 〈〈〈T 4p〉〉〉: — take the unique conic though 5 points, and move
them together (along D).

I We define Nd〈〈〈T 3d−2p〉〉〉 to be the number of genus 0, degree d curves u
in CP2 that satisfy 〈〈〈T 3d−2p〉〉〉. We prove in [MSie] that this is well
defined, i.e. independent of choices of D, generic J ∈ J0 etc.

I As J varies in a generic 1-parameter family this count is constant — by a
version of automatic transversality all curves count positively.



Local tangency constraints (II): 11.

I Given a partition P = (m1,m2, . . . ,mb) we also show there is a well
defined invariant Nd〈〈〈T Pp〉〉〉 that counts degree d curves with b branches
tangent to D at p to orders m1 − 1,m2 − 1, . . . ,mb − 1.

I We establish combination rules showing how counts behave when the
constraints at two points p, p′ are combined as p moves to p′: e.g.

Nd〈〈〈T (m)p, T (m′)p′〉〉〉 = Nd〈〈〈T (m+m′)p〉〉〉+ Nd〈〈〈T (m,m′)p〉〉〉, m 6= m′.

I Using that we derive an algorithm to compute Nd〈〈〈T Pp〉〉〉 for all
partitions P of 3d − 1 and in particular Nd〈〈〈T (3d−1)p〉〉〉 = Nd〈〈〈T 3d−2p〉〉〉.
(Note that (3d − 1) is the partition of 3d − 1 with one entry...)

I This algorithm has ± coeffs, so does NOT imply Nd〈〈〈T (3d−1)p〉〉〉 > 0 ∀d .
BUT it is easy to see this: if you start with C , you can choose the
constraints so they are satisfied:Take any rational curve C of degree d ,
pick a regular point p ∈ C and J integrable near p and such that C is
J-hol; finally pick J-hol local D so that C is tangent to D to order exactly
3d − 2. Thus there is a curve satisfying 〈〈〈T (3d−1)p〉〉〉, and it is
automatically regular



Connection to stabilized embedding problem: 12.

I Given an embedding ι : E(1, x)→ CP2(µ), where x = 3d − 1 + ε, we must show
there is a genus zero, degree d curve in CP2

x with a single negative end on
β3d−1(x), i.e. it goes 3d − 1 times round the short orbit.

I We saw above that the index contribution of m-times the short orbit on ∂E(1, x)
is 2(m + bm

x
c) Thus this index contribution is constant for all x > m = 3d − 1,

and we show in [MSie] that in this case the number of degree d curves with this
single negative end does not change as x > 3d − 1 varies. (We call such E(1, x)
a skinny ellipsoid.)

I Denote by NE
d 〈〈〈(3d − 1)〉〉〉 the number of degree d curves in CP2

x with one
negative end on ∂E(1, x) (that we assume to be skinny). We show that this is
well defined. We also show NE

d 〈〈〈(3d − 1)〉〉〉 = Nd 〈〈〈T (3d−1)p〉〉〉 — but the

argument is quite complicated, — and all we need is that NE
d 〈〈〈(3d − 1)〉〉〉 6= 0.

I However, it is not hard to see that 0 6= Nd 〈〈〈T
(3d−1)

D p〉〉〉 ≤ NE
d 〈〈〈(3d − 1)〉〉〉:

Simply take a curve C satisfying T (3d−1)
D p and stretch the neck around a small

skinny ellipsoid containing p. Then show that the top of the limiting building
can only have one negative end. The proof involves using writhe estimates to
understand the structure of the curve just before breaking — the kind of
argument used by Hutchings–Nelson in their geometric construction of
cylindrical contact homology.



A more general framework: 13.

I To solve the problem in general, I think you need to put it in a larger
context and use algebraic structures to help you. Siegel develops a very
promising approach in Computing Higher Symplectic Capacities. Given an
ellipsoid E(1, x) (x irrat, β, β̃ the short, long orbits) he defines a filtered
L∞-algebra L(x) with generators (roughly) given by elements

β(m1,...,mb) ⊗ β̃(m̃1,...,m̃b̃
) — representing an orbit set consisting of b

(unordered) ends on β of multiplicities (m1, . . . ,mb) and similarly on β̃.
The filtration is by the action.

I Given an embedding ι : E(1, x)→ E(µ, µy), let X y
x be the completion of

µE(1, y)\ι(E(1, x)). Then (assuming ∃ suitable version of SFT) he
defines a filtered L∞-homom Φy,x : L(y)→ L(x) by ‘counting’
disconnected rational curves in X y

x where each component has one
negative end (and many top ends).

I We want to show that if y = 1+ (so top is the distorted ball) the entry

Φ1+,x (β̃(1,...,1)) is nonzero. Siegel constructs an algorithm showing this in
all cases he has calculated (again it has ± coeffs).

I BUT so far, 6 ∃ suitable regularization procedure.

I How far can you get with traditional methods?



Well-defined counts of curves: 14.

Let My,x (P, P̃) be the mod space of somewhere injective, connected, index 0,
J-hol rational curves in X y

x with one negative end and top on
βP,P̃ = β(m1,...,mb) ⊗ β̃(m̃1,...,m̃b̃

). The count of such curves is well-defined if

- The number of elements in this mod space does not change as J etc vary
in a generic 1-parameter family;

- There is no index zero building with these ends.

I For this to hold there cannot be any (disconn) index zero rational curve in

R× ∂E(1, y) with top partition P, P̃ (and each comp with one neg end).

(These are branched covers of trivial cylinders that change P, P̃.)

I Example: Let β be the short orbit on ∂E(1, 1+). Then the two-fold cover
of R× β with two top ends and one neg end has index zero.

I We say P, P̃ are minimal wrt y if such covers do NOT exist. Then:

Proposition [MSie2] (i) If P, P̃ are minimal wrt y , x >> 0 is ‘skinny’ ( we say

x = sk), and 6 ∃ mult covers, then the count of curves in My,x (P, P̃) is well
defined.
(ii) If y = 1+, then ∀x the count of curves in X 1+

x with top on β̃(1,...,1) is well
defined. (and this is precisely the count we want to be 6= 0.)



The capacity gk : 15.

We saw that #Mx,sk (P, P̃) is well defined for P, P̃ minimal.

Define the action of C ∈Mx,sk (P, P̃) to be |P|+ |P̃|x (where

|P| =
∑

mi , |P̃| =
∑

m̃i ).

Define gk (x) = min action of a curve C in X x
sk with neg end on ηk , the k-fold

cover of short orbit (and any top partitions) (C - genus zero, J-hol for gener J)

Proposition [MSie2]

I gk (x) is well defined, and monotone under symplectic embeddings: i.e.

∃ E(1, x)
s
↪→µE(1, y) =⇒ gk (x) ≤ µgk (y);

I For all x such that max(3/2, dxe − 1) ≤ x < m = dxe, we have

I gk (x) = k if 1 ≤ k < dxe,
I gdxe+2i (x) = x + i for i ≥ 0, and
I gdxe+2i+1(x) = dxe+ i for i ≥ 0.

I for 1 ≤ x < 3/2, gk (x), k ≥ 1, is given by the sequence

1, x , 2, 1+x , 2x , 2+x , 1+2x , 3x , · · · 2+(n−2)x , 1+(n−1)x , nx , · · ·

In particular, gk (1) = d k+1
3
e, i.e. the numbers are

1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, . . . for k ≥ 1.



Stabilization of gk : 16.

We expect that gk stabilizes: i.e. we should be able to extend the definition of
gk (X ) to manifolds such as X Y

x × B2k (S) where S >> 0 and to show
gk (X y

x ) = gk (X y
x × B2k (S)). (proof in progress)

If so, we get a new family of stable capacities that in some situations

I contain more information than the Ekeland–Hofer capacities

I give sharp embedding obstructions for ellipsoids into ellipsoids —
Cristofaro-Gardiner, Hind, Siegel have a new folding construction for

embeddings E(1, x , S)
s
↪→µE(1, y , S) giving an upper bound that for

certain integral x , y agrees with the obstruction from the gk .

We calculate gk (X x
sk ) by (a) constructing suitable curves in X x

sk , and (b)
showing that every other curve with neg end ηk has larger energy.

Suppose x > 2. Then
gk (x) = 1, 2, . . . , bxc, x , dxe, x + 1, dxe+ 1, x + 2, . . .

For k ≤ bxc, gk (x) is represented by the k-fold cover of the cylinder with top
on β(x) and bottom on η = short orbit on ∂Esk . There are no somewh. inj.

curves with these ends. (proof uses writhe estimate as in ECH)



The representing curves: 17.
Lemma:

I ∃ somewh. inj. cylinder in X x
sk with top on β̃ (the long orbit) and bottom

on ηdxe(s) (note: dxe = k0 + 1, and can take any s > dxe)
I ∃ somewh. inj. cylinder in X x

sk with top on βdxe and bottom on ηdxe+1.

Proof: In each case, ∃ a cylindrical building with these ends since they have the

same index; and this building must have just one level by the well definedness of

curve counts with neg end on skinny ellip. In second case, the top βdxe has

nontrivial monodromy contrib. to the index and the writhe, which allows there

to be somewh. inj curve.

I ∃ somewh. inj. curve in X x
sk

with top on (β, β̃) and bottom on ηdxe+2(s)
Can build this by obstruction bundle gluing.

I similarly ∃ somewh. inj. curve in X x
sk

with top (β1×m , β̃), bottom ηdxe+2m(s)

I similarly ∃ somewh. inj. curve in X x
sk

with top (βm,1×m ), bottom on ηdxe+1+2m(s)

(to get maximal index for a given action, you need
one ‘fat’ top end and all others on β1.)
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