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Abstract & info

I will discuss the impact of nuisance parameters on the effectiveness of 
supervised classification in high-energy physics problems, and techniques 
that may mitigate or remove their effect in the search for optimal selection 
criteria and variable transformations. 
The approaches discussed include nuisance-parametrized models, modified 
or adversary losses, semi-supervised learning approaches and inference-
aware techniques.

• Please interrupt if you feel you need more detail or if something is unclear
• Slides with a (*) in the title will be likely omitted due to time constraints; 

they are left for reference
• References are marked in green [xx] and listed at the end of this document

11/25/2020 IT Lisboa T. Dorigo, Systematic uncertainties in supervised classification 2



Introduction
Systematic uncertainties affect the precision of measurements in HEP (==high-energy particle physics). With Machine 
Learning we may reduce their impact.
We will focus today on supervised classification, which is by far the most common use case

- Much of the discussion also applies to supervised regression
The contents match well with those of Chapter 7.2 of a book on ML for HEP, which will be published by World Scientific 
early in 2021.

A preprint of that chapter, titled “Dealing with 
Nuisance Parameters Using Machine Learning 
in HEP Analysis – A Review” and authored by 
Pablo de Castro Manzano and myself is available 
at https://arxiv.org/abs/2007.09121 [59]

- Credits to Pablo de Castro Manzano for part 
of the material
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0. Particle physics in 7 slides

We are going to discuss how ML can 
help handling systematic
uncertainties, using particle physics
problems as benchmarks

 I need first to explain the general 
framework of these problems

• I claim I will say all you need to 
know about this before you
manage to fall asleep
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The Standard Model
A misnomer – it is not a model but a full-blown theory which allows
us to compute the result of subatomic processes with high 
precision

• Three families of quarks, and three families of leptons, are the 
matter constituents

• Strong interactions between quarks are mediated by 8 gluons, g
• Electromagnetic interactions between charged particles are 

mediated by the photon, γ
• The weak force is mediated by W and Z bosons

The Higgs boson is an additional peculiar particle that gives
mathematical consistency to the whole construction
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The LHC 
LHC is the world’s largest and most powerful particle accelerator, 
built to investigate matter at the shortest length scales
It resides in a 27km long tunnel 100 meters underground near
Geneva
Collisions between protons are created where the beams
intersect: 4 caverns are equipped with huge detectors. Two of 
these (ATLAS and CMS) are multi-purpose «electronic eyes» that
try to detect everything that comes out of the collision

ATLAS
CMS
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CMS
CMS (Compact Muon Solenoid) was built with the specific goal of 
finding the Higgs boson
• Along with ATLAS, it is arguably one of the most complex

machines ever built by mankind
• Hundreds of millions collisions take place every second in its

core, and each produces signals in tens of millions of electronic
channels. These data are read out in real time and stored for 
offline analysis
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How we detect particles

Charged particles are detected in 
the tracker, through the ionization
they leave in silicon;

a powerful magnet bends their
trajectories, allowing a 
measurement of their momentum

Then calorimeters destroy both
charged and neutral ones, 
measuring their energy

Muons are the only particles that
can traverse the dense material
and get tracked outside
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How we see a collision
A reconstruction of the O(10M) electronic signals provides us a «view» of the created
objects: using their characteristics we build O(100) high-level variables which we compare 
to theoretical models after a further compression (usually into a 1-dim test statistic)  then
we do measurements and inference

This is a huge dimensionality reduction…
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What we do with it
We have a theory that allows us to calculate predicted probabilities for the possible
physics processes, to extreme accuracy– but we believe it is incomplete and to 
some extent unsatisfactory. 

So we look for new physics processes: things that the Standard Model does not
include

• New matter particles
• New force carriers

We also measure with precision known processes, in the attempt of finding a 
significant difference with model calculations

• We thus make extensive use of 
• Hypothesis testing
• Point and interval estimation
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Example: new particle searches
The typical search for a new particle involves a 
model which predicts it

• Monte Carlo generators use the model to 
produce simulated datasets that teach us how
the signal looks like

• A data selection isolates a sample where we try
to evidence the particle

• Typically we attempt to reconstruct the particle
mass from the measured features. As mass is a 
unique attribute of the particle, a histogram
may then display a narrow bump on a smooth
background

• A test of hypotheses allows to derive p(data|H0)
• More on that later

11/25/2020 IT Lisboa T. Dorigo, Systematic uncertainties in supervised classification 12



1. Problem statement 

Supervised classification is used to construct low-dimensional event 
summaries: summary statistics

• Summary statistics can be employed to carry out statistical inference on parameters 
of interest θ

• E.g. we may use a NN to reduce features y into a single-dimensional output 
x, which according to our model distributes with a PDF f(x|θ)

The implied compression is informed by simulated observations produced by 
a generative model (MC). The fidelity of the latter is limited by

• Imperfections in the model (e.g. “NLO accuracy”)
• Imprecise simulation of detector (calibration constants, etc.)
• Uncertainty in fundamental parameters (top mass?)
• Finiteness of available data samples

• The above are referred to as “nuisance parameters”
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Nuisance parameters

To account for the above imperfections, described by nuisance parameters α, 
we would need to enlarge our model to p(x|θ,α). The latter can then be used 
in the construction of a likelihood function, a surrogate of L, or whatever 
other estimator we need.

• This allows us to account for the variability of the nuisances in our inference
• The inclusion of nuisances usually enlarges the resulting confidence intervals on θ
• A similar effect occurs if we use the model in hypothesis testing  power reduction

 The presence of nuisance parameters limits the precision and the 
discovery reach in HEP analyses
 The problem is however much more general and applies to any inference 

procedure (“all models are wrong”)
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2. Nuisance parameters in statistical inference

It is useful to recall how nuisance parameters may be “profiled away” from a 
likelihood function in the extraction of confidence intervals

• In statistical parlance, our measurements constitute a problem of parameter 
estimation, whose solution is provided by specifying a statistical model. In the 
model, nuisance parameters may be free and their PDF may be unknown.

We solve the measurement problem by constructing estimators through the 
likelihood function. Let

• xi, i=1…N be our observations: random i.i.d. variables
• θ be the parameters of interest
• α be the nuisance parameters

We may write the joint PDF as p(x,θ,α) and with it the likelihood,
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Profiling and marginalizing
If there are no nuisance parameters, the estimation problem
is solved by constructing estimators as
When nuisances α are present, the profile-likelihood
method consists in first obtaining the profile PL(θ) by 
maximizing over nuisances,
and then proceeding as above[5][6]. MIGRAD[7] can do this
for you, as other more recent packages. However, this
assumes that L be differentiable, and can become an 
impractical solution for large-dimensionality of parameters. 
Similar issues affect the main alternative, a Bayesian
solution, which marginalizes by integration in the nuisance
space over the nuisance prior p(α):
Of course, knowledge (or assumption) of the PDF p(α) is
necessary, and that is not always given. But even then, 
nuisance parameters affect the inference by widening our
confidence intervals!
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3. Toward fully sufficient statistic summaries

ML applications usually focus on the goal of minimizing the statistical
uncertainty on the estimates of parameters of interest θ.
• The summary statistic they provide should enable the extraction of the 

highest amount of information on θ, conditional to the validity of the 
underlying model used to generate the samples, as well as of the 
assumptions made on the value of nuisance parameters α. 

• The conditionality above is hard to get rid of! as, e.g.
• Problems are complex and high-dimensional
• Nuisance parameters have unknown PDF
• Effect of nuisances on the default model is not easy to parametrize

The above imply that the summary statistic is not usually sufficient: being 
oblivious of a part of feature space, it does not retain all the information 
relevant to the parameter estimation task – it can be outperformed.
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Statistical sufficiency: Fisher-Neyman

An all-important concept in statistical inference!
Fisher-Neyman factorization criterion: a summary statistic for a set of n i.i.d. observations 
D={xi, i=1…n} is sufficient WRT a statistical model and a set of parameters θ iff the 
generating probability density function of the data, p (x|θ), can be factorized as

p (x|θ) = q (x)  r [s(x)|θ]
where q is a non-negative function not dependent on θ, and r[] is another non-negative 
function for which dependence on x occurs only through the summary statistic s(x).
s() then contains all the information provided by D needed to estimate model parameters θ, 
and no other statistic may add any information from D.
note: x itself is a sufficient statistic – but it is not a meaningful summary! (it does not 

reduce the dimensionality).
If we do not know p(x) in closed form, we cannot solve the problem analytically! However, 
in 2-mixture models where the signal fraction is the only parameter, the density ratio 
s(x)=ps(x)/pb(x) is a sufficient summary. Hence the advantage of probabilistic classification 
to approximate density ratios.
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Optimize at your own risk

How many of you never chanced to read the word “optimize” declined somehow in 
a physics article? 
To those who raised their hand: you have not done enough reading as of late. The 
word is used quite liberally, usually in connection with incremental advances of the 
employed analysis technique
Typically, evidence in support of an optimization task is offered in the form of a 
peak of the AUC (area under the curve) - the integral of the Receiver Output 
Characteristic (ROC); or on signal acceptance at fixed purity, e.g.
 Those named above are reasonably good proxies to the measurement precision: 
their maxima approximately track the minima of the statistical uncertainty on 
intermediate parameters of interest, such as signal fraction….
Yet they are blind to the more general, ultimate goal of, e.g., extracting the cross 
section of the signal, once all non-stochastic uncertainties are included
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One trivial example
In order to be all on the same page, let us consider a fully analytic, trivial toy example of 
classification task.

Let

𝑆𝑆 𝑥𝑥 =
𝑒𝑒𝑥𝑥

𝑒𝑒 − 1

𝐵𝐵 𝑥𝑥 =
𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼

1 − 𝑒𝑒−𝛼𝛼

be the output of a classifier on events belonging to class S (y=1) and B (y=0), where we have 
normalized S and B in [0,1] for ease of treatment. The background distribution depends on a 
nuisance parameter, α. Note that by writing B(x) as above, we implicitly assume we know that 
dependence perfectly.
Let our task in this toy problem be to estimate the signal fraction in data sampled from S and B, 
based on counting the fraction passing a selection on the output of a classifier trained to 
distinguish S from B.
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TPR, FPR, ROC, AUC
The “true positive rate” (TPR) and the “false positive rate” (FPR) of a data selection 
criterion x>x* based on the classifier output x can be defined using the S(x) and B(x) 
PDFs as

𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥∗ = ∫𝑥𝑥∗
1 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑒𝑒𝑥𝑥∗

𝑒𝑒−1
,

𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥∗ = ∫𝑥𝑥∗
1 𝐵𝐵 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝛼𝛼𝑥𝑥∗−𝑒𝑒−𝛼𝛼

1−𝑒𝑒−𝛼𝛼
,

and from them we may derive an expression for the ROC curve, defined as the 
functional dependence of TPR on FPR:

𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑒𝑒 − [𝑒𝑒−𝛼𝛼 + 1 + 𝑒𝑒−𝛼𝛼 𝐹𝐹𝐹𝐹𝐹𝐹]−

1
𝛼𝛼

𝑒𝑒 − 1
The AUC is then the integral of TPR(FPR) in [0,1].
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“What are the odds that data with x>x* are background?”



Systematics at work

Our toy model 
allows a 
visualization of the 
effect of a nuisance 
parameter α on our 
figures of merit. 

Again, we have 
assumed we know 
the analytic form of 
B(x|α)…
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So what?

Of course, the TPR increases with α for fixed FPR, and so do the ROC 
and its integral: B(x) becomes steeper at small x, and the signal is more distinguishable.

The first real take-away bit is that if we train a classifier with a given value of α (e.g. 1.5 
for the blue B(x) curve), the performance is going to be under- or over-estimated if the 
true value of α is different; the choice of a critical region x>x* corresponding to a pre-
defined FPR will similarly be affected, as will the TPR be.

Now, recall that the fraction of data selected in the critical region is our summary 
statistic – our only input to the extraction of the signal fraction. That number is affected 
by α, but its value alone does not allow us to extract the full information on the true 
signal fraction: it is not a sufficient statistic. The whole distribution would be one such 
statistic, but it would not summarize our data well enough (in terms of dimensional 
reduction).
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Taking a decision: enter the AMS
While we may handwavingly say that the higher our ROC (or its AUC), the better, we 
must define a prescription to decide on the critical region, i.e. the value of x* (or a 
given TPR value). 
In order to have grounds to claim we are optimizing x*, we may try to maximize a 
figure of merit called “approximate median significance” (AMS):

𝐴𝐴𝐴𝐴𝐴𝐴 = 2 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑟𝑟 ln 1 +
𝑁𝑁𝑠𝑠

𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑟𝑟
− 𝑁𝑁𝑠𝑠

The AMS is a robust surrogate of the significance of an excess of observed events if a 
signal of mean Ns contributes to a dataset assumed to only contain background 
sampled from a Poisson of mean Nb. Nr is a regularization avoiding low-count 
divergences; Nr=10 is a sensible choice.

What happens to our toy problem ? Let us e.g. consider Ns=20, Nb=400 and see what 
happens.
11/25/2020 IT Lisboa T. Dorigo, Systematic uncertainties in supervised classification 24



Where is the AMS maximum?

The AMS computed for the three exemplary values 
of α is shown on the right. As we fully expected, 
the values reached when α is larger are higher. 
However, if we do not know what α is, we cannot 
“optimize” our critical region, as the optimal choice 
of x* strongly depends on the value of α, which we 
do not know.

Nuisance parameters affect the optimal working 
point, as well the performance of the classifier and 
the relative merits of different classifiers (which 
produce different summaries x) 
 Standard supervised classification techniques 
may not reach optimality unless they address the 
conditionality issue discussed supra.
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Note: there is often a misalignment 
between the specification of the 
classification task and the true objective of 
an analysis. E.g., maximizing the AMS (even 
with no nuisances) may not be the correct 
way to optimize for an upper limit on Ns



4. Nuisance-Parametrized models

A straightforward attempt at accounting for nuisance parameters is to 
parametrize their effect on the observable features 

 this requires injecting a priori knowledge of their PDF

In low-dimensional cases, a fully analytical solution may be sought, when the 
parametrization of the nuisance allows to “decorrelate” its effect on the 
salient features of the events. 

An example was proposed in a study of the n-subjettiness ratio τ12 [9]
 see next slide
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(Background: boosted decays and fat jets)

11/25/2020 IT Lisboa

Energetic LHC collisions may produce heavy
objects with large momentum (top quarks, 
or W, Z, H bosons). When these decays, 
they usually yield a collimated stream of 
particles – a single hadron jet.

A number of techniques allow the 
extraction of features sensitive to the heavy
object decay

N-subjettiness τn, ratios τn/τn-1, and soft-
drop mass Msd are some of the tools HEP 
analysts use to distinguish heavy
resonances from QCD jets.
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Above: a top-pair decay produces two fat jets, 
where the individual subjects are visible



Example: N-subjettiness in boosted decays
A number of observable features of fat energetic jets have been 
constructed to separate the hadronic 2- and 3-prong decay of 
heavy objects (W,Z,H,t) from QCD jets. 

Useful variable to discriminate two-body decays: τ21=τ2/τ1, 
where taus are functions of the energy distribution within 
subjets

The problem is that the “soft-drop” mass M that can be 
constructed with the two subjets is correlated with τ21: a cut on 
the latter increases S/B but distorts the distribution of M, 
because of the mutual dependence on jet pT.
In statistical parlance we may consider pT a nuisance parameter 
– it reshapes the variable we want to use for inference.
Dolen et al.[10] use an analytical parametrization of the 
nuisance to decorrelate its effect in the variable of interest
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Correcting for the nuisance
- Define ρ = log(m2/pT

2), an appropriate scaling variable for 
QCD jets

- Compute average of τ21 as f(ρ): it shows linear behaviour
- Define ρ’=ρ + log(pT/GeV); then define τ’21=τ2/τ1-Mρ’
- Observe that new variable has flat behaviour for QCD
 τ’21 decorrelates the pT dependence on mass, allowing a 
selection that preserves ability to use sidebands, etc.
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Looking into the matter

11/25/2020 IT Lisboa T. Dorigo, Systematic uncertainties in supervised classification 30

In several cases of HEP interest, the data contain information on the nuisance
parameter, and one may then try to exploit it to construct robust estimators.
Consider the problem of extracting a sufficient summary statistic for the signal
fraction θ with a binary classifier, in presence of a nuisance α that modifies the 
Ps(x,α) and Pb(x,α) density functions. The likelihood

may be rewritten as

Observe that the first term is not a constant: its omission would throw information 
away (background events carry constraining power on the nuisance!).
this shows that the task of learning the density ratio ps/pb usually performed by 
binary classifiers is no longer sufficient.



What if we have no prior ?
Absence of information on a nuisance parameter is more common in HEP. We can still solve the problem
by a parametrization of its effect.

Consider a search for a new particle of unknown mass M: usually, M influences in a smooth manner the 
observable event features x. If a classifier assumes a value M1=M+α in training, its performance will
degrade as α deviates from zero. M is thus in earnest a nuisance parameter. 

One may train n classifiers using data simulated at n different M values, but the solution is sub-optimal
(1/n use of total available data)
Better solution: parametrize the effect of M in the classifier [15]. The training data may be constructed
as a mixture of different M hypotheses if M is included among the features.

 note that one must decide what to do with the background (for which M is undefined).
 also note: this is not a Bayesian technique – the chosen admixture is not a prior on M, 
and it only affects the power of the classifier.

The advantage is that the network may meaningfully classify events for M* values not seen during
training. An interpolation of the score for different mass hypotheses is also possible.
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Example: Xtt in ATLAS

The technique proposed by Baldi et al. in[15] was tested
with DELPHES[16] simulations, searching for a ttbar
resonance within non-resonant ttbar backgrounds. 
Random M values were used for the background in the 
training. 

The network provides different scores for same features
x, depending on the value of the nuisance M.

The parametrized network was shown to perform as
well as individual NN on the mass points at which the 
latter were trained, but better than a NN trained on a 
mixture.
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Calibrated discriminative classifiers (*)
Cranmer et al.[17] have produced a general proof of the viability of parametrized classification, by 
studying approximations of the likelihood ratio.
They showed how the likelihood ratio of two PDFs can be kept invariant under dimensionality
reductions, if the transformation is itself monotonic with the LR. I.e.,

𝐿𝐿𝐿𝐿 𝑥𝑥, 𝜃𝜃0,𝜃𝜃1 = �
𝑥𝑥

𝑝𝑝𝑋𝑋(𝑥𝑥|𝜃𝜃0)
𝑝𝑝𝑋𝑋(𝑥𝑥|𝜃𝜃1)

= �
𝑥𝑥

𝑝𝑝𝑈𝑈(𝑢𝑢 = 𝑠𝑠(𝑥𝑥)|𝜃𝜃0)
𝑝𝑝𝑈𝑈(𝑢𝑢 = 𝑠𝑠(𝑥𝑥)|𝜃𝜃1)

provided that U=s(X) is based on a parametrized function s which is monotonic with the ratio 
pX(x|θ0)/pX(x|θ1).

Since the Neyman-Pearson lemma proves that the LR is the most powerful test statistic for tests of 
simple hypotheses, one tries to construct classifiers that approximate it, and the above equivalence
proves quite effective as one may construct s(x) as a discriminative classifier (NNs will work well, as
they provide smooth variation of s(x) as x varies).
The map s is one-dimensional, so evaluating p(s(x)|θ) is a much simpler task than evaluating p(x|θ). 
Histograms or KDE algorithms can be used. A calibration is necessary to approximate the probability
ratio given the estimate of s(x); examples show this can be done and the technique is effective.
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5. Decorrelation, penalization, adversaries

When a direct parametrization of nuisances proves impractical to implement, there
are several alternatives. We can broadly lump them into three classes:

1) Techniques that operate a preprocessing of training data to reduce or remove
the dependence of classifier score on the nuisance parameters

2) Construction of a robust optimization objective for the classification task, by 
penalizing the loss such that it becomes insensitive to α

3) Use adversarial setups to achieve the above result

In what follows we look at a few examples of these methods, to gauge their
applicability and merits
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Mass decorrelation
The most important use case of the first technique addresses the issue of keeping the background 
mass distribution unbiased, in signal searches in a mass spectrum.

The simplest way to avoid a reshaping of the mass PDF of background events is called
planing[18,19]. One may implement it by pre-selecting training samples for S and B such that they
have the same PDF on the variable to be planed. But this is sub-optimal.

Better strategy for planing: weight each training event with w(M) as follows: 

For signal, w(Mrec) = 1/pS(Mrec)
For background, w(Mrec) = 1/pB(Mrec)

The weights enter the calculation of the loss during training, but are not used in validation or 
testing.

Planing is more effective than its simplicity would suggest! (some evidence is shown later)

Limitations occur when other event features indirectly inform the classifier on the value of the 
planed variable, when it carries discriminating power.
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Mass decorrelation in boosting, reprise
Another way to preprocess the data before a NN, to decorrelate the classifier output 
from the jet mass, is to use PCA on the NN inputs[18]. 
In the considered case the 17 inputs were a basis set of n-subjettiness variables, and 
the data was binned in jet mass and pT, PCA acting on each bin separately.
The technique was tested on searches for HAAbbbb and HWW qq’qq’ with 
several mass hypotheses.
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The discriminants are shown
to preserve the mass 
distribution and are effective
also outside of the range of 
masses where they are 
trained (grey areas)



Modified boosting and penalized methods

Searches for low-mass resonances in Dalitz plots provide a 2D use case: striving for 
uniform selection efficiency in the plane. 

Uboost[22] relies on BDTs to improve signal purity, and a boosting technique to 
avert biases built on AdaBoost[23], a standard technique for boosting based on 
increasing weight of misclassified events during the DT generation sequence. 
Uboost has the following rule:

where

is the AdaBoost weight (γ=+-1 for signal and background, and p is the prediction of 
the previous iteration), and u is the inverse of the density of signal in proximity of 
the tested event, computed with kNN (u=1 for background).
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(Background: what is a Dalitz Plot?)

When studying decay reactions such
as AB+C+D, one may construct pairs
of independent kinematical variables, 
e.g. connected to the pairs (BC), (BD)

The presence of structure in the 
scatterplots indicate that the reaction
proceeds through an intermediate 
state, AXDBCD
The analysis of a Dalitz plot requires a 
good uniformity of the «non 
resonant» background events to put 
in evidence the structures
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Uboost performance
Uboost was shown to work well in the considered application, despite
the considerable CPU cost (due to use of kNN method and 
consideration of different efficiency values in constructing the BDT 
score). 
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E.g., here are the maps for 
average selection efficiency of 
70% obtained with a regular BDT 
and with Uboost.
Almost no loss in performance 
was seen, while achieving the 
wanted uniformity.



Building on Uboost (*)

The aij matrix contains information on the density of events
of the same class around event i by setting aij=1/k for them, 0 
otherwise. 
Rogozhnikov et al.[24] have investigated a number of variants
of this concept for an application targeting the Dsπ+π-π-

signal, finding good results and better generalization vs 
training in different regions of the mass of the D candidate 
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The thread started by Uboost was followed by a number of other studies. An alternative 
also targeting Dalitz analysis is kNNAdaBoost[24], which achieves the uniformity of 
acceptance in the Dalitz variables by modifying the weights, including information on 
the classification probability of k nearest neighbors to each event:



DisCo
Kasieczka and Shih recently published[25] a method to decorrelate a nuisance parameter by 
incorporating a «distance-correlation»-inspired regularization term in the loss of a NN. 

One first defines a distance covariance

where |.| is the Euclidean norm, and (X,Y), (X’,Y’), (X’’,Y’’) are i.i.d. pairs from the joint PDF. The so-
named distance correlation, defined as

is then a [0,1] measure, null only if x,y are fully independent. Crucially, it is differentiable and 
computable with data samples, so it can be included in the loss function (for label y and mass m) with 
a penalty regularization factor λ

L = Lclass (y, ytrue) + λ dCorr2 (m, y)
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 𝑋𝑋,𝑌𝑌 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑋𝑋,𝑌𝑌)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋,𝑋𝑋 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑌𝑌,𝑌𝑌)



DisCo action
Kasieczka and Shih test DisCo on W-boson tagging in simulated ATLAS data, 
reweighted to have a flat pT distribution. They show that a NN discrimination
of W-like jet images produces a biased mass distribution for QCD 
backgrounds, while DisCo preserves the QCD mass shape (bottom left).
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Signal and background 
before selections



Comparisons
A comparison of the background 
rejection (x axis) of different W 
taggers, retrofitted with decorrelation
methods (planing, adversarial NN, 
and DisCo regularization) shows that
DisCo performs well. Surprisingly, also
planing seems to do a decent job in 
this particular task. 

DisCo regularization works well with 
complex image-based CNN setups, 
too.
More studies in other setups are 
advisable… 
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Above: a measure of decorrelation (inverse of Jensen-Shannon
divergence between QCD bgr before and after 50%TPR selection) 
as a function of background rejection at 50%TPR.



Another penalization scheme
Wunsch et al.[26] more directly target situations when the nuisance
parameter is a systematic source liable to modify the PDF of the observable
features of data. They create a differentiable model of the NN-transformed
features x by Gaussian smoothing of their histograms:

Above, k is the bin index, and the sum runs on events in a batch; f(x) is the 
NN output for x. The loss of a classifier may then be complemented with a 
term describing the difference between smoothed PDF of NN output for x 
and x+α:

11/25/2020 IT Lisboa T. Dorigo, Systematic uncertainties in supervised classification 44



Examples
The method is proven to effectively decouple the classifier output from the 
systematic source in a synthetic 2D Gaussian example (left and right, bottom). It also
works in Higgs Kaggle challenge data, where the systematic is the momentum scale 
of the tau leptons (right). 

For the latter, the penalization reduces the dependence on significance on 
systematic source, but it does not increase the significance of the observable signal
(top), so the advantage of the technique should still be proven in other situations.
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Adversarial setups
Adversarial setups attacking the decorrelation problem
should be considered an extension, if not the logical next
step, of the penalized loss methods seen above. 
• The loss is still the combination of two parts – a BCE 

term and a penalization contributed by the adversary, 
modulated by a hyperparameter. 

However, in adversarial settings there is a symmetry
between the two competing tasks. 

An issue introduced is the convexity of the objective, 
which is guaranteed with positive penalties, while in ANN 
one searches a saddle point of the two competing losses.
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Above: minimax routines (originally
coming from Nash theory of equilibrium) 
were specialized to teach machines play 
chess.  
In the shown position (T. Dorigo, 1989) 
white to move wins. If you don’t want to 
follow the lecture you may try solving it, 
but bear in mind that you will need to 
apply backward propagation for that! 



Where the idea comes from
Adversarial architectures were investigated in computer science to achieve domain 
adaptation of discriminative classifiers[28][29] much before they were adopted in HEP.

• General issue: training and test data are not drawn from same PDF

may arise when they come from different domains, or if the simulation (used for training) is
imperfect model of (real) test data.

• Other common situation in DA is that problem is semi-supervised (labels not available for all test 
data)  let’s leave this for later

Solutions usually involve finding a data representation that is maximally insensitive to their
source

 task an ANN to learn such representation, while competing with the one
that tries to separate labelled classes of training data[30].
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Learning to pivot

The first use of ANNs to achieve robustness to systematics in HEP comes from the 
work of Cranmer, Kagan and Louppe[31] who sought pivotal[32] classification scores
f(x;θf): ones independent on nuisance α (θf are the classifier parameters).
The adversary, with parameters θr , tries to guess α from f(x;θf), and the loss is defined
globally as

The minimax solution of this problem is reached for

A convergence of the above constrained problem cannot be guaranteed in general; a 
hyperparameter λ can be used to tune the adversary term.
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Pivoting ANN architecture

The architecture is a series of two discriminative classifiers: the 
adversary tries to model p(z|f(x)), and the global loss forces this toward
the unconditional prior p(z). When this happens, f is independent on z.
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Experiments with the pivot
The graphs below describe the same synthetic example we saw earlier
from Wunsch et al., although the publication order is inverted.
Left: a standard NN produces f(x) depending on nuisance Z (the vertical
location of the signal 2D Gaussian PDF)
Right: the pivoting setup makes f(x) independent on Z.
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LHC example

The technique is
demonstrated on boosted W 
tagging in ATLAS, with pile-up 
being the nuisance (Z=0 no 
pileup, Z=1 PU-50 conditions).
As in this case finding a f that
is pivotal while minimizing the 
loss L is probably not possible, 
one must optimize a suitable
objective (AMS) WRT the 
hyperparameter.
For a suitable choice of λ (10) 
the AMS reaches a higher
maximum 
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(Background: Pile-up at the LHC)

Pile-up is the effect of having dense 
packets of protons colliding every
25ns in the core of ATLAS and CMS: 
one gets tens of independent proton-
proton collisions producing
overlapping signals. 

When one of these collisions is
interesting, all others degrade the 
extractable information  complex
pattern recognition and regression
issues
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Above: identified collision vertices (yellow) during
a bunch crossing in CMS. In green are (some of) the 
measured charged particle tracks



Further developments / 1

The adversarial setup seen above has been tested and compared 
with other decorrelation techniques[33] in boosted jet tagging. The 
dependence on jet mass is effectively absorbed by the pivotal 
properties of the ANN (top). 

Authors further consider the full effect of the reduced mass 
dependence on background shape deformations, extracting the 
resulting significance (bottom) for a NN, the ANN, and subjettiness
selection with and without the analytical decorrelation already 
discussed before, for different levels of systematic uncertainties on 
the QCD background shape.
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Further developments / 2 (*)
Estrade et al.[34] compared the pivot ANN technique of Louppe
et al. to a data augmentation technique and to a tangent 
propagation method, using the Hττ Kaggle challenge data with 
a systematic uncertainty added on the tau jet energy scale, 
similarly to[28].
The systematic is sampled from a Gaussian (1%,3%,5% nuisance) 
in training data, but is fixed in test data.
• Data augmentation: the training data is mixed at different

values of the nuisance – rationale is that with sufficient data the 
NN should be able to learn the manifold

• Tangent propagation: consider the systematic as a coherent
geometrical transformation, f(x,α), differentiable, and the 
model is regularized by partial derivative of NN score WRT 
nuisance parameter.

Results are not conclusive, only seem to favor ANN over plain NN
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Further developments /3 (*)

• Blance, Spannowsky, and Waite[36] use ANN as a preliminary step to use of 
autoencoders (AE) for unsupervised classification, to reduce impact of 
systematics in the task. Their goal is to search for new physics without being
dependent on Monte Carlo (MC) simulation mismodeling. 

• They smear MC reconstructed objects and use ANN to desensitize AE response to 
smearing; use case: Xtt resonances. Show that ANN+AE provide reasonable
solution

• Englert et al.[37] consider theoretical uncertainties, which affect the data in a 
more coherent way than other nuisances do. Large theoretical scales
uncertainties affecting H+jet production at high pT are considered. Sensitivity to 
the process can be retained by training an ANN to make robust classification WRT 
the scale.
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6. Semi-supervised approaches

Weakly-supervised and semi-supervised learning techniques have been
proposed to close the gap between learning from simulated and real data:

• Simulated data are fully labeled, but they are often an imperfect model
• Real data are unlabelled or only partly labelled

The approaches strive to learn useful models from partial, non-standard, or 
noisy label information. They are thus potentially useful for reduction of the 
impact of certain systematic uncertainties in HEP problems.

The challenge is that these methods typically rely on assumptions (known
fractions, independence of PDF of features) that are hardly met in practice. 
We see a few examples in what follows.
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LLP (Learning from Label Proportions)

LLP is a weak-supervision approach that may allow the training on real data (Dery et 
al.[38]). 
While in a full supervision setup one tries to find a score fulfilling

(l is a loss, e.g. mean squared error, and t is the target label), in LLP one only exploits 
knowledge of the fraction of each label in training data:

The problem is thus very ill-constrained, but a minimization of the loss can still be 
performed with batches of data of different proportions, as long as the PDFs of the 
features do not change in the batches.
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(y=average label)



LLP proof of concept

Using a 3-layer NN and synthetic data 
with class proportions between 0.2 and 
0.4, with three features, allows LLP to 
perform equally as well as a fully
supervised method.

The range of performances, due to 
randomness of the inputs, decreases
when training data has wider range of 
class proportions (Δy on x axis, bottom). 
The overall performance also increases
with the diversity of input samples.
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Test of LLP on Q/G discrimination

Authors of [38] argue that quark/gluon jet 
separation lends well to this method, as a priori 
fractions in different physical processes are 
«well estimated» from QCD+PDF theory – while
shapes may be harder to simulate (systematic
from modeling).

12 different samples are obtained by binning in 
dijet pseudorapidity difference (quark fractions
vary from 0.21 to 0.32).

Distortion of real data is mimicked by modeling
previous studies; then a comparison with a full 
supervised classifier shows 10% advantages
(lower G efficiency for given Q efficiency)
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CWoLa – classification without labels
One limitation of LLP is the need to precisely know the class labels of training subsets. A 
technique by Metodiev et al.[39], CWoLa,  overcomes this by using as labels the 
identifiers of the different mixed samples.
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CWoLa is based on the fact
that the optimal binary
classifier is a function of 
the density ratio between
the components, so the 
discrimination of the two
mixed samples works also
for pure classes:



CWoLa at work

Tested on the same problem of Q/G discrimination, and with a NN as classifier, the 
CWoLa concept was shown to perform as well as a NN working on pure classes if
trained on classes with 80%-20% class proportion split
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Of course the algorithm still
requires labelled data for 
tests of performance and 
choice of operating point, but
the proof of principle is
encouraging.



7. Inference-aware approaches

What we have seen so far are ways to cope with the imperfect knowledge of 
the generative model of our data, which affects the power of our simulation-
based classification tasks.
There are now solutions that try to move away from the proxy classification
task, and address directly the optimization of simulation-based statistical
inference.

 This realigns task and objective
The area of research[42] is sometimes called «Likelihood-free inference»

Here we discuss how some of these inference-aware approaches may be 
used to tame nuisance parameters in HEP.
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Estimates of the likelihood ratio

11/25/2020 IT Lisboa

As discussed earlier, a reparametrization and approximation of the likelihood ratio for all
possible pairs of relevant parameters θ0,θ1 of a generative model p(x|θ) may allow[17] to 
efficiently solve the problem of inference in the presence of nuisances. 
The method may be too CPU intensive to be practical in high-dimensional cases, as large 
datasets are required to approximate the LR. 

A number of techniques were published by Brehmer et al.[44-46] to evaluate the LR in a 
data-effective manner, using information from the simulator to augment the training data.

These techniques may collectively be addressed as «learning efficiently from the 
simulator».
• A meaningful discussion of the wealth of ideas deployed for this would require a couple

of lectures by itself
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Inference-aware summary statistics

A complementary family of techniques to “likelihood-free inference methods” tries to construct 
summaries that are better aligned with inference goal, once nuisance parameters are accounted for.

Typical procedure in HEP: 
1. “optimize” a classifier f(x) to best distinguish S(θ) from B (e.g., θ=σ, cross section of signal 

process), e.g. focusing on maximizing AUC or other figures of merit connected to observability 
of S (pseudo-significances)

2a. Choose operating point (e.g. cut on f), maybe accounting for variability of S and B PDFs, 
and perform a counting experiment on data above f cut; 

2b. Parametrize shape and fit for signal fraction, accounting for nuisances as shape variations
 In both cases, the optimization target (discrimination of S/B in absence of nuisances) is different 
from the true objective of the analysis (minimize uncertainty on parameter of interest)

For a realignment, we must inform the classifier of the effect of nuisances on the final 
measurement goal
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INFERNO (Inference-aware neural optimization)

Idea of P. de Castro and TD[49]: make the loss of a NN aware of what we really want to 
make of the NN output, and simultaneously inject in it a parametrization of nuisances, so 
that a loss minimization perfectly matches the (stat+syst) variance minimization of the final 
measurement.
The NN constructs summaries that are differentiable WRT the nuisances, and this property 
is propagated to the inference step, such that a global minimization can be performed.
NN parameters are optimized by SGD within an AutoDiff framework (in TensorFlow); a 
PyTorch implementation is in final phase of development by G. Strong.

Problem 1: need to produce differentiable map of nuisance effect on features       
 Calls for custom solutions in HEP problems of different complexity

Problem 2: how to estimate the final variance on the parameter of interest?          
 Use the inverse of the Hessian matrix of a likelihood constructed with the 
summary statistic provided by the NN
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INFERNO structure
Βlock 1: A simulator or an approximation of it is used to sample observations given parameters θ
Block 2: NN with parameters φ produces outputs y
Block 3: A one-dimensional summary statistic, as a smoothed version of y, is produced by softmax
Block 4: An Asimov likelihood is constructed with the summary (e.g. a histogram of Poisson counts), and 
used to get Hessian matrix, yielding expected variance on parameter of interest
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Autodiff allows to update 
the NN parameters given the 
value of the variance, to 
navigate with SGD to 
the optimal solution 



INFERNO details
Given a sample of data D, the output of the NN (of parameters φ) is a set fi(x|φ), with which we 
may construct a non-parametric binned likelihood by simply counting how often the data have 
maximum output on the ith node:

and using the summary t to write 𝐿𝐿 𝐷𝐷 𝜑𝜑 = ∏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡 𝐷𝐷 𝜑𝜑 |𝑡𝑡(𝐺𝐺𝑀𝑀𝑀𝑀;𝜑𝜑)
where GMC is the generated simulation used for calibration. 
The argmax is non-differentiable, so we can approximate the summary with the softmax
operator:

where τ is a temperature HP.
We may finally construct an Asimov likelihood, whose maximization will provide the true
parameter as MLE:
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(n/l factors account
for different fractions
of S and B simulation data)



INFERNO details / 2

The Asimov likelihood we have written,

is maximized by the value of simulation parameters θΜC used to generate the data GMC.

We may then take the second derivative, expanded in θ around θMC, of the Asimov 
likelihood and interpret it as the Fisher information matrix,

whose inverse, by the Cramer-Rao lower bound, is a lower limit of the covariance: we may
then use it as an estimator of the variances of our parameters of interest in the loss
function, i.e.
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INFERNO pseudo-code (*)
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INFERNO synthetic example

In [49] a simple example with 3 nuisances affecting the background of a 2-
component mixture problem is considered:

r shifts the background mean, λ changes the 
slope, and b is background normalization.
The model is then

and the optimization of the NN is tested with
several benchmarks, releasing nuisances (see below)
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Signal

Background



INFERNO results

INFERNO consistently outperforms the NN and has 
performance which approaches that of the analytical 
likelihood result.
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INFERNO challenges and status

The structure of INFERNO is complex, but the minimization of the loss is relatively 
straightforward

Main issue: how to model HEP nuisances and effect on observations: must e.g. 
transform input features, interpolating simulated observation weights, or 
interpolate histogram counts (last ditch).

An application to a real HEP analysis is underway through the work of Lukas Layer 
(INFN-PD) on CMS open data (a Run 1 top cross section measurement)
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Recent developments
Two recent works have built on the idea of INFERNO for HEP applications. 
1. Wunsch et al.[52] use a single-output NN to construct a Poisson-count likelihood instead of a 

softmax, and make the histogram differentiable by smoothing it with a Gaussian kernel. 
2. Heinrich and Simpson[53] use “fixed-point differentiation” to compute gradients of a profile 

likelihood, aiming at directly minimize the expected upper limits on sought processes with CLs. 
Also in their work (NEOS) the modelling of the nuisances is restricted to histogram 
interpolation.

In addition there have been 
• a proposal to use the AMS in a single bin counting experiment including a single systematic in the 

loss function[54]
• A variation of BDT training (QBDT) targets directly signal significance with an approximate model 

of nuisances[55].
The field is in rapid evolution and new ideas are possible. The bottomline is that if one can realign 
the MVA target to be the final desired goal, results will be close to optimal, in the sense of 
maximizing the use of the available information.
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8. Summary

A wide arsenal of techniques that try to remove the impact of systematic 
uncertainties in supervised classification for HEP problems has been 
developed in recent years
• The focus in many cases is achieving a decorrelation of salient features (jet 

mass), to maximize discovery significance
• Here, several methods successfully achieve the desired goal, with minor 

performance loss

The real issue is however how to minimize the effect of systematic 
uncertainties whatever their origin, with tools of more general applicability
• Important steps have been made but the topic is still an active area of 

research in ML
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Thank you for your attention!
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And what if there is no signal ?

If we do not see a signal we can exclude the 
new physics model

• More often the model is composite, so we
exclude a range of values of the relevant
nuisance parameter

• Often this is, again, the mass of the particle

• We may, e.g., derive lower limits on the 
particle mass from upper limits on the signal
strength, by comparing those to a theoretical
model

Luckily, even a lower mass limit is useful information, worth a publication!
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Neal’s solution (*)
In [12] Radford Neal proposes a recipe to construct summaries for both the nuisances and the observed
features, using e.g. a neural network. 
One trains the NN to discriminate S from B given values from the nuisances α, taken from their prior. If
the NN is constructed to reduce the dimensionality of the inputs, the probability of signal and 
background as seen by the classifier can then be written

P(S|x,α) = FS(f1(α),f2(x))
P(B|x,α) = FB(f1(α),f2(x))

where S1 = f1(α), S2 = f2(x) are the two summarized forms of nuisances and event features.
If the above P can be parametrized, and the mappings f1, f2 do not lose too much information in the 
compression, one may obtain approximate sufficiency. What is needed is a regression model r(x) that 
approximates the nuisances α given data x. One may then obtain P(S,B) = FS,B(f1(r(x)), f2(x)) if the models 
are good enough, and use it for classification.
This scheme is untested, but has become the basis of a wide range of studies of likelihood-free inference
methods. We discuss them later.
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The «Learning to Pivot» algorithm (*)
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CWoLa applications to LHC data (*)

Two recent applications of CWoLa:
1. CMS used it in a recent ttbb

measurement[56]
2. ATLAS used in a search for resonances 

ABC in dijets[57], where the plane of 
two fat-jet masses is scanned by weak 
supervised NN learning where training 
data are extracted from sidebands in Mjj in 
8 bins (right, figure from F. de Almeida 
Dias talk at Anomaly detection mini-
workshop[58])
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