

JOAN BRUNA

MEASURE DYNAMICS FOR NEURAL NETWORKS

joint work with

Zhengdao Chen Jaume de Dios

Carles Domingo

Samy Jelassi

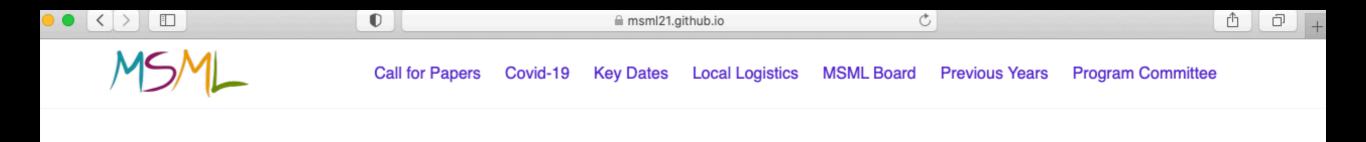
Arthur Mensch

Grant Rotskoff E.Vanden-Eijnden

Luca Venturi

Aaron Zweig

MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING

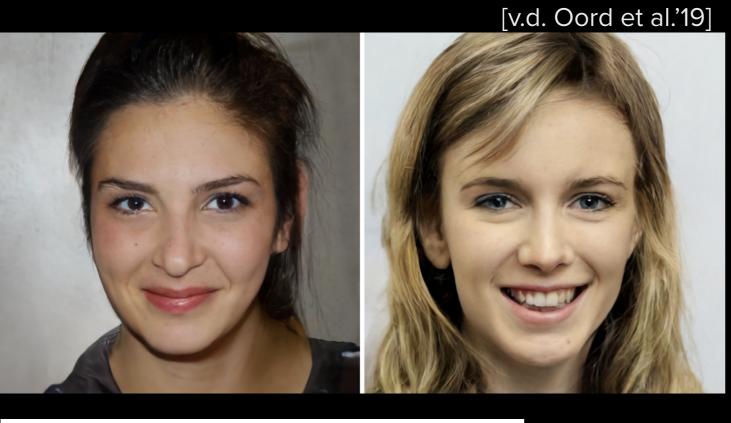


MSML21: Mathematical and Scientific Machine Learning

Forum - Rolex Learning Center, EPFL Campus Lausanne, Switzerland. Aug 16-19th, 2021.

- Deadline for paper submissions: dec 4th
- General Chairs: Joan Bruna, Jan Hesthaven, Lenka Zdeborova

DEEP LEARNING TODAY: EXPERIMENTAL REVOLUTION



BYOL (200-2×) ★ Sup. (200-2×) $Sup.(2\times)$ BYOL $(4\times)$ ImageNet top-1 accuracy (%) Sup. BYOL $(2\times)$ SimCLR $(4\times)$ BYOL SimCLR $(2\times)$ InfoMin CMC CPCv2-L MoCov2 MoCo SimCLR AMDIM

100M

Number of parameters

50M

25M

200M

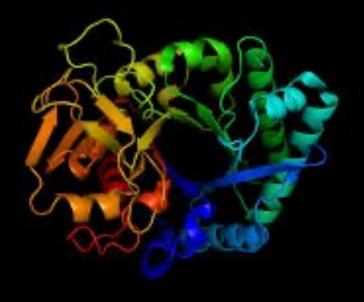
400M

[Grill et al'20]

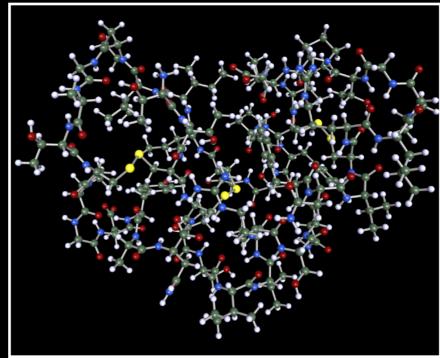
[He et al.'17]

DEEP LEARNING TODAY: EXPERIMENTAL REVOLUTION

Computational Biology

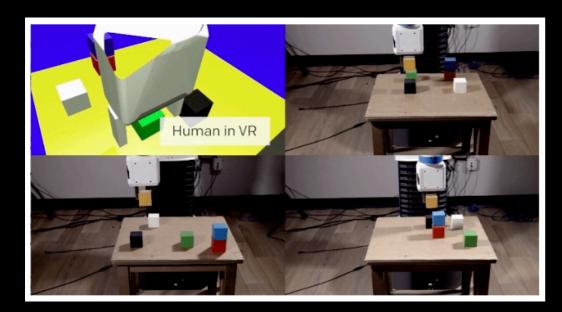


Quantum Chemistry

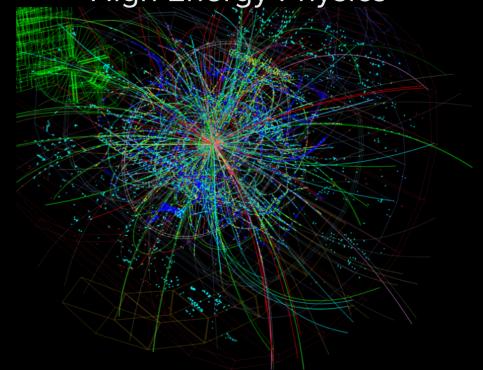


Games

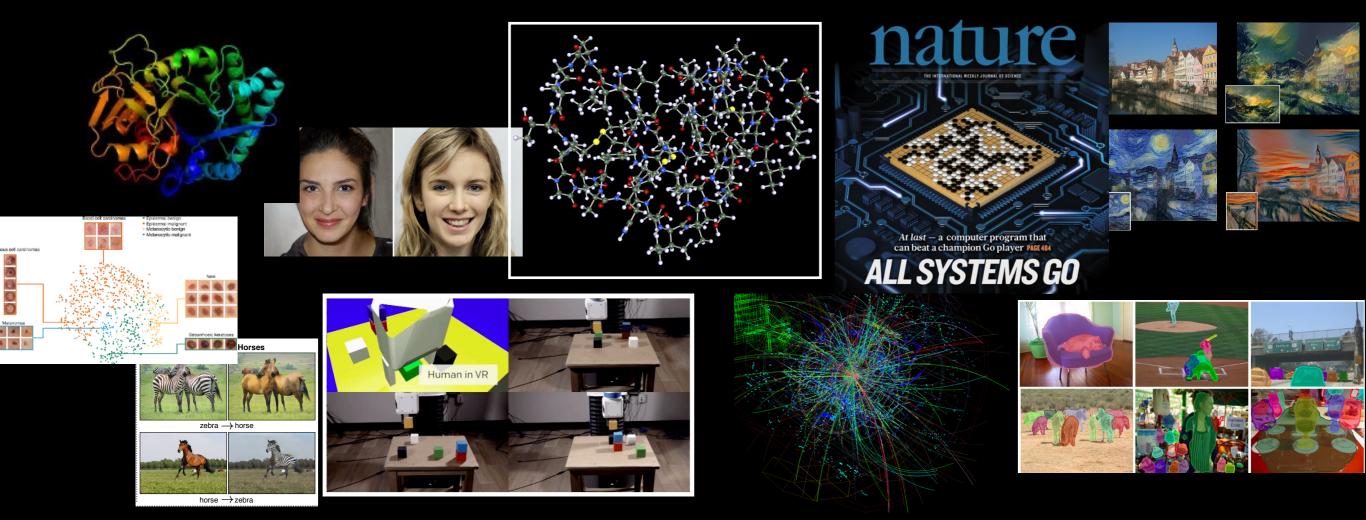
Robotics



High Energy Physics



DEEP LEARNING TODAY: EXPERIMENTAL REVOLUTION



- Phenomenal capacity to extract information from complex highdimensional observations.
- In essence: non-linear, compositional *feature learning*.
- "Right" balance between model-based and data-based estimation, using simple algorithmic principle (1st order optim).

- ullet Data : $\{(x_i,y_i)\} \sim \overline{\nu} \in \mathcal{M}(\mathbb{R}^m \times \mathbb{R}).$
 - Noise-free setting: $y_i = f^*(x_i)$ for some $f^* \in L^2(\mathbb{R}^m, d\nu)$.
- ▶ Model: $f(x;\Theta)$, $\Theta \in \mathcal{D}$. $\mathcal{F} := \{f(\cdot,\Theta); \Theta \in \mathcal{D}\}$.

- ▶ Data : $\{(x_i, y_i)\}$ ~ $\nu \in \mathcal{M}(\mathbb{R}^m \times \mathbb{R})$.
 - Noise-free setting: $y_i = f^*(x_i)$ for some $f^* \in L^2(\mathbb{R}^m, d\nu)$.
- ▶ Model: $f(x;\Theta)$, $\Theta \in \mathcal{D}$. $\mathcal{F} := \{f(\cdot,\Theta); \Theta \in \mathcal{D}\}$.
- Loss: $\mathcal{R}(f)$ convex, e.g.

$$\mathcal{R}(f) = \int |f(x) - f^*(x)|^2 d\nu(x) . \quad f \in \mathcal{F}.$$

Empirical loss:

$$\widehat{\mathcal{R}}(f) = \int |f(x) - f^*(x)|^2 d\widehat{\nu}(x) = \frac{1}{L} \sum_{l=1}^{L} |f(x_l) - f^*(x_l)|^2.$$

Empirical Risk Minimisation:

$$\mathcal{F}_{\delta} = \{ f \in \mathcal{F}; ||f|| \leq \delta \}.$$

(*) Find \hat{f} such that $\hat{R}(\hat{f}) \leq \min_{f \in \mathcal{F}_{\delta}} \hat{R}(f) + \epsilon$.

Empirical Risk Minimisation:

$$\mathcal{F}_{\delta} = \{ f \in \mathcal{F}; ||f|| \leq \delta \}.$$

- (*) Find \hat{f} such that $\hat{R}(\hat{f}) \leq \min_{f \in \mathcal{F}_{\delta}} \hat{R}(f) + \epsilon$.
- Basic decomposition of error:

[Bottou & Bousquet]

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{R}(f) \leq \underbrace{\inf_{f \in \mathcal{F}_{\delta}} \mathcal{R}(f) - \inf_{f \in \mathcal{F}} \mathcal{R}(f)}_{\text{approx error}} + 2 \underbrace{\sup_{\mathcal{F}_{\delta}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)|}_{\text{statistical error}} + \underbrace{\epsilon}_{\text{optim. error}}$$

Empirical Risk Minimisation:

$$\mathcal{F}_{\delta} = \{ f \in \mathcal{F}; ||f|| \leq \delta \}.$$

- (*) Find \hat{f} such that $\hat{R}(\hat{f}) \leq \min_{f \in \mathcal{F}_{\delta}} \hat{R}(f) + \epsilon$.
- Basic decomposition of error:

[Bottou & Bousquet]

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{R}(f) \leq \underbrace{\inf_{f \in \mathcal{F}_{\delta}} \mathcal{R}(f) - \inf_{f \in \mathcal{F}} \mathcal{R}(f)}_{\text{approx error}} + 2 \underbrace{\sup_{\mathcal{F}_{\delta}} |\mathcal{R}(f) - \widehat{\mathcal{R}}(f)|}_{\text{statistical error}} + \underbrace{\epsilon}_{\text{optim. error}}$$

- Main challenges in High-dimensional ML:
 - Approximation: Functional Approximation that is not cursed by input dimensionality.
 - Statistical: Statistical Error handled with uniform concentration bounds.
 - Computational: How to solve (*) efficiently in the high-dimensional regime?

"Classic" functional spaces do not play well with this tradeoff.

- "Classic" functional spaces do not play well with this tradeoff.
 - $\mathcal{F} = \{f : \mathbb{R}^d \to \mathbb{R} \text{ is Lipschitz}\}$ is too big: the number of samples required to identify $f^* \in \mathcal{F}$ up to error ϵ is $\Omega(\epsilon^{-m})$ [von Luxburg & Bousquet].

- "Classic" functional spaces do not play well with this tradeoff.
 - $\mathcal{F}=\{f:\mathbb{R}^d\to\mathbb{R} \text{ is Lipschitz}\}$ is too big: the number of samples required to identify $f^*\in\mathcal{F}$ up to error ϵ is $\Omega(\epsilon^{-m})$ [von Luxburg & Bousquet].
 - $\mathcal{F}=\mathcal{H}^{s,p}$: Sobolev spaces. Minimax rate of approximation is cursed unless $s\geq d/2$: only very smooth functions are allowed.

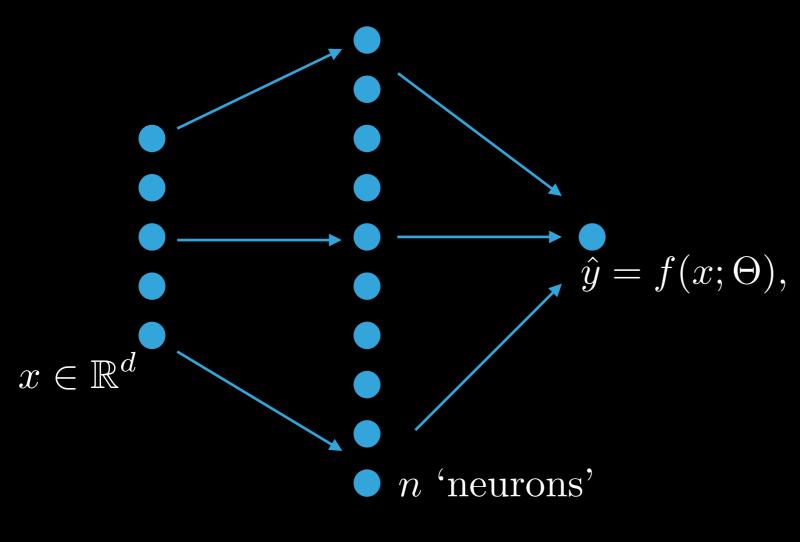
- "Classic" functional spaces do not play well with this tradeoff.
 - $\mathcal{F} = \{f: \mathbb{R}^d \to \mathbb{R} \text{ is Lipschitz}\}$ is too big: the number of samples required to identify $f^* \in \mathcal{F}$ up to error ϵ is $\Omega(\epsilon^{-m})$ [von Luxburg & Bousquet].
 - $\mathcal{F}=\mathcal{H}^{s,p}$: Sobolev spaces. Minimax rate of approximation is cursed unless $s\geq d/2$: only very smooth functions are allowed.
- Which functions can be provably learnt in the highdimensional regime?

- "Classic" functional spaces do not play well with this tradeoff.
 - $\mathcal{F}=\{f:\mathbb{R}^d\to\mathbb{R} \text{ is Lipschitz}\}$ is too big: the number of samples required to identify $f^*\in\mathcal{F}$ up to error ϵ is $\Omega(\epsilon^{-m})$ [von Luxburg & Bousquet].
 - ${\cal F}={\cal H}^{s,p}$: Sobolev spaces. Minimax rate of approximation is cursed unless $s\geq d/2$: only very smooth functions are allowed.
- Which functions can be provably learnt in the highdimensional regime?
- ... with neural networks (and using gradient descent)?
- ... with deep neural networks?
- ... with deep structured neural networks?

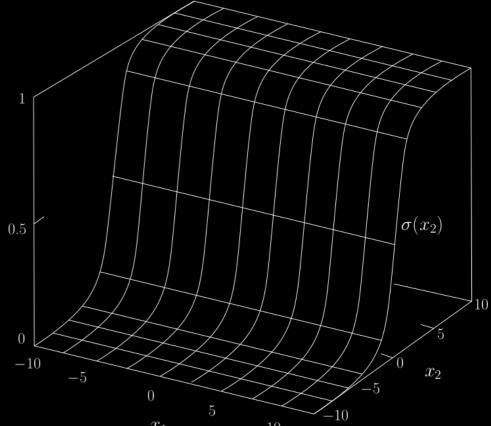
THIS TALK

- Simplest instance of nonlinear feature learning: shallow NNs.
 - Gradient-descent Optimization analyzed as measure dynamics. Retains non-linear essence with Mean-field global convergence guarantees.
 - ▶ Towards Finite-width guarantees by CLT and fine-grained analysis of ReLU activations.
- Beyond Shallow Learning
 - Depth-Separation for ReLU networks
 - Depth-Separation and Learning for Symmetric Functions
 - ▶ [Mean-Field Dynamics on zero-sum two-player games].

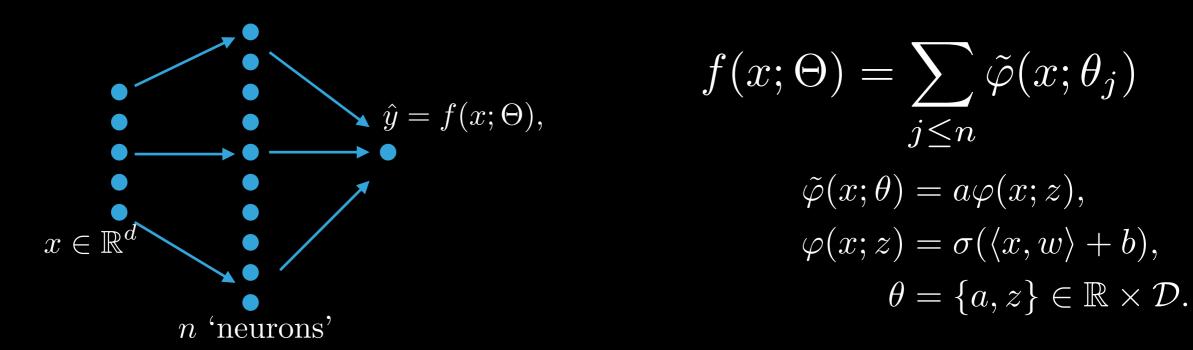
 $f(x;\Theta) = \sum_{j \le n} \tilde{\varphi}(x;\theta_j)$ is a sum of ridge functions:



 $\tilde{\varphi}(x;\theta) = a\varphi(x;z),$ $\varphi(x;z) = \sigma(\langle x, w \rangle + b),$ $\theta = \{a, z\} \in \mathbb{R} \times \mathcal{D}.$

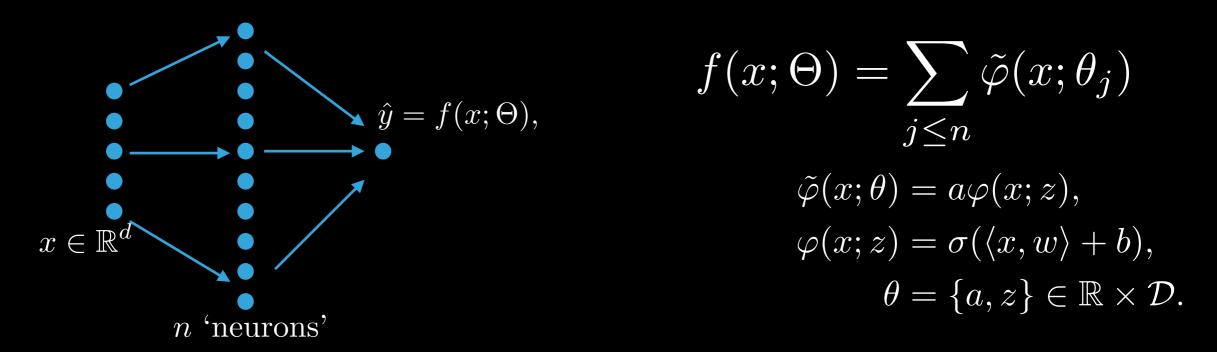


- Three basic scaling quantities:
 - igcells L datapoints, d input dimensions, n neurons.



As $n o \infty$, for appropriate base measure $\gamma \in \mathcal{M}(\mathcal{D})$, we have the integral representation

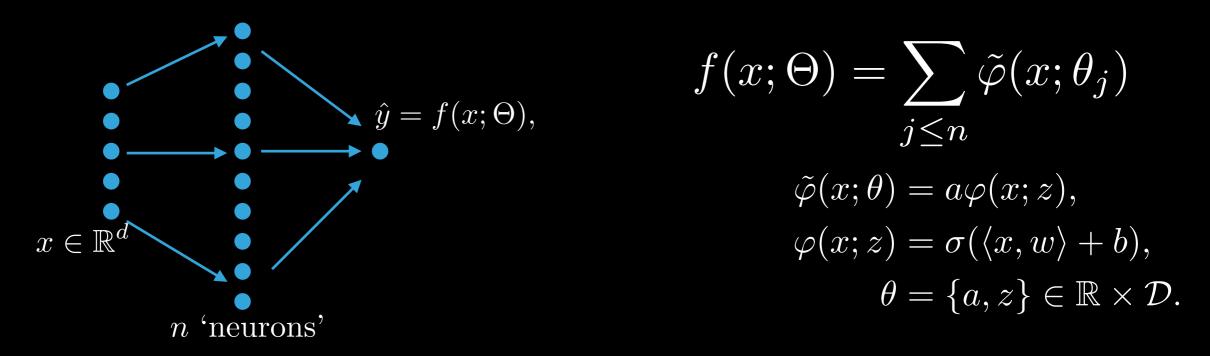
$$f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \gamma(dz).$$



As $n \to \infty$, for appropriate base measure $\gamma \in \mathcal{M}(\mathcal{D})$, we have the integral representation

$$f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \gamma(dz).$$

• Universal Approx: shallow representations are dense in $\mathcal{C}(\mathbb{R}^d)$ under uniform compact convergence iff σ is not a polynomial [Barron, Bartlett, Petrushev, Lehno, Cybenko, Hornik, Pinkus].



As $n \to \infty$, for appropriate base measure $\gamma \in \mathcal{M}(\mathcal{D})$, we have the integral representation

$$f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \gamma(dz).$$

- Universal Approx: shallow representations are dense in $\mathcal{C}(\mathbb{R}^d)$ under uniform compact convergence iff σ is not a polynomial [Barron, Bartlett, Petrushev, Lehno, Cybenko, Hornik, Pinkus].
- What are the associated functional spaces?

REPRODUCING KERNEL HILBERT SPACES

▶ Consider first γ_0 to be a fixed probability measure on \mathcal{D} .

$$\mathcal{F}_2 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \mu_0(dz) \text{ and } g \in L^2(\mathcal{D}, d\mu_0) \right\}$$

 $m{\mathcal{F}}_2$ is a Reproducing Kernel Hilbert Space, with kernel given

by
$$k(x,x')=\int \varphi(x,z)\varphi(x',z)\mu_0(dz)$$
 [Bach'17a]

REPRODUCING KERNEL HILBERT SPACES

▶ Consider first γ_0 to be a fixed probability measure on $\mathcal D$.

$$\mathcal{F}_2 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \mu_0(dz) \text{ and } g \in L^2(\mathcal{D}, d\mu_0) \right\}$$

 $m \mathcal{F}_2$ is a Reproducing Kernel Hilbert Space, with kernel given

by
$$k(x,x')=\int arphi(x,z)arphi(x',z)\mu_0(dz)$$
 [Bach'17a]

- Learning in these RKHS is well-understood (kernel ridge regression), with efficient optimization algorithms.
 - Random feature expansions [Rahimi/Recht'08, Bach'17b].

REPRODUCING KERNEL HILBERT SPACES

• Consider first γ_0 to be a fixed probability measure on ${\cal D}$.

$$\mathcal{F}_2 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) g(z) \mu_0(dz) \text{ and } g \in L^2(\mathcal{D}, d\mu_0) \right\}$$

 $m{ ilde{\mathcal{F}}}_2$ is a Reproducing Kernel Hilbert Space, with kernel given

by
$$k(x,x') = \int \varphi(x,z) \varphi(x',z) \mu_0(dz) \qquad \qquad \text{[Bach'17a]}$$

- Learning in these RKHS is well-understood (kernel ridge regression), with efficient optimization algorithms.
 - Random feature expansions [Rahimi/Recht'08, Bach'17b].
- However, they are cursed by dimensionality: only contain very smooth functions (derivatives of order O(d) must exist).
 - ▶ Kernels arising from linearizing NNs recently studied [NTK, Jacot et al, Arora et al., Mei et al. Tibshirani, Belkin, Bietti & Mairal].

VARIATION-NORM SPACES

[Bengio et al'06, Rosset et al.'07, Bach'17]

Alternatively, we can consider

$$\mathcal{F}_1 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) \mu(dz) ; \|\mu\|_{TV} < \infty. \right\}.$$

- \mathcal{F}_1 is a Banach space, with norm $\|f\|_{\mathcal{F}_1}:=\inf\left\{\|\mu\|_{TV}; f=\int arphi d\mu
 ight\}$
 - Also known as Barron Spaces [Barron'90s, E et al '19].

VARIATION-NORM SPACES

[Bengio et al'06, Rosset et al.'07, Bach'17]

Alternatively, we can consider

$$\mathcal{F}_1 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) \mu(dz) ; \|\mu\|_{TV} < \infty. \right\}.$$

- $m{\mathcal{F}}_1$ is a Banach space, with norm $\|f\|_{\mathcal{F}_1}:=\inf\left\{\|\mu\|_{TV}; f=\int arphi d\mu
 ight\}$.
 - Also known as Barron Spaces [Barron'90s, E et al '19].
- $\mathcal{F}_2 \subset \mathcal{F}_1$ (by Jensen's inequality), and \mathcal{F}_1 contains sums of ridge functions.
 - A single neuron $\varphi(x,z^*)$ belongs to \mathcal{F}_1 but not \mathcal{F}_2 .
 - Adaptivity to low-dimensional structures via feature learning.

VARIATION-NORM SPACES

[Bengio et al'06, Rosset et al.'07, Bach'17]

Alternatively, we can consider

$$\mathcal{F}_1 = \left\{ f : \mathbb{R}^d \to \mathbb{R} ; f(x) = \int_{\mathcal{D}} \varphi(x, z) \mu(dz) ; \|\mu\|_{TV} < \infty. \right\}.$$

- \mathcal{F}_1 is a Banach space, with norm $\|f\|_{\mathcal{F}_1}:=\inf\left\{\|\mu\|_{TV}; f=\int arphi d\mu
 ight\}$
 - Also known as Barron Spaces [Barron'90s, E et al '19].
- $\mathcal{F}_2 \subset \mathcal{F}_1$ (by Jensen's inequality), and \mathcal{F}_1 contains sums of ridge functions.
 - A single neuron $\varphi(x,z^*)$ belongs to \mathcal{F}_1 but not \mathcal{F}_2 .
 - Adaptivity to low-dimensional structures via feature learning.
- How to perform optimization and approximation in these spaces?

NEURAL NETWORKS AS PARTICLE INTERACTION SYSTEMS

- No noise on targets: $f^* \in L_2(\mathbb{R}^d, d\nu)$: target function.
- Single-hidden layer architecture

$$\Theta = (\theta_1, \dots, \theta_n) , f(x; \Theta) = \frac{1}{n} \sum_{j \le n} a_j \varphi(x, z_j) , \theta_j = (a_j, z_j) \in \mathbb{R} \times \mathcal{D}.$$

NEURAL NETWORKS AS PARTICLE INTERACTION SYSTEMS

- No noise on targets: $f^* \in L_2(\mathbb{R}^d, d\nu)$: target function.
- Single-hidden layer architecture

$$\Theta = (\theta_1, \dots, \theta_n) , f(x; \Theta) = \frac{1}{n} \sum_{j \le n} a_j \varphi(x, z_j) , \theta_j = (a_j, z_j) \in \mathbb{R} \times \mathcal{D}.$$

• With Square loss, \mathcal{F}_1 -penalized ERM becomes

$$\mathcal{E}(\Theta) = \mathbb{E}_{\hat{\nu}}[|f(x;\Theta) - f^*|^2] + \lambda \mathcal{V}(\Theta) \qquad \qquad \mathcal{V}(\Theta) = \sum_{j \le n} |a_j|^q \ (q \ge 1).$$
$$= C - \frac{2}{n} \sum_{j \le n} F(\theta_j) + \frac{1}{n^2} \sum_{j,j'} U(\theta_j, \theta_{j'})$$

$$F(\theta) = a\mathbb{E}_{\hat{\nu}}[f^*(x)\varphi(x,\theta)] - \lambda |a|^2, U(\theta,\theta') = aa'\mathbb{E}_{\hat{\nu}}[\varphi(x,z)\varphi(x,z')].$$

Scaling in 1/n contrasts with $1/\sqrt{n}$, which leads to *lazy* or *NTK* regime [Chizat et al., Jacot et al., Arora et al, etc].

Taking step-size of gradient-descent to zero, we have a gradient flow in parameter space:

$$\dot{\theta}_i = -\nabla_{\theta_i} \mathcal{E}(\theta_1, \dots, \theta_n), i = 1 \dots n.$$

Non-convex functional, generically hard [Shamir et al., Venturi et al]

Taking step-size of gradient-descent to zero, we have a gradient flow in parameter space:

$$\dot{\theta}_i = -\nabla_{\theta_i} \mathcal{E}(\theta_1, \dots, \theta_n), i = 1 \dots n.$$

- Non-convex functional, generically hard [Shamir et al., Venturi et al]
- Eulerian perspective: Rewrite the energy in terms of the empirical measure 1 1

$${}^{\mathbf{e}}\mu_n(t,\theta) = \frac{1}{n} \sum_{j \le n} \delta_{\theta_j(t)}$$

The regularised loss becomes

$$\mathcal{E}(\mu) = -2 \int F(\theta)\mu(d\theta) + \iint U(\theta, \theta')\mu(d\theta)\mu(d\theta').$$

quadratic since we consider mean-squared loss.

Taking step-size of gradient-descent to zero, we have a gradient flow in parameter space:

$$\dot{\theta}_i = -\nabla_{\theta_i} \mathcal{E}(\theta_1, \dots, \theta_n), i = 1 \dots n.$$

- Non-convex functional, generically hard [Shamir et al., Venturi et al]
- Eulerian perspective: Rewrite the energy in terms of the empirical measure 1 1

$${}^{\mathbf{e}}\mu_n(t,\theta) = \frac{1}{n} \sum_{j \le n} \delta_{\theta_j(t)}$$

The regularised loss becomes

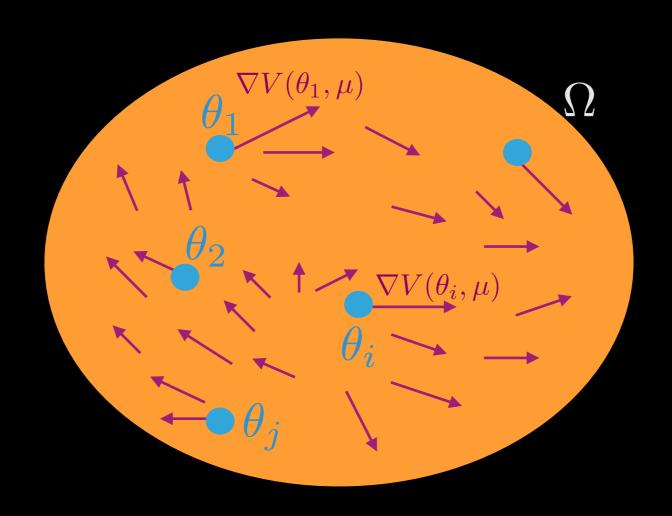
$$\mathcal{E}(\mu) = -2 \int F(\theta)\mu(d\theta) + \iint U(\theta, \theta')\mu(d\theta)\mu(d\theta').$$

- quadratic since we consider mean-squared loss.
- Dynamics in the space of measures?

Particle gradients correspond to evaluating a scaled velocity field: $n_{\nabla} c(\Theta) - \nabla U = with$

$$\frac{n}{2} \nabla_{\theta_i} \mathcal{E}(\Theta) = \nabla V|_{\theta = \theta_i} , \text{with}$$

$$V(\theta; \mu) = -F(\theta) + \int U(\theta, \theta') \mu(d\theta') .$$



Particle gradients correspond to evaluating a scaled velocity field: $n_{\nabla} \cdot \varepsilon(\Theta) - \nabla U$

$$\frac{n}{2} \nabla_{\theta_i} \mathcal{E}(\Theta) = \nabla V|_{\theta = \theta_i} , \text{with}$$

$$V(\theta; \mu) = -F(\theta) + \int U(\theta, \theta') \mu(d\theta') .$$

For general time-dependent measures μ_t , their evolution under a time-varying velocity field $V(\theta; \mu_t)$ is given by a **continuity equation**:

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla V), \ \mu(0) = \mu^{(0)}, \text{ with}$$

 $\forall \phi \in C_c^{\infty}(\Omega), \partial_t \left(\int \phi \mu_t(d\theta) \right) = -\int \langle \nabla \phi, \nabla V \rangle \mu_t(d\theta).$

- Gradient flow of ${\mathcal E}$ for the Wasserstein metric W_2 in ${\mathcal P}(\Omega)$
- Exact description of particle gradient for atomic measures.

Particle gradients correspond to evaluating a scaled velocity field: $\frac{n}{2}\nabla_{\alpha}\mathcal{E}(\Theta) - \nabla V|_{\alpha=\alpha} \quad \text{with}$

$$\frac{n}{2} \nabla_{\theta_i} \mathcal{E}(\Theta) = \nabla V|_{\theta = \theta_i} \text{, with}$$

$$V(\theta; \mu) = -F(\theta) + \int U(\theta, \theta') \mu(d\theta') .$$

For general time-dependent measures μ_t , their evolution under a time-varying velocity field $V(\theta; \mu_t)$ is given by a **continuity equation**:

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla V), \ \mu(0) = \mu^{(0)}, \text{ with}$$

 $\forall \phi \in C_c^{\infty}(\Omega), \partial_t \left(\int \phi \mu_t(d\theta) \right) = -\int \langle \nabla \phi, \nabla V \rangle \mu_t(d\theta).$

- Gradient flow of ${\mathcal E}$ for the Wasserstein metric W_2 in ${\mathcal P}(\Omega)$
- Exact description of particle gradient for atomic measures.

LAGRANGIAN

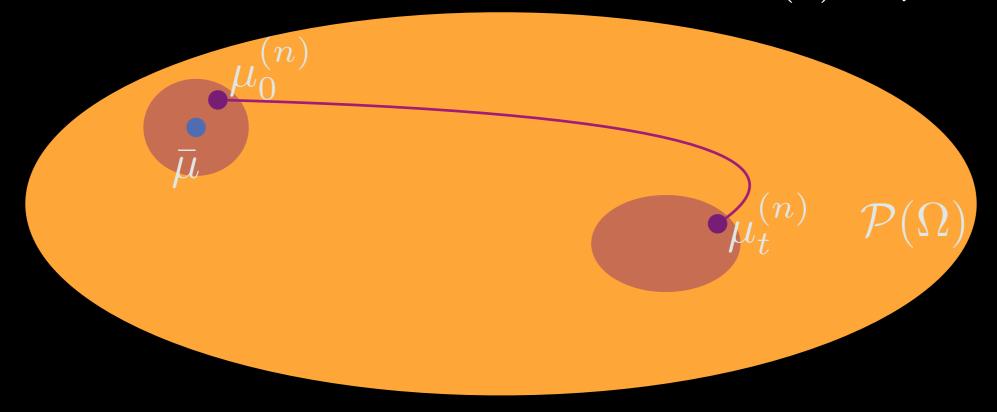
Non-Convexity
Euclidean Dynamics

EULERIAN

Convexity
Non-Euclidean Dynamics

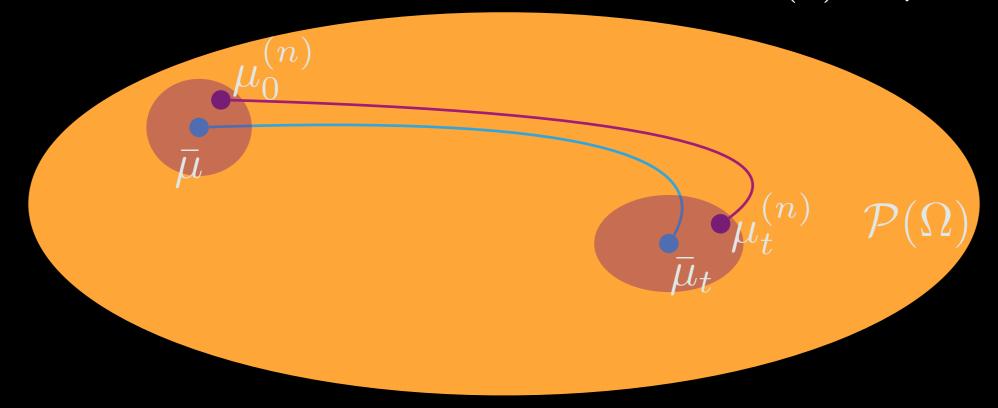
MEAN-FIELD LIMIT

- lackbox Consider the evolution of the particle system as n grows.
- $\mu_t^{(n)}$: state of the system after time t, with $\theta_i(0) \sim \bar{\mu}$ iid.



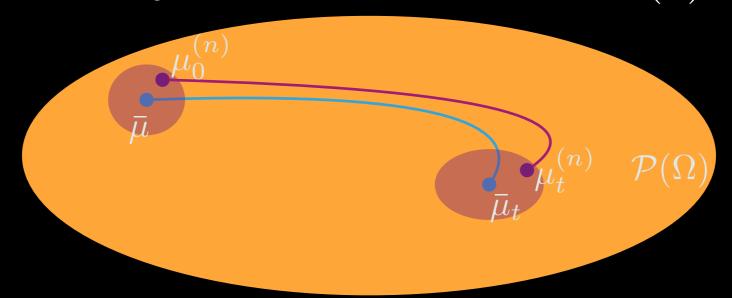
MEAN-FIELD LIMIT

- lacktriangle Consider the evolution of the particle system as n grows.
- $\mu_t^{(n)}$: state of the system after time t, with $\theta_i(0) \sim \bar{\mu}$ iid.



MEAN-FIELD LIMIT

- lacktriangle Consider the evolution of the particle system as n grows.
- $\mu_t^{(n)}$: state of the system after time t, with $\theta_i(0) \sim \bar{\mu} \; {
 m iid.}$

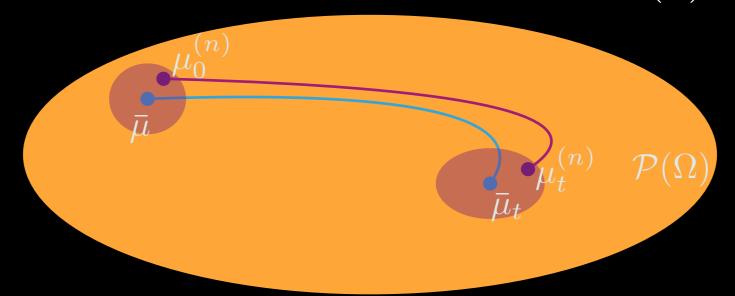


Theorem: [R,EVE,'18],[CB'18],[MMN'18],[SS'18] For any fixed t > 0, $\mu_t^{(n)}$ converges weakly to μ_t as $n \to \infty$, which solves $\partial_t \mu_t = \text{div}(\nabla V \mu_t)$ with $\mu_0 = \bar{\mu}$.

Dynamics and sampling commute in the limit (when it exists).

MEAN-FIELD LIMIT

- lacktriangle Consider the evolution of the particle system as n grows.
- $\mu_t^{(n)}$: state of the system after time t, with $heta_i(0) \sim ar{\mu} \; ext{ iid.}$



Theorem: [R,EVE,'18],[CB'18],[MMN'18],[SS'18] For any fixed t > 0, $\mu_t^{(n)}$ converges weakly to μ_t as $n \to \infty$, which solves $\partial_t \mu_t = \text{div}(\nabla V \mu_t)$ with $\mu_0 = \bar{\mu}$.

- Dynamics and sampling commute in the limit (when it exists).
- Convergence properties of this PDE?
- ▶ LLN result. What is the scale of the fluctuations?

UNBALANCED TRANSPORT

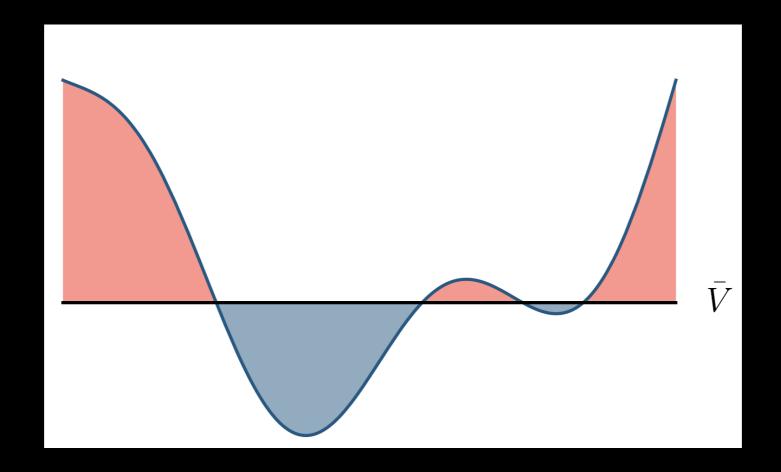
Inspired from [Wei et al.'18], we consider the following unbalanced modification of the dynamics:

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla V) - \alpha V \mu_t + \alpha \overline{V} \mu_t$$
, with $\alpha > 0$, $\overline{V} := \int V(\theta) \mu(d\theta)$.

UNBALANCED TRANSPORT

Inspired from [Wei et al.'18], we consider the following unbalanced modification of the dynamics:

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla V) - \alpha V \mu_t + \alpha \overline{V} \mu_t$$
, with $\alpha > 0$, $\overline{V} := \int V(\theta) \mu(d\theta)$.



UNBALANCED TRANSPORT

Inspired from [Wei et al.'18], we consider the following unbalanced modification of the dynamics:

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla V) - \alpha V \mu_t + \alpha V \mu_t$$
, with $\alpha > 0$, $\overline{V} := \int V(\theta) \mu(d\theta)$.

- For all μ , we verify that $\int V(\theta)\mu(d\theta) \int \bar{V}\mu(d\theta) = 0$
 - Mass is preserved. In particular, for atomic measures, population is constant.
- Full PDE corresponds to gradient flow for the Wasserstein-Fisher-Rao metric [Kondratiev et al.], [Chizat et al.] (aka Hellinger-Kantorovich).
- Admits easy discretization using birth/death processes.
- Wasserstein-Fisher-Rao dynamics can also be used to study equilibria in zero-sum two-player games [D-E, J R, M,B'20].

GLOBAL CONVERGENCE

- Interaction kernel $U(\theta,\theta')$ symmetric and positive semidefinite, twice differentiable.
- ullet U(heta, heta') and F(heta) such that energy $\mathcal{E}[\mu]$ is bounded below.
- ▶ The only fixed points of the dynamics are global minimizers of the energy:

Theorem: [RJBV'19] Let μ_t denote the solution of the dynamics for initial condition μ_0 with full support. Then, if $\mu_t \to \mu_*$ in the weak sense, then μ_* is a global minimiser of $\mathcal{E}[\mu]$. Also, $\exists C, t_c > 0$ such that $\mathcal{E}[\mu_t] \leq \mathcal{E}[\mu_*] + Ct^{-1}$ if $t \geq t_c$.

GLOBAL CONVERGENCE

- Interaction kernel $U(\theta,\theta')$ symmetric and positive semi-definite, twice differentiable.
- ullet U(heta, heta') and F(heta) such that energy $\mathcal{E}[\mu]$ is bounded below.
- The only fixed points of the dynamics are global minimizers of the energy:

Theorem: [RJBV'19] Let μ_t denote the solution of the dynamics for initial condition μ_0 with full support. Then, if $\mu_t \to \mu_*$ in the weak sense, then μ_* is a global minimiser of $\mathcal{E}[\mu]$. Also, $\exists C, t_c > 0$ such that $\mathcal{E}[\mu_t] \leq \mathcal{E}[\mu_*] + Ct^{-1}$ if $t \geq t_c$.

- We avoid the fixed points of the Liouville PDE which are not minimizers of the energy $\nabla V(\theta) = 0$ for $\theta \in \operatorname{supp}(\mu_*)$.
- Extends results from [Chizat & Bach] beyond homogeneous models.
- How to leverage this mean-field guarantee for finite data/units?

APPROXIMATION AND GENERALIZATION IN VARIATION-NORM

lacksquare Minimisers of $\mathcal{E}[\mu]$ can be efficiently discretized if $f^*\in\mathcal{F}_1$:

Proposition [RCBE'19]: Let $\mu^* \in \mathcal{M}_+(\mathbb{R} \times \mathcal{D})$ be a minimiser of \mathcal{E} . Then $\int U(\theta, \theta) \mu^*(d\theta) \leq C \|f^*\|_1^2$.

Monte-Carlo approximation bounds $\|f_{n,t}-f_t\|_{
u}^2 \leq \frac{C\|f^*\|_1^2}{n}$

APPROXIMATION AND GENERALIZATION IN VARIATION-

lacksquare Minimisers of $\mathcal{E}[\mu]$ can be efficiently discretized if $f^*\in\mathcal{F}_1$:

Proposition [RCBE'19]: Let $\mu^* \in \mathcal{M}_+(\mathbb{R} \times \mathcal{D})$ be a minimiser of \mathcal{E} . Then $\int U(\theta, \theta) \mu^*(d\theta) \leq C \|f^*\|_1^2$.

- Monte-Carlo approximation bounds $\|f_{n,t}-f_t\|_{
 u}^2 \leq \frac{C\|f^*\|_1^2}{n}$
- Generalisation bound: Let μ_L^* be a minimiser of the empirical (regularised) loss, and $\hat{f}_L = \int a\varphi(z)\mu_L^*(da,dz)$.

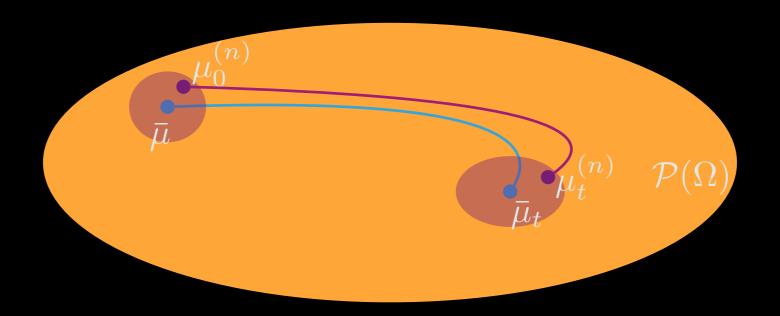
Theorem [RCBE'19]: Then
$$\mathbb{E}\|\hat{f}_L - f^*\|_{\nu}^2 \le 2\|f^*\|_1 \left(\frac{R_1\|f^*\|_1 + R_2}{\sqrt{L}} + \lambda\right)$$

- lacksquare Based on Rademacher bounds for \mathcal{F}_1 [Bach'17]
- Terms R1,R2 only depend on activation function. Not cursed by dimensionality using e.g. ReLU.

DYNAMIC CLT FOR SHALLOW NEURAL NETWORKS

- This suggests $\lambda \simeq L^{-1/2}, n \gtrsim \sqrt{L}$ to obtain an efficient learning algorithm in \mathcal{F}_1 .
- However, previous Monte-Carlo bound is **static**: if

$$f_t^{(n)} = \frac{1}{n} \sum_j a_j(t) \varphi(z_j(t)) \ , (a_j(0), z_j(0)) \sim \mu_0 \ \mathrm{iid},$$
 we need to control $\|f_t^{(n)} - \int a \varphi(z) \mu_t(da, dz)\|_{\nu}^2$



DYNAMIC CLT FOR SHALLOW NEURAL NETWORKS

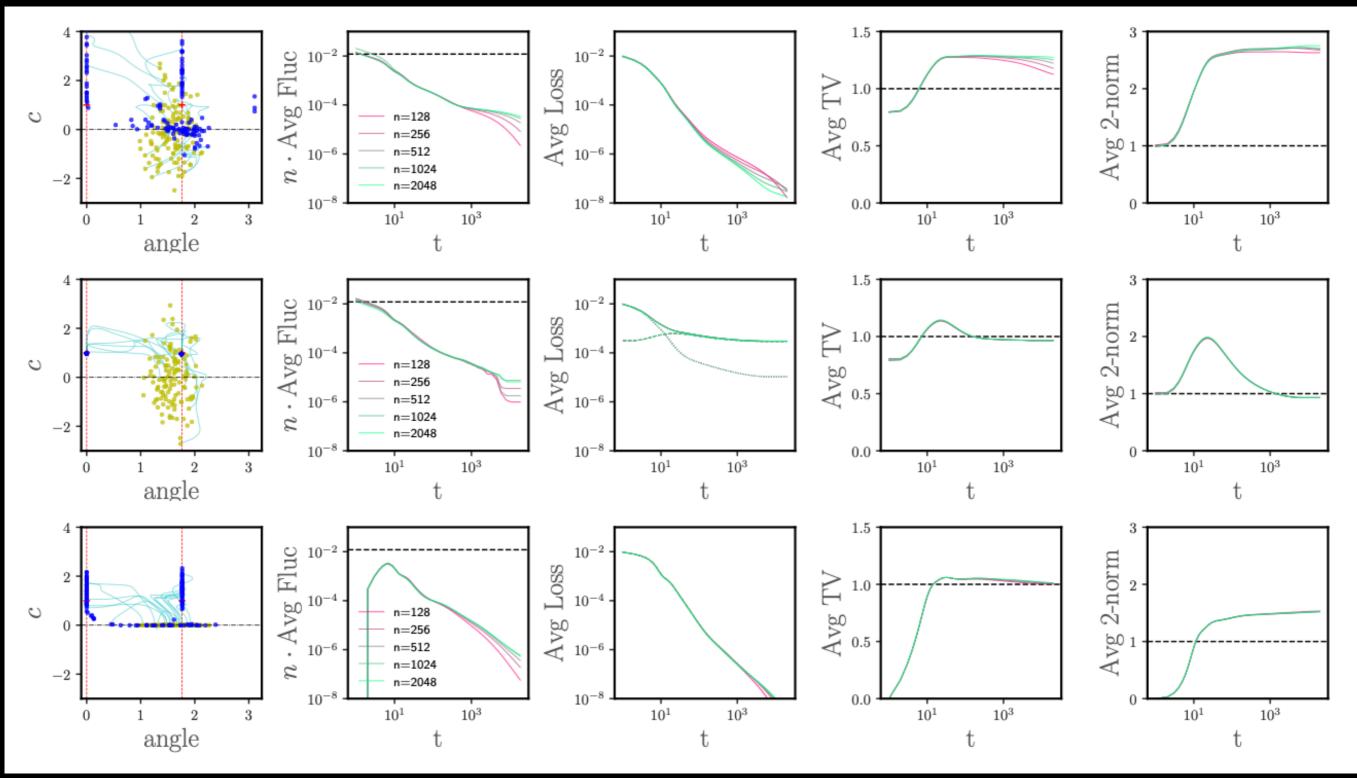
- This suggests $\lambda \simeq L^{-1/2}, n \gtrsim \sqrt{L}$ to obtain an efficient learning algorithm in \mathcal{F}_1 .
- However, previous Monte-Carlo bound is **static**: if

$$f_t^{(n)} = \frac{1}{n} \sum_j a_j(t) \varphi(z_j(t)) \ , (a_j(0), z_j(0)) \sim \mu_0 \ \mathrm{iid},$$
 we need to control $\|f_t^{(n)} - \int a \varphi(z) \mu_t(da, dz)\|_{\nu}^2$

Theorem: [BCRV'19] Under Mean Field global convergence assumptions, it $\lim_{t \to \infty} \lim_{n \to \infty} n \mathbb{E} \|f_t^{(n)} - f(t)\|_{\nu}^2 = C < \infty$ holds

- Extends finite horizon CLT bounds from [Braun & Hepp,'70s] (also [Spilopoulos'19, De Bortoli et al.'20]) using Volterra systems. [Chizat'19] establishes zero fluctuations on sparse well-conditioned.
- Fluctuations vanish at the MC scale in the interpolating, unregularised regime.

NUMERICAL EXPERIMENTS: TEACHER-STUDENT SETUP



We verify scale of fluctuations at or below MC.

TOWARDS FINITE-WIDTH GUARANTEES

The previous CLT results are qualitative (limit of infinitely wide networks).

TOWARDS FINITE-WIDTH GUARANTEES

- The previous CLT results are qualitative (limit of infinitely wide networks).
- For shallow ReLU networks, we can strengthen to finite-width guarantees by leveraging fine-grained ReLU structure.

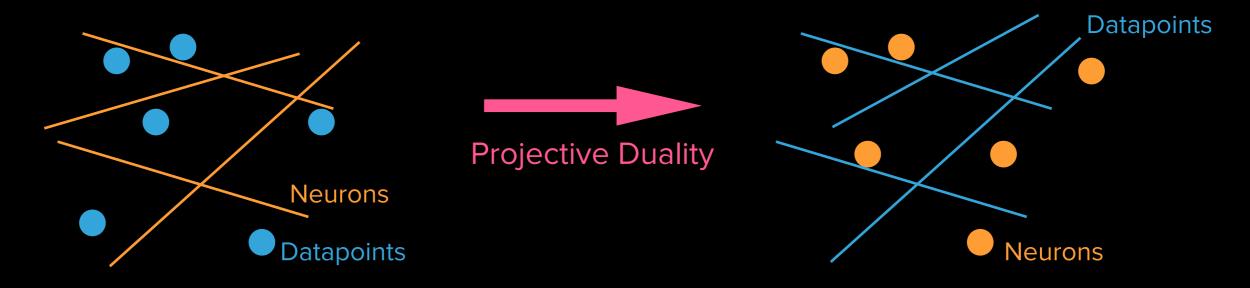
Theorem [DB'20]: The \mathcal{F}_1 regularised ERM using ReLU units only admits atomic minimisers, and the functional $\mathcal{E}[\mu]$ is locally strongly convex.

TOWARDS FINITE-WIDTH GUARANTEES

- The previous CLT results are qualitative (limit of infinitely wide networks).
- For shallow ReLU networks, we can strengthen to finite-width guarantees by leveraging fine-grained ReLU structure.

Theorem [DB'20]: The \mathcal{F}_1 regularised ERM using ReLU units only admits atomic minimisers, and the functional $\mathcal{E}[\mu]$ is locally strongly convex.

- Leveraging results from [Chizat'19] we can provide guarantees for finite width (albeit still exponential in dimension).
- ERM is reduced to a finite-dimensional linear program.



- Functions in \mathcal{F}_1 are expressed as sparse sums of ridge functions.
- Which function classes are not well approximated in \mathcal{F}_1 , but are approximable/learnable by deeper architectures efficiently?

- Functions in \mathcal{F}_1 are expressed as sparse sums of ridge functions.
- Which function classes are not well approximated in \mathcal{F}_1 , but are approximable/learnable by deeper architectures efficiently?

- [Eldan, Shamir, Telgarski, Safran, Daniely] construct oscillatory functions with depth-separation. Provably require $\exp(d)$ width for shallow model, but $\operatorname{poly}(d)$ for deeper neural network.
 - Constructions are inherently low-dimensional, e.g. f(x) = g(||x||).
 - Towards more "natural" function separations?

Inhomogeneous case: Approximation lower bounds for piece-wise oscillatory functions under heavy-tailed data distributions:

Theorem [BJV'20]: Let $g(x) = \exp\{i\langle \omega_d, \rho(Ux+b)\rangle\}$ with $\|\omega_d\| = \Theta(d^3)$, and $\rho(t) = \max(0, t)$. Let μ a heavy-tailed distribution, and \mathcal{R}_M the class of shallow neural networks with M hidden units. Then

$$\inf_{f \in \mathcal{R}_M} \frac{\mathbb{E}_{\mu} |f(x) - g(x)|^2}{\mathbb{E}_{\mu} |g(x)|^2} \ge 1 - M \gamma^d \mathsf{poly}(d) \text{ with } \gamma < 1 \ .$$

Efficient approximation with depth-three ReLU networks.

Inhomogeneous case: Approximation lower bounds for piece-wise oscillatory functions under heavy-tailed data distributions:

Theorem [BJV'20]: Let $g(x) = \exp\{i\langle \omega_d, \rho(Ux+b)\rangle\}$ with $\|\omega_d\| = \Theta(d^3)$, and $\rho(t) = \max(0, t)$. Let μ a heavy-tailed distribution, and \mathcal{R}_M the class of shallow neural networks with M hidden units. Then

$$\inf_{f \in \mathcal{R}_M} \frac{\mathbb{E}_{\mu} |f(x) - g(x)|^2}{\mathbb{E}_{\mu} |g(x)|^2} \ge 1 - M \gamma^d \mathsf{poly}(d) \text{ with } \gamma < 1 \ .$$

- Efficient approximation with depth-three ReLU networks.
- Homogeneous case: Approximation upper bounds for arbitrary ReLU networks on the sphere with shallow networks:

Theorem [BJV'20]: Let
$$g(x) = a_{D+1}\rho(A_D\rho(\dots\rho(A_1x)))$$
 be a depth- D ReLU network, with $\sup_{\|x\|=1} g(x) = 1$. Then
$$\inf_{f \in \mathcal{R}_M} \sup_{\|x\|=1} |g(x) - f(x)| \le \epsilon \text{ if } M \ge \left(2^D C \left(1 + \epsilon^{-2}\right) d\right)^{CD(1+\epsilon^{-1})^D}.$$

Rate is not cursed in d (but cursed in depth D and in ϵ^{-1}).

Inhomogeneous case: Approximation lower bounds for piece-wise oscillatory functions under heavy-tailed data distributions:

Theorem [BJV'20]: Let $g(x) = \exp\{i\langle \omega_d, \rho(Ux+b)\rangle\}$ with $\|\omega_d\| = \Theta(d^3)$, and $\rho(t) = \max(0, t)$. Let μ a heavy-tailed distribution, and \mathcal{R}_M the class of shallow neural networks with M hidden units. Then

$$\inf_{f \in \mathcal{R}_M} \frac{\mathbb{E}_{\mu} |f(x) - g(x)|^2}{\mathbb{E}_{\mu} |g(x)|^2} \ge 1 - M \gamma^d \mathsf{poly}(d) \text{ with } \gamma < 1 \ .$$

- Efficient approximation with depth-three ReLU networks.
- Homogeneous case: Approximation upper bounds for arbitrary ReLU networks on the sphere with shallow networks:

Theorem [BJV'20]: Let
$$g(x) = a_{D+1}\rho(A_D\rho(\dots\rho(A_1x)))$$
 be a depth- D ReLU network, with $\sup_{\|x\|=1} g(x) = 1$. Then
$$\inf_{f \in \mathcal{R}_M} \sup_{\|x\|=1} |g(x) - f(x)| \le \epsilon \text{ if } M \ge \left(2^D C \left(1 + \epsilon^{-2}\right) d\right)^{CD(1+\epsilon^{-1})^D}.$$

- Rate is not cursed in d (but cursed in depth D and in ϵ^{-1}).
- Open: close the gap between lower and upper bounds.

So far, we have considered the fully-connected setting with generic d-dimensional inputs.

- So far, we have considered the fully-connected setting with generic d-dimensional inputs.
- Simple framework to study symmetries: permutation-invariant functions:

```
Feature domain f:\{\Omega^k;k\in\mathbb{N}\}\to\mathbb{R} \text{ such that } f:\{\Omega^k;k\in\mathbb{N}\}\to\mathbb{R} \text{ such that } f(x_{\pi(1)},\ldots,x_{\pi(k)})=f(x_1,\ldots,x_k)\,\forall\,k,x_j\in\Omega,\pi\in\mathsf{S}_k.
```

E.g particle interaction systems, 3d point-clouds.

- So far, we have considered the fully-connected setting with generic d-dimensional inputs.
- Simple framework to study symmetries: permutation-invariant functions:

Feature domain
$$f:\{\Omega^k;k\in\mathbb{N}\}\to\mathbb{R} ext{ such that}$$
 $\Omega\subseteq\mathbb{R}^d$ $f(x_{\pi(1)},\ldots,x_{\pi(k)})=f(x_1,\ldots,x_k)\,\forall\,k,x_j\in\Omega,\pi\in\mathsf{S}_k.$

- ▶ E.g particle interaction systems, 3d point-clouds.
- Input Embedding into $\mathcal{P}(\Omega)$: $(x_1,\ldots,x_k) \to \mu^{(k)} = \frac{1}{k} \sum_{j=1}^n \delta_{x_j}$.
 - 🕨 Under appropriate regularity, f extended to $\overline{f}:\mathcal{P}(\Omega) o\mathbb{R}.$
 - Input domain is not-Euclidean, infinite-dimensional.
 - Functional neural spaces?

- A "neuron" is now a ridge function $\varphi(\cdot,\theta):\mathcal{P}(\Omega)\to\mathbb{R}$ $\varphi(\mu,\theta)=a\sigma(\langle\mu,\phi\rangle),\ a\in\mathbb{R}, \phi:\Omega\to\mathbb{R}, \langle\mu,\phi\rangle=\int_{\Omega}\phi(u)\mu(du).$
 - Input "weights" ϕ are now test functions.

A "neuron" is now a ridge function $\varphi(\cdot,\theta):\mathcal{P}(\Omega)\to\mathbb{R}$ $\varphi(\mu,\theta)=a\sigma(\langle\mu,\phi\rangle),\ a\in\mathbb{R},\phi:\Omega\to\mathbb{R}, \langle\mu,\phi\rangle=\int_{\Omega}\phi(u)\mu(du).$

$$\varphi(\mu,\theta) = a\sigma(\langle \mu,\phi \rangle), \ a \in \mathbb{R}, \phi : \Omega \to \mathbb{R}, \langle \mu,\phi \rangle = \int_{\Omega} \phi(u)\mu(du)$$

- Input "weights" ϕ are now test functions.
- Shallow invariant neural network:

$$f(\mu,\Theta) = \frac{1}{n} \sum_{i=1}^{n} a_i \varphi(\mu,\phi_i).$$

Integral representation:

$$f(\mu, \chi) = \int_{\mathcal{D}} \varphi(\mu, \phi) \chi(d\phi) \qquad \mathcal{D} = \text{domain of test functions in } \Omega,$$
$$\chi \in \mathcal{M}(\mathcal{D}) \text{ Radon Measure over } \mathcal{D}.$$

A "neuron" is now a ridge function $\varphi(\cdot,\theta):\mathcal{P}(\Omega)\to\mathbb{R}$ $\varphi(\mu,\theta)=a\sigma(\langle\mu,\phi\rangle),\ a\in\mathbb{R},\phi:\Omega\to\mathbb{R}, \langle\mu,\phi\rangle=\int_{\Omega}\phi(u)\mu(du).$

- Input "weights" ϕ are now test functions.
- Shallow invariant neural network:

$$f(\mu, \Theta) = \frac{1}{n} \sum_{i=1}^{n} a_i \varphi(\mu, \phi_i).$$

Integral representation:

$$f(\mu, \chi) = \int_{\mathcal{D}} \varphi(\mu, \phi) \chi(d\phi) \qquad \mathcal{D} = \text{domain of test functions in } \Omega,$$
$$\chi \in \mathcal{M}(\mathcal{D}) \text{ Radon Measure over } \mathcal{D}.$$

Different over-parametrised regimes as in fully connected case?

Hierarchy of functional spaces for learning:

$$S_{1} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{1}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{2} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{3} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi g(\phi) d\chi_{0}; \|g\|_{L^{2}(\mathcal{D}, d\chi_{0})} < \infty \right\}$$

 $\mathcal{S}_3 \subset \mathcal{S}_2 \subset \mathcal{S}_1$ By Jensen.

Hierarchy of functional spaces for learning:

$$S_{1} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{1}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{2} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{3} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi g(\phi) d\chi_{0}; \|g\|_{L^{2}(\mathcal{D}, d\chi_{0})} < \infty \right\}$$

- $S_3 \subset S_2 \subset S_1$ By Jensen.
- Universal approximators of symmetric functions.
- Implemented with two-hidden layer neural networks using random feature kernel expansions:

	First Layer	Second Layer	Third Layer
$\overline{\mathcal{S}_1}$	Trained	Trained	Trained
\mathcal{S}_2	Frozen	Trained	Trained
\mathcal{S}_3	Frozen	Frozen	Trained

Hierarchy of functional spaces for learning:

$$S_{1} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{1}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{2} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi d\chi; \|\chi\|_{\text{TV}} < \infty \right\}$$

$$S_{3} = \left\{ \mathcal{D} = \{ \phi; \|\phi\|_{\mathcal{F}_{2}} \leq 1 \}, f = \int_{\mathcal{D}} \varphi g(\phi) d\chi_{0}; \|g\|_{L^{2}(\mathcal{D}, d\chi_{0})} < \infty \right\}$$

Approximation lower bounds and generalization guarantees:

Theorem [BZ'20]: For ReLU activations, there exists f_1 with $||f_1||_{\mathcal{S}_1} \leq 1$ such that $\inf_{\|f\|_{\mathcal{S}_2} \leq \delta} |f_1 - f|_{\infty} \gtrsim \left| d^{-1} - \delta 2^{-d/2} \right|.$ (depth-separation)

Moreover, assuming bounded feature domain Ω , we have

$$\mathbb{E} \sup_{\|f\|_{\mathcal{S}_1} \le \delta} \left| \mathbb{E}_{\mu \sim \mathcal{D}} \ell(f^*(\mu), f(\mu)) - \frac{1}{L} \sum_{i=1}^{L} \ell(f^*(\mu_i), f(\mu_i)) \right| \lesssim \frac{\delta(1+\delta)}{\sqrt{L}} . \quad \text{(generalization bounds)}$$

Open: optimization guarantees.

CURRENT AND OPEN PROBLEMS

- Beyond Variation Spaces: Depth-separation
 - What is the functional space associated to deep architectures beyond feature selection? GD optimization in such space?
 - Links with dynamical systems.
- Mean-field formulation is informative in the single-hidden layer model.
 - Extension to deep architectures (ResNet). Geometric networks (CNN,GNN)?
- Polynomial finite width guarantees for typical instances?
- Beyond vanilla gradient descent (adagrad, etc.) ? Role of time-discretization?

THANKS!

References:

"Global Convergence of Neuron birth-death dynamics", Rotskoff, Jelassi, Bruna, Vanden-Eijnden https://arxiv.org/abs/1902.01843 (ICML'19)

"A dynamical CLT for shallow Neural Networks", Rotskoff, Chen, Bruna, Vanden-Eijnden https://arxiv.org/abs/2008.09623 (NeurIPS'20)

"Depth Separation for high-dimensional ReLU networks", Bruna, Jelassi, Venturi, in prep. 20.

"On Sparsity for Overparametrised ReLU Networks", Jaume de Dios, Bruna, https://arxiv.org/abs/2006.10225 preprint 2020.

"A Functional Perspective on Learning Symmetric Functions with Neural Networks", A. Zweig, Bruna, https://arxiv.org/abs/2008.06952 preprint 2020.

"A mean-field analysis of two-player zero-sum games", C. Domingo-Enrich, S. Jelassi, A. Mensch, G. Rotskoff, J Bruna, https://arxiv.org/abs/2002.06277 NeurIPS'20

- Wasserstein-Fisher-Rao dynamics can also be used to study equilibria in games.
- Canonical setup: finding mixed strategies in two player zerosum game: c

$$\mathcal{L}[\mu_x, \mu_y] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(x, y) \mu_x(dx) \mu_y(dy)$$
.
 $\mathcal{X}, \mathcal{Y}: \text{ compact spaces}$

 μ_x, μ_y : players strategy distribution $\ell(x, y)$ smooth

- Wasserstein-Fisher-Rao dynamics can also be used to study equilibria in games.
- Canonical setup: finding mixed strategies in two player zerosum game: c

n game:
$$\mathcal{L}[\mu_x, \mu_y] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(x, y) \mu_x(dx) \mu_y(dy) \,.$$

$$\mathcal{X}, \mathcal{Y}: \text{ compact spaces}$$

$$\mu_x, \mu_y: \text{ players strategy distribution} \qquad \ell(x, y) \text{ smooth}$$

(mixed) Nash Equilibria: (μ_x^*, μ_y^*) such that

$$\forall \mu_x , \mathcal{L}[\mu_x^*, \mu_y^*] \leq \mathcal{L}[\mu_x, \mu_y^*] , \quad \forall \mu_y , \mathcal{L}[\mu_x^*, \mu_y^*] \geq \mathcal{L}[\mu_x, \mu_y] .$$

- Guaranteed to exist [Nash'50s]
- Algorithms to find them in the high-dimensional setting?

- Wasserstein-Fisher-Rao dynamics can also be used to study equilibria in games.
- Canonical setup: finding mixed strategies in two player zerosum game: c

Time:
$$\mathcal{L}[\mu_x, \mu_y] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(x, y) \mu_x(dx) \mu_y(dy).$$

$$\mathcal{X}, \mathcal{Y}: \text{ compact spaces}$$

 μ_x, μ_y : players strategy distribution $\ell(x, y)$ smooth

• (mixed) Nash Equilibria: (μ_x^*, μ_y^*) such that

$$\forall \mu_x \ , \ \mathcal{L}[\mu_x^*, \mu_y^*] \leq \mathcal{L}[\mu_x, \mu_y^*] \ , \quad \forall \mu_y \ , \ \mathcal{L}[\mu_x^*, \mu_y^*] \geq \mathcal{L}[\mu_x, \mu_y] \ .$$

Gradient dynamics:

$$\partial_t \mu_{x,t} = \operatorname{div}(\nabla \frac{\partial \mathcal{L}}{\partial \mu_x}) \quad \partial_t \mu_{y,t} = -\operatorname{div}(\nabla \frac{\partial \mathcal{L}}{\partial \mu_y})$$

Measure dynamics associated with particle gradient ascent/ descent:

$$\partial_t \mu_{x,t} = \operatorname{div}(\nabla \frac{\partial \mathcal{L}}{\partial \mu_x})$$
 $\partial_t \mu_{y,t} = -\operatorname{div}(\nabla \frac{\partial \mathcal{L}}{\partial \mu_y})$

- We establish Global convergence to approximate Nash equilibria using WFR.
- Similar propagation-of-chaos and robustness in highdimensions.

