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» Phenomenal capacity to extract information from complex high-
dimensional observations.

» In essence: non-linear, compositional feature learning.

» “Right” balance between model-based and data-based
estimation, using simple algorithmic principle (I1st order optim).
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» Noise-free setting: 1; = f*(z;) for some f* € L*(R™,dv).
» Model: f(2:0),©ecD. F:={f(-,0);,0 € D}.
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» Data: {(xz;,y;)} ~v e M(R™ x R).
» Noise-free setting: 1; = f*(z;) for some f* € L*(R™,dv).
» Model: f(2:0),©ecD. F:={f(-,0);,0 € D}.

» Loss: R(f) convex, e.g.

/\f OPdu(z) . feF

» Empirical loss:

RU) = [ 1) - £ @)Pdota) = 1 3 1f @) = £ @)
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SUPERVISED LEARNING SETUP

» Empirical Risk Minimisation: Fs=A{feF|fll <}

S

() Find f such that R(f) < minser, R(f) + €.

» Basic decomposition of error: [Bottou & Bousquet]
R(F) — inf R(F) < inf R(f)— inf R 2sup [R(f) = R
(f) Inf (f)_flgﬂ (f) Inf (f)+ Jgf\ (f) =R+ e
D e e — S — optim. error
approx error statistical error

» Main challenges in High-dimensional ML:

» Approximation: Functional Approximation that is not cursed by input
dimensionality.

» Statistical: Statistical Error handled with uniform concentration bounds.

» Computational: How to solve (*) efficiently in the high-dimensional
regime?
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THE CURSE OF DIMENSIONALITY

» “Classic” functional spaces do not play well with this tradeoff.

» F=Af: R? — R is Lipschitz} is too big: the number of
samples required to identify f* c J uptoerroreis Q(e‘m) [von
Luxburg & Bousquet].

» F="H>P . Sobolev spaces. Minimax rate of approximation is
cursed unless s > d/2 . only very smooth functions are allowed.

» Which functions can be provably learnt in the high-
dimensional regime?

» ... with neural networks (and using gradient descent)?

» ... with deep neural networks?

» ... with deep structured neural networks?




THIS TALK

» Simplest instance of nonlinear feature learning: shallow NNSs.

» Gradient-descent Optimization analyzed as measure dynamics.
Retains non-linear essence with Mean-field global convergence
guarantees.

» Towards Finite-width guarantees by CLT and fine-grained analysis
of ReLU activations.

» Beyond Shallow Learning
» Depth-Separation for ReLU networks
» Depth-Separation and Learning for Symmetric Functions

» [Mean-Field Dynamics on zero-sum two-player games].



SINGLE HIDDEN-LAYER NEURAL NETWORK

y f(2;0) = Z P(z;05) isasum of ridge functions:
j<n

/
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n ‘neurons’

» Three basic scaling quantities:

» I, datapoints, d input dimensions, 1 neurons.
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SINGLE HIDDEN-LAYER NEURAL NETWORK

e f@:0) =S @l 6))
: :\z)zf(x;@% ; y
. . 5(z;0) = ap(x; 2),
wGRd\: p(x;2) = o({x,w) +b),

n ‘neurons’

» As n — oo, for appropriate base measure v € M(D) , we
have the integral representation

f(z) = /D (@, 2)g(2)7(d2).

» Universal Approx: shallow representations are dense in C(R%)
under uniform compact convergence iff o is not a polynomial
[Barron, Bartlett, Petrushev, Lehno, Cybenko, Hornik, Pinkus].

» What are the associated functional spaces?
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» Consider first 70 to be a fixed probability measure on D .
Fo = {f R = R; f(x) = / p(x,2)g(2)po(dz) and g € L*(D, duo)}
D

» F2 is a Reproducing Kernel Hilbert Space, with kernel given

by k(z,z") :/gp(x,z)gp(x/,z)ug(dz) [Bach’17a]

» Learning in these RKHS is well-understood (kernel ridge
regression), with efficient optimization algorithms.
» Random feature expansions [Rahimi/Recht’08, Bach’1/7b] .

» However, they are cursed by dimensionality: only contain
very smooth functions (derivatives of order O(d) must exist).

» Kernels arising from linearizing NNs recently studied [NTK, Jacot et
al, Arora et al., Mei et al. Tibshirani, Belkin, Bietti & Mairal].
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VARIATION-NORM SPACES

[Bengio et al’O6, Rosset et al.’ 07, Bach’1/]
» Alternatively, we can consider

Fi={ R S Rif@) = [ ol 2nld lulre < 0.

Fy = iﬂf{HuHTv;f = /%ﬁdﬂ}-

» Also known as Barron Spaces [Barron’90s, E et al "19].

» F, is a Banach space, with norm || f]

» Fo C F1(by Jensen’s inequality), and JF; contains sums of
ridge functions.

» A single neuron go(x, Z*) belongs to /7 but not JFa.

» Adaptivity to low-dimensional structures via feature learning.

» How to perform optimization and approximation in these
spaces?
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J<n



NEURAL NETWORKS AS PARTICLE INTERACTION SYSTEMS

» No noise on targets: f* ¢ Ly(R% dv): target function.

» Single-hidden layer architecture

1
O =(01,...,0n), f(2:0) = 52%0(%%) , 0 = (aj,2;) e RxD.

J<n
» With Square loss, fi-penalized ERM becomes
£(0) = Es[|f(x;0) — f*[*] + AV(©) = 3" a1 (g
1<n
—C——ZF +$ZU 0;,60,)
J<n 7,3’

F(0) = als[f* (x)p(x,0)] — Aal®, U(0,8') = ad’Es[p(z, 2)p(, 2')]

» Scaling in 1/n contrasts with 1/4/n , which leads to lazy or
NTK regime [Chizat et al., Jacot et al., Arora et al, etc].
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EFEULERIAN PERSPECTIVE [Rotskoff, EVE, NeurlPS18]  [Chizat, Bach, NeurlPS"18]

» Taking step-size of gradient-descent to zero, we have a
gradient flow in parameter space:

QZ:—VQ,LE(Ql,,Hn),Z:1’/L

» Non-convex functional, generically hard [Shamir et al., Venturi et al]

» Eulerian perspective: Rewrite the energy in terms of the

empirical measure 1
pn(t,0) = n Z 59j (t)
J<n
» The regularised loss becomes

E(p) = —2 / F(6):(d6) + / / U6, 6')u(dB)u(de’)

» quadratic since we consider mean-squared loss.

» Dynamics in the space of measures?
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CONTINUITY EQUATION [Rotskoff, EVE, NeurlPS18]  [Chizat, Bach, NeurlPS18]

» Particle gradients correspond to evaluating a scaled velocity
. . n
fleld: §v918(@) — vv|9:9@' 7W1th

V(O;u)=—F(0) + / U(6,0)u(dd") .

» For general time-dependent measures U, their evolution
under a time-varying velocity field V(0; u:) is given by a
continuity equation:.

O = div(peVV) , p(0) = ', with

voe (@, o ( [om@s)) = (6. 9V ().
» Gradient flow of & for the Wasserstein metric W5 in P ()
» Exact description of particle gradient for atomic measures.

e
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» Consider the evolution of the particle system as n grows.

3 u,ﬁ”’) . state of the system after time t, with6;(0) ~ i iid.

Theorem: R,EVE,18],/CB’18],[MMN’18|,[SS’18§]

For any fixed ¢ > 0, u,ﬁ’”’) converges weakly to u; as

n — oo, which solves O;u; = div(VV ;) with pg = p.
» Dynamics and sampling commute in the limit (when it exists).
» Convergence properties of this PDE?

» LLN result. What is the scale of the fluctuations?
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» Inspired from [Wei et al."18], we consider the followihg
unbalanced modification of the dynamics:

(9tut — le(MtVV) — OzV,ut -+ oz‘_/,ut , with

a>0,V: = /V(@),u(dé’).




UNBALANCED TRANSPORT B
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» Inspired from [Wei et al. 18], we consider the following
unbalanced modification of the dynamics:

Oy = div(pe VV) — aV g + oV , with
a>0,V: = /V(é’),u(dé’).

» For all i, we verity that /V(@)M(dé’) —/f/u(de) =

» Mass is preserved. In particular, for atomic measures, population is
constant.

» Full PDE corresponds to gradient flow for the Wasserstein-Fisher-Rao
metric [Kondratiev et al.], [Chizat et al.] (aka Hellinger-Kantorovich).

» Admits easy discretization using birth/death processes.

» Wasserstein-Fisher-Rao dynamics can also be used to study equilibria
in zero-sum two-player games [D-E, J R, M,B’20].
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the energy:
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» Interaction kernel U (6, 0") symmetric and positive semi-
definite, twice differentiable.

» U(0,0")and F(0)such that energy £|u]is bounded below.

» The only fixed points of the dynamics are global minimizers of
the energy:

» We avoid the fixed points of the Liouville PDE which are not
minimizers of the energy VV (#) = 0 for 6 € supp( ).

» Extends results from [Chizat & Bach] beyond homogeneous models.

» How to leverage this mean-field guarantee for finite data/units?
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» Minimisers of £[u] can be efficiently discretized if f* € Fi:

» Monte-Carlo approximation bounds ||fn,t — Jt

B n

» Generalisation bound: Let /47, be a minimiser of the empirical
(reqgularised) loss, and f;, = /agp(z)uz(da,dz).

» Based on Rademacher bounds for F7 [Bach’17]

» Terms R1,R2 only depend on activation function. Not cursed by
dimensionality using e.g. RelLU.
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DYNAMIC CLT FOR SHALLOW NEURAL NETWORKS

» This suggests A ~ L_l/Q, n 2 V'L  to obtain an efficient
learning algorithm in /.

» However, previous Monte-Carlo bound is static. if
n 1 o0
=23 ai(e(z(1) 4 (a5(0),2(0)) ~ po did,

J
we need to control Hft(n) — /CLSO(Z)Mt(dCL, dz2)|:

» Extends finite horizon CLT bounds from [Braun & Hepp, 70s] (also
[Spilopoulos’9, De Bortoli et al’20]) using Volterra systems.
[Chizat'19] establishes zero fluctuations on sparse well-conditioned.

» Fluctuations vanish at the MC scale in the interpolating,
unregularised regime.
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» We verity scale of fluctuations at or below MC.
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TOWARDS FINITE-WIDTH GUARANTEES

» The previous CLT results are qualitative (limit of infinitely wide
networks).

» For shallow ReLU networks, we can strengthen to finite-width
guarantees by leveraging fine-grained RelLU structure.

» Leveraging results from [Chizat'19] we can provide guarantees for
finite width (albeit still exponential in dimension).

» ERM is reduced to a finite-dimensional linear program.

Datapoints

Projective Duality
Neurons

o Datapoints ® Neurons
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BEYOND VARIATION-NORM SPACES: DEPTH SEPARATION

» Functions in J1 are expressed as sparse sums of ridge
functions.

» Which function classes are not well approximated in /7, but
are approximable/learnable by deeper architectures

efficiently?

» [Eldan, Shamir, Telgarski, Safran, Daniely] construct oscillatory
functions with depth-separation. Provably require exp(d)
width for shallow model, but poly(d) for deeper neural
network.

» Constructions are inherently low-dimensional, e.g. f(x) = g(||x]]).

» Towards more “natural” function separations?
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BEYOND VARIATION-NORM SPACES: DEPTH SEPARATION

» Inhomogeneous case: Approximation lower bounds for piece-
wise oscillatory functions under heavy-tailed data distributions:

» Efficient approximation with depth-three RelLU networks.

» Homogeneous case: Approximation upper bounds for arbitrary
RelLU networks on the sphere with shallow networks:

» Rate is not cursed in d (but cursed in depth D and in€™ ).

» Open: close the gap between lower and upper bounds.
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» So far, we have considered the fully-connected setting with
generic d-dimensional inputs.

» Simple framework to study symmetries: permutation-invariant

functions: "
Feature domain f : {Q 7k = N} — R SU'Ch that

() C Rd f(:E,]T(l), e ,xw(k)) — f(iCl, Ce ,mk)Vk,Cﬁj cQ,mesy.

» E.g particle interaction systems, 3d point-clouds.

k
1
» Input Embedding into P(Q): (z1,...,2x) — u*) = - > ba,
=1

» Under appropriate regularity, fextended tof : P(Q) — R.
» Input domain is not-Euclidean, infinite-dimensional.

» Functional neural spaces?
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» A “neuron” is now a ridge function ¢(-,0) : P(2) = R

o(1,8) = ao (i, 8)), a € R, = Q= R, {1, ¢) = / o(w)p(du).

(2
» Input “weights” ¢ are now test functions.

» Shallow invariant neural network:
1 n
f(,©) = = ) aip(p, éi).
1=1
» Integral representation:

D = domain of test functions in {2,
P00 = [ elmonta) T e

» Different over-parametrised regimes as in fully connected
case?
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» Hierarchy of functional spaces for learning:

S = 1D = {¢:]l6]l5 <1}, f = / odx; IxllTv < oo b
. D y
S = 4D = {60l < 13,5 = | g Iy < oo
. D y
Sy = 4D = {:]16]5 <1}, f = / 09(6)dx0; 191l 2(D.axe) < oo}
D

\

» S5 C SS9 C &1 By Jensen.
» Universal approximators of symmetric functions.

» Implemented with two-hidden layer neural networks using
random feature kernel expansions:

First Layer Second Layer Third Layer
S1 Trained Trained Trained
So Frozen Trained Trained
Ss Frozen Frozen Trained




LEARNING UNDER SYMMETRY
» Hierarchy of functional spaces for learning:

S = 1D = (665 <1}, f = / odx; IxllTv < oo b
. D J

Sy = 1D = (65 <1}, f = / odx; IxllTv < o0 ¢
. D y

Ss={D=0ilollz. < 11,7 = [ po(6)ixoilgllzoane) < oo}

\

» Approximation lower bounds and generalization guarantees:

» Open: optimization guarantees.



CURRENT AND OPEN PROBLEMS

» Beyond Variation Spaces: Depth-separation

» What is the functional space associated to deep architectures
beyond feature selection? GD optimization in such space?

» Links with dynamical systems.

» Mean-field formulation is informative in the single-hidden
layer model.

» Extension to deep architectures (ResNet). Geometric networks
(CNN,GNN)?

» Polynomial finite width guarantees for typical instances?

» Beyond vanilla gradient descent (adagrad, etc.) ? Role of
time-discretization?



THANKS!
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» Wasserstein-Fisher-Rao dynamics can also be used to study
equilibria in games.

» Canonical setup: finding mixed strategies in two player zero-

sum game:
Ll 1] = / U, ) i () iy (dy)
X XY

X, ): compact spaces
L, Ly DPlayers strategy distribution {(z,y) smooth

» (mixed) Nash Equilibria: (., 1,,) such that
Vivw 5 Ll p] < Llpg, )]s Yy s Ll ] = Ll py] -

» Guaranteed to exist [Nash’50s]

» Algorithms to find them in the high-dimensional setting?
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OPTIMIZATION

» Wasserstein-Fisher-Rao dynamics can also be used to study
equilibria in games.

» Canonical setup: finding mixed strategies in two player zero-

sum game:
Ll 1] = / U, ) i () iy (dy)
X XY

X, ): compact spaces
L, Ly DPlayers strategy distribution {(z,y) smooth

» (mixed) Nash Equilibria: (., 1,,) such that
Vivw 5 Ll p] < Llpg, )]s Yy s Ll ] = Ll py] -

» Gradient dynamics:

oL 0L
— 1 —_— J— —d. _—
6’t,ux,t le(Va'ua3 ) ﬁt,uy,t IV(V 8,LLy)



BEYOND SUPERVISED LEARNING: COMPETITIVE
OPTIMIZATION

» Measure dynamics associated with particle gradient ascent/

descent;
oL 0L

(9 Uyt — div V— 8t,u Tt = —dIV(v—)
thta, i ( 3ua;) y o,
» We establish Global convergence to approximate Nash
equilibria using WFR.

» Similar propagation-of-chaos and robustness in high-
dimensions.

Log NI error

—10

Dimen®1 2 4 8 16 32 1 2 4 8 16 32
Langevin DA —@— Mirror DA —@— WFR DA
=® - 50x2 particles —@— 100x2 particles




