Health +AlLab

Data, Decisions, and You: Making Causality Useful and Usable in a Complex World

Samantha Kleinberg Stevens Institute of Technology

CUMC Neuro-ICU

36,90

ould octiver a lot (30% of basis) basar0.3; return lineor 48 emp rate l= rec ed to general anmin bol and temp < existing temp min bol and a temp ind < insuling min bol and temp ind < insuling oG range " + convert_bg(e) 77 basal

Al baro como del a como del accordante del accordante della della

Currentie

Alle + los - contraction of the second contr

> Exp. Delta = expected Delta()
> creantiemp.rate, profile))) (rT.reasin()
> inson +z * setting current basal of * interest in the setting current basal of * interest interest);)) if (eventual BG * interest interest))) (rowshill be setting (snooze BG * interest intere

p at couple special in (should be a couple special in (should be a couple should be a cou

ie); //console.error(currentiemp)

set//consoleration(concentration)
satisf(currentemp.rate, profile))
satisf(currentemp.rate, profile)))
satisf(r.reason +a * setting current))
satisf(r.reason +a * settin

Process to more gradually ramp in any seased hypo safety var insulinRog = 2* (minDelta < 0 && minDelta > 0 (minDelta > 0 & minDelta > 0 (minDelta > 0)

regime rT reason += * Snooze BG * + Outa / expected Delta)), 2);

Reg newinsulinReg; } // sarre round_basal(rate.

duration * (currenttemp.rate

Photo by Chona Kasinger

- ----

9 7 10 0 0 P P P P P P

1000

A Framework for Reducing Alarm

A Patient Safety Concern

AACN Advanced Critical Care Volume 24, Number 4, pp.378-386 © 2013 AACN

.....

F

AUTHORS Amogh Karnik, Bonafide, MD.

¹The Commonv Pennsylvania; ²Division of Ge Hospital of Phila ³Center for Pec Children's Hos Pennsylvania; 4Perelman Sch of Pennsylvania ⁵Leonard Davis University of Pen Learnab **CNE** Alarm Fatigue equipme

P. M. Sanders

1 Professor of Cogni Factors; 2 PhD can St Lucia, Queensla

Summary **KEY WORDS**

alarm fatigue, c physiologic mo

ABBREVIATIC ECG: electrocal www.hospitalpe doi:10.1542/hpc Address corres P. Bonafide, ME of Philadelphia, Blvd, Suite 12N bonafide@ema

Melodic alarms tested for learnal alarms over two than 30% of par Confusions persi (p = 0.011). Par medium priority alarms as soundi training identifie HOSPITAL PER

and found the ta

alarms are neede

Sue Sendelbach, RN, PhD, CCNS Marjorie Funk, RN, PhD

ABSTRACT

Research has demonstrated that 72% to 99% of clinical alarms are false. The high number of false alarms has led to alarm fatigue. Alarm fatigue is sensory overload when clinicians are exposed to an excessive number of alarms, which can result in desensitization to alarms and missed alarms. Patient deaths have been attributed to alarm fatigue. Patient safety and regulatory agencies have focused on the issue of alarm fatigue, and it is a 2014 Joint Commission National Patient Safety Goal. Quality improvement projects have

demonstrated that strategies such as daily electrocardiogram electrode changes, proper skin preparation, education, and customization of alarm parameters have been able to decrease the number of false alarms. These and other strategies need to be tested in rigorous clinical trials to determine whether they reduce alarm burden without compromising patient safety.

Keywords: alarm fatigue, patient safety, regulatory agencies

COMMENTARY

What doctors and patients actually want to know: why is this happening and what can they do about it?

Data to knowledge

"The second lesson is that, when trying to make predictions you needn't worry too much about why your models work... And, in the prediction business, you just need to know that something works, not why."

Stephens-Davidowitz, S. (2017) Everybody Lies. Bloomsbury.

Predict

People should stop training radiologists now. It's just *completely* obvious that within five years deep learning is going to do better than radiologists because it's going to be able to get a lot more experience.

Geoff Hinton in 2016

https://www.youtube.com/watch?v=2HMPRXstSvQ

Predict

SUPINE

P(Pneumonia)=0.024

Patient with pneumonia: heatmap of CNN on left, original image on right

https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98

Explain

Per capita cheese consumption correlates with

Number of people who died by becoming tangled in their bedsheets

C. Merck and S. Kleinberg. Causal explanation under indeterminism: A sampling approach. AAAI, 2016.

Control

Reducing class sizes in Tennessee led to better scores on standardized tests

Will it work in California?

Bohrnstedt, G. W. and Stecher, B. M. (eds.) (2002). What We Have Learned about Class Size Reduction in California . American Institutes for Research, Palo Alto, CA.

Can we learn..

risk factors for heart failure

Kleinberg & Elhadad (2013) AMIA

what leads to an individual's hyperglycemic

episodes Heintzman & Kleinberg (2016) JBI

causes of secondary brain injury Claassen et al. (2016) PLoS ONE

from observing people?

Logic-based causal inference

Complex, temporal relationships

$$v \rightsquigarrow \geq 15, \leq 40 \\ \geq 0.4 g$$

(PCTL + some additions)

$$\varepsilon_{avg}(c,e) = \frac{P(e \mid c \land x) - P(e \mid \neg c \land x)}{\mid X \backslash c \mid}$$

Can we trust the data?

Application: learning from patient generated health data

- Chronic diseases are managed primarily by individuals
- Outpatient data brings even more uncertainty than EHR data

FDA guidance

95% of fingerstick BG values must be within 15% of the actual value

A value of 150 could be [128, 172]

A value of 70 could be [60,81]

CGM accuracy is also a function of time

Visit	Number of Readings / Unique Patients	Mean Absolute Relative Difference 95% Confidence Interval	Percentage of Readings within 15 mg/dL or 15% ^a 79%		
Day 1	2,665 / 35	11.6% (10.0, 13.1)			
Day 7	2,926 / 35	9.8% (7.9, 11.7)	86%		

https://www.fda.gov/media/112142/download

17 subjects with T1DM, sensor data (collected for >72 hours)

Used causal inference methods + body-worn sensors to find cause of changes in glycemia

 intense activity leads to hyperglycemia in 5-30min

only found when modeling uncertainty

N. Heintzman and S. Kleinberg. Using Uncertain Data from Body-Worn Sensors to Gain Insight into Type 1 Diabetes. Journal of Biomedical Informatics (2016) Latent variables are not always latent

Leverage prior knowledge (experts, other experiments)

- Be robust to wrong/inapplicable knowledge
 - Reconstruct time series
 - Identify inconsistencies
 - Iterate

3. infer causes

$$e = \begin{cases} Max(D[e,t-s]\dots D[e,t-r]), & \text{if } e \in pa(v) \\ Max(D[e,t+r]\dots D[e,t+s]), & \text{if } e \in ch(v) \\ Max(\bigcup_y Max(D[y,t+r]\dots D[y,t+s])) \\ & \text{where} \quad y \in (ch(v) \cap ch(e)), \text{and} \quad e \in pa(ch(v)) \end{cases}$$

We can use knowledge of the effect of meals on glucose to recover latent meals and their effects

We find: exercise causes meal in 60-85min, moderate exercise causes hypo in 70-90min, 67 meals recovered tsFCI: 1 latent variable, and hypo/hyper cause themselves

M. Zheng, and S. Kleinberg. (2019) Using Domain Knowledge to Overcome Latent Variables in Causal Inference from Time Series. Machine Learning for Healthcare.

Stroke

• 98 patients with subarachnoid hemorrhage

- Monitoring included
 - Depth and surface EEG
 - Microdialysis
 - Physiologic measurements

Data for 3 ICU patients. Purple = missing

S. A. Rahman, Y. Huang, J. Claassen, N. Heintzman, and S. Kleinberg. Combining Fourier and Lagged k-Nearest Neighbor Imputation for Biomedical Time Series Data. Journal of Biomedical Informatics (2015)

Claassen J, Rahman SA, Huang Y, Frey H, Schmidt M, Albers D, Falo CM, Park S, Agarwal S, Connolly ES, Kleinberg S (2016) Causal structure of brain physiology after brain injury. PLoS ONE.

Claassen J, Rahman SA, Huang Y, Frey H, Schmidt M, Albers D, Falo CM, Park S, Agarwal S, Connolly ES, Kleinberg S (2015) Causal structure of brain physiology after brain injury. PLoS ONE.

More descriptive structures

Zheng, M, Claassen J, Kleinberg S (2018) Automated Identification of Causal Moderators in Time-Series Data. ACM SIGKDD Workshop on Causal Discovery. Does this actually help people make decisions?

From knowledge to action

Method	Negative Log Likelihood	p-value	MSE	p-value								
Nile Data (200 Training Points, 462 Test Points)												
GPTS	1.19 ± 0.0548	0.196	$0.579 {\pm} 0.0976$	0.356								
\heartsuit GPTS-CP	$1.19 {\pm} 0.0548$	0.167	$0.583{\pm}0.0989$	0.335								
ARGP	$1.18 {\pm} 0.0510$	0.202	$0.568 {\pm} 0.0940$	0.410								
\heartsuit ARGP-CP	1.15 ± 0.0555	N/A	0.553 ± 0.0962	N/A								
Kalman	$1.17 {\pm} 0.0508$	0.361	$0.562{\pm}0.121$	0.453								
TIM	$1.49 {\pm} 0.0714$	< 0.001	$1.16{\pm}0.161$	< 0.001								
\heartsuit NSGP (grid)	1.15 ± 0.0655	0.490	$0.585{\pm}0.0988$	0.321								
Bee Wag	gle Dance Data (250 Traini	ing Points	, 807 Test Points)									
GPTS	8.02±0.504	< 0.001	$8.44{\pm}0.745$	< 0.001								
\heartsuit GPTS-CP	$4.54{\pm}0.188$	< 0.001	$3.13{\pm}0.241$	< 0.001								
ARGP	4.35 ± 0.167	0.007	$2.98{\pm}0.224$	0.008								
\heartsuit ARGP-CP	4.07 ± 0.150	N/A	2.62 ± 0.195	N/A								
Kalman	$4.39 {\pm} 0.176$	0.002	$2.93{\pm}0.215$	0.016								
TIM	4.54 ± 0.177	< 0.001	$3.25{\pm}0.237$	< 0.001								
\heartsuit NSGP (HMC)	$4.19 {\pm} 0.212$	$<\!0.001$	$3.17 {\pm} 0.230$	< 0.001								
Whistler	Snowfall Data (500 Trainin	g Points,	13380 Test Points)									
GPTS	1.48 ± 0.0455	< 0.001	$0.780 {\pm} 0.0333$	< 0.001								
\heartsuit GPTS-CP	1.17 ± 0.0183	< 0.001	$0.689{\pm}0.0294$	< 0.001								
ARGP	$1.31 {\pm} 0.0395$	< 0.001	$0.637{\pm}0.0268$	0.143								
\heartsuit ARGP-CP	-0.604 ± 0.0385	< 0.001	$0.750 \mathrm{e} \pm 0.0315$	< 0.001								
Kalman	1.28 ± 0.0373	< 0.001	0.614 ± 0.0254	0.589								
TIM	1.47 ± 0.0284	< 0.001	$1.01{\pm}0.0387$	< 0.001								
\heartsuit NSGP (grid)	-1.98 ± 0.0561	N/A	$0.618 {\pm} 0.0242$	N/A								

	G-causal.	TiMINo	TS-
DAG	linear	linear	LiNGAM
correct	13%	83%	19%
wrong	87%	7%	81%
no dec.	0%	10%	0%

Table 1: Exp.2: Gaussian data and linear instantaneous effects: only TiMINo mostly discovers the correct DAG.

Table 1: Results on simulated data. Run time is in seconds. *Run time for DBNs is a user-specified parameter.

	Comm	ion cause	e & effect		Randor	n	Finance					
Method	FDR	FNR	run time	FDR	FNR	run time	FDR	FNR	run time			
DBNs	0.000	0.006	7200*	0.004	0.025	72000*	0.152	0.013	72000*			
Granger	0.488	0.000	23	0.798	0.007	230	0.718	0.015	905			
$\varepsilon_{avg}(c, e)$	0.650	0.000	1567	0.053	0.015	68186	0.078	0.012	85678			
$\alpha(c,e)$	0.000	0.000	16	0.001	0.006	5088	0.036	0.006	8456			

- Which causes do we find?
 - Stronger causes
 - Earlier causes
 - Modifiable factors
- Are some causes more valuable than others?

Super pencils/ Blicket detector

Griffiths et al. 2011

Mind-reading aliens

Mayrhofer & Waldmann 2011

Drug+microorganism size

Soo & Rottman 2018

Can causal information aid decision-making in familiar scenarios?

1. Jane just started college and is adjusting to her busy schedule of classes and extracurricular activities. She has heard about the "freshman 15," where new college students gain 15 pounds during their first year of college. Jane wants to avoid this, while also having fun, making new friends, and leaving time for homework and studying.

What is the ONE thing you think Jane should do to achieve her goal?

- Go for a 30 minute walk every weekend
- Maintain a healthy diet
- Avoid hanging out with friends
- Watch less TV

Zheng M, Marsh JK, Nickerson JV, Kleinberg S. How Causal Information Affects Decisions. CRPI (2020)

Are people doing worse **because** they have experience with the domain? 1. Bob was recently diagnosed with Type 2 diabetes. His body does not produce enough insulin, so after a meal, his blood sugar may become dangerously high. Bob does not want to inject insulin, and was relieved when the doctor said his diabetes could be controlled with diet and exercise and ensuring he maintains a healthy weight.

Bob has had a stressful week at work and is looking forward to seeing his friends Friday evening. They usually meet at Bob's favorite fast food restaurant for hamburgers, but now he wonders if that's okay.

What is the BEST suggestion you can give Bob to keep his diabetes under control, and avoid needing insulin injections?

O Walk to dinner

- Order a grilled chicken sandwich instead of a hamburger
- \bigcirc Order a grilled chicken salad and ask his friends to go for a bike ride
- $^{\bigcirc}$ Do what he usually does

Causal information helps the less experienced

Accuracy increases from 71 to 87% for people without diabetes

Are people losing confidence?

What if we change what people think they know?

Kleinberg & Marsh. Tell Me Something I Don't Know. CogSci (2020)

Knowing what you don't know

Control 75% correct 60%

Knowing what you don't know

Control 72% correct 59%

Action requires causality

But causality alone isn't enough

We need evaluations of utility of algorithms (not just accuracy)

Explainable Al

Information must be personalized

Thanks! Teams at @ Columbia, Stevens, Lehigh

Funded by NLM/NIH, NSF, and JSMF

Consciousness

Vital for decision-making, but time consuming to assess and poorly understood

- EEG can help assessment (Claassen J, et al. (2016). Ann Neurol)
- Changes in consciousness associated w/outcomes (Reznik ME, et al. (2018) Neurocrit Care)
- Brain lesions associated w/ impaired consciousness (Rohaut, B. et al. Scientific Report. (in press))

JFK COMA RECO)VE R		S S	C/	۹LI	E -	RE	VI	SE	D ©	2004	4								
This form should only be used in association which provide instruction	n witi ns foi	h the r stan	"CR darc	S-R /	ADM I adn	INIST ninist	RAT ratio	ION n of	AND the s	SCO cale.	RIN	G GU	IDEL	INES	n					
Patient: Diagnosis: Etiology:																				
Date of Onset:		Date	of	Adm	nissi	on:														
Date																				
Week	ADM	2	3	4	5	6	7	8	9	10	11	1 12	13	14	15	16				
AUDITORY FUNCTION SCALE																				
4 - Consistent Movement to Command *											Ι	Τ								
3 - Reproducible Movement to Command *																				
2 - Localization to Sound										BA	SE	ELIN	IE (OB	SEF	RVA	TION /	AND		
1 - Auditory Startle			_					C	CON	MM/	٩N	D F	OL	LO	WI	NG I	PROTO		2004	
0 - None				_																
VISUAL FUNCTION SCALE				L			<u> </u>	om	nmar	nds				Ba	asel	ine	Trial 1	Trial 2	Trial 3	Trial 4
5 - Object Recognition *														1 min	ute fre	quency				
4 - Object Localization: Reaching *				15											count	1	1			
3 - Visual Pursuit *					I Object Related Commands															
2 - Fixation *					A.	. Eye	e Mo	vem	ent C	omn	nano	ds								
1 - Visual Startle							Look	at th	e <i>(obje</i>	ect #1)									
0 - None							Look	at th	ie <i>(obj</i> e	ect #2	2)									
MOTOR FUNCTION SCALE					B.	. Lin	nb Me	over	ment	Com	mai	nds								
6 - Functional Object Use [†]			_				Take	the ((name	objec	ct #1)								
5 - Automatic Motor Response *			_				Take	the ((name	objec	ct #2	2)								
4 - Object Manipulation *			_				Kickt	ho (r		obioo	+ #1)									
3 - Localization to Noxious Stimulation *							Kick t	the (r	name i	objeci	(#1) t #2)									
2 - Flexion Withdrawal							NON		ane	00,000	(# 2)									
1 - Abnormal Posturing					II N	on-O	bjec	t Re	elated	d Co	mm	nands	5							
0 - None/Flaccid						F														
OROMOTOR/VERBAL FUNCTION SCALE					А.	. Еу		vem		omn	nano	as								
3 - Intelligible Verbalization *					Look up (at ceiling)															
2 - Vocalization/Oral Movement							Look	dow	n <i>(at fl</i>	loor)										
1 - Oral Reflexive Movement			_		_					_										
0 - None			_		В.	. Lin	nb Mo	over	ment	Com	mai	nds								
COMMUNICATION SCALE							Touc	h my	hand	_										
2 - Functional: Accurate [†]			_				Move		ur nose r <i>(obie</i>	e oct/hou	dv n:	art)								
1 - Non-Functional: Intentional *			_				141040	you		00000	ay po	any								
0 - None			_		C.	. Ora	al Mo	vem	nent/											
AROUSAL SCALE						Vo	caliza	atior	n Con	nmar	nds									
3 - Attention							Stick	out y	your to	ngue										
2 - Eye Opening w/o Stimulation			_				Close		i mout	th										
1 - Eye Opening with Stimulation			_				Say "	ah"	. mou											
0 - Unarousable			_					-												
TOTAL SCORE			_	s	pont	taneo	us E	ye C	Openi	ng							Yes:		No:	
		<u> </u>	_	S	pont	taneo	us V	isua	al Trac	cking	3						Yes:		No:	

What if we had an automated indicator for consciousness?

Respiratory and cardiovascular signals Brain-related indicators

Data

- 61 subarachnoid hemorrhage patients in NICU
- 302 assessments of consciousness daily during morning rounds (between 1 and 18 per patient)
- Focusing here on impaired and intact consciousness

BrT: brain temp PbtO2: brain oxygenation ICP: intracranial pressure RR: respiration rate HR: heart rate

Physiological Variables		p-value	# of P	atients	Mean Lag (Seconds)			
From	То	p < 0.1	Low	High	Low	High		
ICP	PbtO2	0.0117	14	9	13.87	5.06		
PbtO2	BrT	0.0329	11	5	11.30	3.31		
PbtO2	ICP	0.0343	14	9	13.61	6.65		
RR	BrT	0.0360	8	4	5.01	0.00		
BrT	RR	0.0360	8	4	4.58	0.00		
PbtO2	RR	0.0483	9	6	6.61	0.30		
RR	PbtO2	0.0631	9	6	6.25	0.49		
HR	PbtO2	0.0666	14	9	11.47	7.00		
PbtO2	HR	0.0753	14	9	12.16	8.06		

Yavuz, T. Claassen J, and Kleinberg S. Lagged Correlations among Physiological Variables as Indicators of Consciousness in Stroke Patients. (under review).