
Exactly solvable models for statistical machine learning:

A study of over-parametrization

Florent Krzakala

Institut Universitaire de France

Empirical Risk Minimisation

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))(Xi ∈ ℝd, yi ∈ ℝ), i = 1,…, n

Ex: linear network

fθ(X) = θ ⋅ XModel:

Loss :ℒ(y, h) L(f(~x), y) = (1� yf(~x))2

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

Square Loss

Logistic loss/Cross-entropy

Empirical Risk Minimisation

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))(Xi ∈ ℝd, yi ∈ ℝ), i = 1,…, n

Loss :ℒ(y, h) L(f(~x), y) = (1� yf(~x))2

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

Square Loss

Logistic loss/Cross-entropy

Model:

Ex: neural networks

fθ(X) = η(0) (W(0)η(1) (W(1)…η(L) (W(L) ⋅ X)))
θ = {W(0), W(1), …, W(L)}

Statistical learning 101

{y(μ), ⃗x (μ)}m
μ=1

Supervised Binary classification
• Dataset, m examples
• Function class f ⃗w ∈ ℱ

∀f ⃗w ∈ ℱ, ϵgen(f ⃗w) − ϵm
train(f ⃗w) ≤ ℜm(ℱ) +

log(1/δ)
m

With probability at least 1-δ,

Theorem: Uniform convergence
Rademacher complexity

Generalization error Train error

ℜm(ℱ) ≤ C
dVC(ℱ)

m
Rademacher Complexity is bounded

by VC dimension for some constant C

Classical result

UNDERSTANDING MACHINE LEARNING

 WORST CASE ANALYSIS IS NOT ENOUGH

Deep learning brought unprecedented empirical/engineering
progress into many applications, including fundamental sciences.

Some theory open questions:

Deep learning brought unprecedented empirical/engineering
progress into many applications, including fundamental sciences.

Some theory open questions:

UNDERSTANDING MACHINE LEARNING

 WORST CASE ANALYSIS IS NOT ENOUGH

Deep learning brought unprecedented empirical/engineering
progress into many applications, including fundamental sciences.

Some theory open questions:

From “Reflections after refereeing papers for NIPS”, Leo Breiman, 1995.
Still not answered!

UNDERSTANDING MACHINE LEARNING

 WORST CASE ANALYSIS IS NOT ENOUGH

Physicists like models of data

Instead of worst case analysis, we could instead study models of data

credit: XKCD
[P. Carnevali & S. Patarnello (1987)
N. Tishby, E. Levin, & S. Solla (1989)
E. Gardner, B. Derrida (1989)]

Teacher - Student

Framework

Can a neural network learn a neural network?

Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

Generates weights w*, e.g. iid random.

Generates labels y.

Teacher-network

data
X

y
labels

w1

w3

teacher-weights

w2
*

*
*

data
X

y
labels

w1

w3

student-weights

w2

Student-network

Observes X, y

How does the generalisation error
depend on the number of samples n?

Statistical mechanics

ℛ (θ, {X, y}) =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi))̂θ = argminℛ (θ, {X, y})

PBoltzmann(θ, {X, y}) =
1

Z({X, y})
e−βℛ(θ, {X, y})

Effective Statistical Mechanics problem, with disordered interaction depending on {X, y}

Need to study the zero-temperature limit of the averaged “free energy” −𝔼 log Z({X, y})

MANY DIRECTIONS EXPLORED IN MY GROUP

Study of energy landscape Dynamics of learning in NN

Kernel vs Neural nets Bias-Variance trade-of

Alternative to back-propagation

Rigorous approach
 to replica method

Bias-Variance trade-off:

Reasonable expectations…

error

|bias|
variance

Complexity

Parity-MNIST,	5	layers,	FCN,

	hinge	loss,	no	regularisation

zero	training	

error

P
#Pa

… versus reality

[Geiger et al. ’18]

See	also	[Geman	et	al.	’92;	Opper	’95;	Neyshabur,	Tomyoka,	Srebro,	2015;	Advani-Saxe	2017;	
Belkin,	Hsu,	Ma,	Soumik,	Mandal	2019;	Nakkiran	et	al.	2019]

Bias-Variance trade-off:

error

Complexity

[Nakkiran	et	al.	2019]

The “Double-Descent”

[M. Belkin et al ’18]

See	also	[Geman	et	al.	’92;	Opper	’95;	Neyshabur,	Tomyoka,	Srebro,	2015;	Advani-Saxe	2017;	
Belkin,	Hsu,	Ma,	Soumik,	Mandal	2019;	Nakkiran	et	al.	2019]

… versus reality
Bias-Variance trade-off:

Learning with

a simple one-layer network

1

Teacher-student perceptron

Simplest version

⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX(⃗x) = 𝒩(0,1d){
yμ ≡ sign(⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d ,

 with fixed
→ ∞

α = n/d

Physics literature Rigorous proofs

[…, Opper Kinzel ’90, Kleinz, Seung ‘90,

Opper, Haussler ’91, Seung Sompolinsky, Tishby
’92, Watkin Rau & Biehl ’93, Opper, Kinzel ’95,…]

[…., Barbier, FK, Macris, Miolane, Zdeborova ’17

Trampoulidis, Abbasi, Hassbi ’18

Montanari, Ruan, Sohn, Yan ’20

Aubin, FK, Lu, Zdeborova ’20,

Gerbelot, Abbara, FK ‘20….]

1989

Teacher-student perceptron

Physics literature Rigorous proofs

[…, Opper Kinzel ’90, Kleinz, Seung ‘90,

Opper, Haussler ’91, Seung Sompolinsky, Tishby
’92, Watkin Rau & Biehl ’93, Opper, Kinzel ’95,…]

[…., Barbier, FK, Macris, Miolane, Zdeborova ’17

Trampoulidis, Abbasi, Hassbi ’18

Montanari, Ruan, Sohn, Yan ’20

Aubin, FK, Lu, Zdeborova ’20,

Gerbelot, Abbara, FK ‘20….]

1989

data
X

y
labels

w*
weights

data
weights

data
X

y
labels

w
weights

data
weights

Teacher Student

A rigorous solution

[Aubin, FK, Lu, Zdeborova ’20]

L2 loss

ℛ(θ, {X, y}) =
1
n

n

∑
i=1

∥yi − θXi∥2
2

̂θ = argminℛ(θ, {X, y})

Simplest version

⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX(⃗x) = 𝒩(0,1d){
yμ ≡ sign(⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d ,

 with fixed
→ ∞

α = n/d

L2 loss: what to expect?

α =
n
d

Training error

1

Zero energy
Solutions No zero energy solution

overparametrized

✓̂ = argmin(||Y �A✓||22)
||Y �A✓||22 = (Y �A✓)T (Y �A✓) = YTY + ✓TATA✓ � 2YTA✓

AT Aθ = ATY

Taking the extremum yields the normal equations:
d x d

d x 1 n x 1

d x n

Unique solution if ATA is full rank
This requires (at least) n>p
(no more unknown than datapoints)

̂θ = (AT A)−1ATY

Otherwise, many solutions may exists.
A popular choice leads

to the least-norm (in l2 norm) solution:

✓̂ln = AT (AAT)�1Y

Ordinary least square

Least norm solution

α =
n
d1

Zero energy
Solutions No zero energy solution

X
X

X X

Training error

Least norm solution yields the “double descent”

Rigorous result from [Aubin, FK, Lu, Zdeborova ’20], but first discussed by Manfred Opper in ’95!

Generalisation
 error

Zero energy
Solutions No zero energy solution

X
X

X X

Biasing to low l2 norm solutions is good!

Least norm solution yields the “double descent”

This explains the non-monotonic curve

What if I do gradient descent?

Zero energy
Solutions

X
X

X X No zero energy solution

Biasing to low l2 norm solutions is good!
This explains the non-monotonic curve

A lesson from representer theorem

Initialising weights close to zero implies at all times:

In this case gradient descent converges to the least norm solution

⃗𝒩 = 0

This is an example of “implicit regularisation”

See also Advani-Saxe ’17, N. Sbrero et al ’18

If you do gradient descent, is ever never updated!⃗𝒩
Simple mathematical fact:

Rd = span({X}) + null({X})

θ =
n

∑
i=1

βiXi + ⃗𝒩
ℛ =

1
n

n

∑
i=1

ℒ(yi, θ ⋅ xi)

Ridge loss (now with explicit regularisation)

Simplest version

⭐ Data
⃗x (μ) ∈ ℝd, μ = 1…m

⭐ Labels

PX(⃗x) = 𝒩(0,1d){
yμ ≡ sign(⃗x μ ⋅ ⃗W *)

⃗W* ∼ 𝒩(0,1d){
High-dimensional limit n, d ,

 with fixed
→ ∞

α = n/d

ℛ =
1
n

n

∑
i=1

∥yi − θXi∥2
2 + λ∥θ∥2

2

̂θ = argminℛ(θ, {X, y})

0 1 2 3 4
Æ

0.0

0.1

0.2

0.3

0.4

0.5
e g

∏=0 Pseudo inv.

∏=0.0001

∏=0.001

∏=0.01

∏=0.1

∏opt=0.5708

∏=1

∏=10.0

∏=100.0

Bayes

[Aubin, Krzakala, Lu, Zdeborova’20]

Ridge loss (now with explicit regularisation)

Still far from Bayes!

[Aubin, Krzakala, Lu, Zdeborova’20]

-1/2

-1

Rademacher

bound

Ridge, λ=0Bayes

Cover you Losses!

L(f(~x), y) = (1� yf(~x))2
Square Loss

Hard margin
L(f(~x), y) = 1(yf(~x) > 1)

Hinge loss

L(f(~x), y) = max(0, 1� yf(~x))

Logistic loss/Cross-entropy

L(f(~x), y) =
1

ln 2
ln(1 + e�yf(~x))

f(~x) = ✓ · ~x+ ↵

Which frontier should we choose?

Pushing the boundaries

Pushing the boundaries

Large margin = better generalisation properties!

d

Implicit regularization (again)

ℛ =
1
n

n

∑
i=1

ℒ(yi, fθ(Xi)) + λ∥θ∥2
2

As λ goes to zero, many losses

Converges to the max-margin solution!

2006

Ex: l2 LOSS

Ex: logistic LOSS

Max-margin is good

#datapoints/#dimension

ge
ne

ra
lis

at
io

n
er

ro
r

Bayes Ridge, λ=0

Max-Margin

α = m/d(with m, d → ∞)

[Aubin, Krzakala, Lu, Zdeborova’20]

Reaching Bayes rates

[Aubin, Krzakala, Lu, Zdeborova’20]

-1/2

-1

Rademacher

bound

Ridge, λ=0Bayes

Max-Margin

Chasing the Bayes optimal result

0 2 4 6 8 10
Æ

0.0

0.1

0.2

0.3

0.4

0.5

e g

∏=0.001

∏=0.01

∏=0.1

∏=1

∏=10.0

∏=100.0

∏=0 Max-margin

Bayes

0.0 2.5 5.0 7.5 10.0
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

em
a
p

g
°

eb
ay

es
g

10°1 100 101 102

Æ

10°2

10°1

100

e g

°1

∏=0.001

∏=0.01

∏=0.1

∏=1.0

∏=10.0

∏=100.0

Bayes

∏=0 Max-margin

Rademacher

Regularised logistic losses (almost) achieve Bayes optimal results!
(And specially designed losses do achieve it)

[Aubin, Krzakala, Lu, Zdeborova’20]

Ok, does this explain double-descent?

Ok, does this explain double-descent?

error

Complexity

Ok, does this explain double-descent?

Parity-MNIST,	5	layers,	

zero	

P
#P

[Geiger et al.

error

Complexity

While such models explains non-monotonicity, and the pick close to the exact
interpolation threshold, they do not explain the lack of overfitting

data
X

y
labels

w*
weights

data
weights

data
X

y
labels

w
weights

data
weights

Teacher Student

Learning with

random feature neural networks

2

θ ∈ ℝpF

∈ ℝd×p

Random features neural net

Two-layers neural network with fixed first layer F
Architecture:

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

NIPS ‘07

θ ∈ ℝpF

∈ ℝd×p

Random features neural net

Two-layers neural network with fixed first layer F
Architecture:

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

Deep connections with genuine neural networks in the “Lazy regime”

[Jacot, Gabriel, Hongler ’18; Chizat, Bach ’19; Geiger et al. ’19]

• n vector , drawn randomly from

• n labels given by a function

xi ∈ ℝd 𝒩(0,1d)
yi y0

i = f 0(x ⋅ θ*)

θ ∈ ℝpF

∈ ℝd×p

Random feature model…
Dataset:

Two-layers neural network with fixed first layer F
Architecture:

ℒ =
1
n

n

∑
i=1

ℓ(yi, y0
i) + λ∥θ∥2

2
Cost function:

ℓ(.) =
Logistic loss

Hinge loss

Square loss

…

What is the training error & the generalisation error

in the high dimensional limit ?(d, p, n) → ∞

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

Consider the unique fixed point of the following system of equations
Definitions:

Then in the high-dimensional limit:

… and its solution

̂Vs = α
γ κ2

1𝔼ξ,y [𝒵 (y, ω0)
∂ωη(y, ω1)

V],

̂qs = α
γ κ2

1𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)
2

V 2 ,

m̂s = α
γ κ1𝔼ξ,y [∂ω𝒵 (y, ω0)

(η(y, ω1) − ω1)

V],

̂Vw = ακ2
⋆𝔼ξ,y [𝒵 (y, ω0)

∂ωη(y, ω1)
V],

̂qw = ακ2
⋆𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)

2

V 2 ,

Vs = 1
̂Vs

(1 − z gμ(−z)),

qs =
m̂2

s + ̂qs

̂Vs
[1 − 2zgμ(−z) + z2g′￼μ(−z)]

−
̂qw

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′￼μ(−z)],

ms =
m̂s

̂Vs
(1 − z gμ(−z)),

Vw = γ

λ + ̂Vw
[1

γ − 1 + zgμ(−z)],

qw = γ
̂qw

(λ + ̂Vw)2 [1
γ − 1 + z2g′￼μ(−z)],

+
m̂2

s + ̂qs

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′￼μ(−z)],

η(y, ω) = argmin
x∈ℝ [(x − ω)2

2V + ℓ(y, x)]
𝒵(y, ω) = ∫ dx

2πV 0
e− 1

2V 0 (x − ω)2
δ (y − f 0(x))

where V = κ2
1Vs + κ2

⋆Vw, V 0 = ρ −
M2

Q
, Q = κ2

1qs + κ2
⋆qw, M = κ1ms, ω0 = M/ Qξ, ω1 = Qξ and gμis the Stieltjes transform of FFT

κ0 = 𝔼 [σ(z)], κ1 ≡ 𝔼 [zσ(z)], κ⋆ ≡ 𝔼 [σ(z)2] − κ2
0 − κ2

1 , and ⃗zμ ∼ 𝒩(⃗0 , Ip)

ϵgen = 𝔼λ,ν [(f 0(ν) − ̂f(λ))2]
with (ν, λ) ∼ 𝒩 (0

0), (ρ M⋆

M⋆ Q⋆)

ℒtraining =
λ

2α
q⋆

w + 𝔼ξ,y [𝒵 (y, ω⋆
0) ℓ (y, η(y, ω⋆

1))]

with ω⋆
0 = M⋆ / Q⋆ξ, ω⋆

1 = Q⋆ξ

[Loureiro, Gerace, FK, Mézard, Zdeborova, ’20]

Agrees with [Louart , Liao , Couillet’18 & Mei-Montanari ’19] who solved a particular case using
random matrix theory: linear function f0, & Gaussian random weights F…ℓ(x, y) = ∥x − y∥2

2

Consider the unique fixed point of the following system of equations
Definitions:

Then in the high-dimensional limit:

… and its solution

̂Vs = α
γ κ2

1𝔼ξ,y [𝒵 (y, ω0)
∂ωη(y, ω1)

V],

̂qs = α
γ κ2

1𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)
2

V 2 ,

m̂s = α
γ κ1𝔼ξ,y [∂ω𝒵 (y, ω0)

(η(y, ω1) − ω1)

V],

̂Vw = ακ2
⋆𝔼ξ,y [𝒵 (y, ω0)

∂ωη(y, ω1)
V],

̂qw = ακ2
⋆𝔼ξ,y 𝒵 (y, ω0) (η(y, ω1) − ω1)

2

V 2 ,

Vs = 1
̂Vs

(1 − z gμ(−z)),

qs =
m̂2

s + ̂qs

̂Vs
[1 − 2zgμ(−z) + z2g′￼μ(−z)]

−
̂qw

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′￼μ(−z)],

ms =
m̂s

̂Vs
(1 − z gμ(−z)),

Vw = γ

λ + ̂Vw
[1

γ − 1 + zgμ(−z)],

qw = γ
̂qw

(λ + ̂Vw)2 [1
γ − 1 + z2g′￼μ(−z)],

+
m̂2

s + ̂qs

(λ + ̂Vw) ̂Vs
[−zgμ(−z) + z2g′￼μ(−z)],

η(y, ω) = argmin
x∈ℝ [(x − ω)2

2V + ℓ(y, x)]
𝒵(y, ω) = ∫ dx

2πV 0
e− 1

2V 0 (x − ω)2
δ (y − f 0(x))

where V = κ2
1Vs + κ2

⋆Vw, V 0 = ρ −
M2

Q
, Q = κ2

1qs + κ2
⋆qw, M = κ1ms, ω0 = M/ Qξ, ω1 = Qξ and gμis the Stieltjes transform of FFT

κ0 = 𝔼 [σ(z)], κ1 ≡ 𝔼 [zσ(z)], κ⋆ ≡ 𝔼 [σ(z)2] − κ2
0 − κ2

1 , and ⃗zμ ∼ 𝒩(⃗0 , Ip)

ϵgen = 𝔼λ,ν [(f 0(ν) − ̂f(λ))2]
with (ν, λ) ∼ 𝒩 (0

0), (ρ M⋆

M⋆ Q⋆)

ℒtraining =
λ

2α
q⋆

w + 𝔼ξ,y [𝒵 (y, ω⋆
0) ℓ (y, η(y, ω⋆

1))]

with ω⋆
0 = M⋆ / Q⋆ξ, ω⋆

1 = Q⋆ξ

[Loureiro, Gerace, FK, Mézard, Zdeborova, ICML’20]

… and recently proven in full generality by [Dhifallah, Lu, ’20]

A classification task

λ=10−4λ=10−4

λopt

A classification task

As , in the overparametrized regime,

Logistic converges to max-margin, converges to least norm

λ → 0
ℓ2

Implicit regularisation of gradient descent [Neyshabur,	Tomyoka,	Srebro,	’15]

[Rosset,	Zhy,	Hastie,	’04]

Asymptotics accurate even at d=200!
Regression task Classification task

ℓ2 loss logistic loss

First layer: random Gaussian Matrix
First layer: subsampled Fourier matrix

Nips '17

Regularisation & different First Layer

Logistic loss, no regularisation

n/d

p/n

Phase transition of perfect separability

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

separablenon-separable

n
/d

p/n

Gaussian
Orthogonal

Generalize a phase transition discussed

by [Cover ’65; Gardner ’87; Sur & Candes, ’18]

Cover Theory ‘65

We now see over-parametrisation does not hurt, but why?

Bias-Variance reloaded…

• n vector , drawn randomly from

• n labels given by a function

xi ∈ ℝd 𝒩(0,1d)
yi y0

i = f 0(x ⋅ θ*)

θ ∈ ℝpF

∈ ℝd×p

Dataset:

Two-layers neural network with fixed first layer F
Architecture:

ℒ =
1
n

n

∑
i=1

∥yi − y0
i ∥2

2 + λ∥θ∥2
2

Cost function:
Square loss

x ∈ ℝd ℝp y ∈ ℝ

σ(Fx)

Generalization

Error

Bias

(Unavoidable error)

Generalization

Error

Initialization:

Choice of the

random features

Sampling

(Finite training set)

Noise

labels

Bias

(Unavoidable error)

Generalization

Error

All these terms can be computed exactly using random metric theory & statistical physics methods

(See paper)

Bias decreases and has a phase transition at interpolation

Noise & Initialitation variances diverges at the peak…
… but decay later on (self-averaging!)

Interpolation peak

error

Complexity

Over-parametrization here helps because of self-averaging effect for large networks!

In a nutshell: the networks learn “many time” the same sub-network plus fluctuations,

and averaging these networks leads to reduced variance

See also: [Geiger, et al, ’19, Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, ’19,
Ascoli, Sagun, Biroli ’20, Lin & Dobriban ’20, Adlam, Pennington ’20]

Reducing the variances by ensembling

Averaging many two-layer networks
with different random features should reduce the variance!

[See also Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, ’19]

Stochastic Gradient Descent

3

Study of energy landscape Dynamics of learning in NN

Kernel vs Neural nets Bias-Variance trade-of

Alternative to back-propagation

Rigorous approach
 to replica method

MANY DIRECTIONS EXPLORED IN MY GROUP

Two-layers teacher-student problem

...

x

w

g1

g2

g3

g4 v

�

The teacher generates a dataset…

Additive
output noise

yµ ⌘ �(xµ, ✓⇤) + �⇣µ
<latexit sha1_base64="nT2Y9YFSHISf4cE5Vh9+HiFLItQ=">AAAC+XicjVHLSsNAFD2N73fVpZvBIviipFpQd4Iblwq2CkZlEsd2MC+TSbEWf8SdO3HrD7jVHxD/QP/CO2MEH4hOSHLuufecmTvXjX2ZKtt+Llhd3T29ff0Dg0PDI6NjxfGJehpliSdqXuRHyZ7LU+HLUNSUVL7YixPBA9cXu+7phs7vtkSSyijcUe1YHAS8EcoT6XFF1FGxylj70AkyR5xlssWcuClnzzWxyBzVFIofzs+xBSeVjYA7Fzqm3FGxZJdts9hPUMlBCfnaiopPcHCMCB4yBBAIoQj74Ejp2UcFNmLiDtAhLiEkTV7gEoOkzahKUAUn9pS+DYr2czakWHumRu3RLj69CSkZZkgTUV1CWO/GTD4zzpr9zbtjPPXZ2vR3c6+AWIUmsX/pPir/q9O9KJxg1fQgqafYMLo7L3fJzK3ok7NPXSlyiInT+JjyCWHPKD/umRlNanrXd8tN/sVUalbHXl6b4VWfkgZc+T7On6C+VK4sl5e2q6X1tXzU/ZjCNGZpnitYxya2UCPvK9zjAY9Wx7q2bqzb91KrkGsm8WVZd2+VU6PW</latexit>

Output

Label

… and the student learns from it

Trained by SGD on the quadratic error:

K hidden units

...

x

w⇤

g2

g1

v⇤
�

M hidden units

v*

w* w
v

ϕ(x, θ*) =
M

∑
m

v*v σ (w*mx

d) E(θ, x) =
1
2

(ϕ(x, θ) − y)2

d → ∞
Large dimensional vector

M, K = O(1)
Finite-size hidden layer

Inputs are i.i.d. Gaussiansxμ ∈ ℝd

σ1

σ2

σ1

σ2

σ3

σ4

On-line gradient descent, one sample at a time…

… our rigorous proof just took 25 years (NeurIPS ’19)

ODEs are accurate even for small dimension

=time/d
d~800

Implicit regularisation of SGD

(b)

Teacher Student

Which neurons learn which neurons an example with M=2, K=5:

All neurons find relevants features,
and the second later average them!

(As in the previous section)

http://github.com/sgoldt/pyscm

No overfitting even when K>M !
(Student larger than teacher)

f(x) = sign(x) , g(x) = g̃(x) = erf(x/ 2), M = 5,K = 3, η = 0.005

SGD learns more complicated functions over time
(Aka “the specialisation phenomenon”)

te
st

 e
rr

or

te
ac

he
r-

st
ud

en
t o

ve
rl

ap
s

f(x) = sign(x) , g(x) = g̃(x) = erf(x/ 2), M = 5,K = 7, η = 0.005

te
st

 e
rr

or

te
ac

he
r-

st
ud

en
t o

ve
rl

ap
s

SGD learns more complicated functions over time
(Aka “the specialisation phenomenon”)

Conclusions

Some examples of exactly solvable models of statistical machine learning
(Using rigorous and non-rigorous methods from statistical mechanics)

These models shed lights on many interesting phenomena

•Worst case versus typical

• Implicit regularisation (small l2 norm solutions, large margin)

•Divergence of the generalisation at the interpolation peak

•Large 2-layer networks display some “self-averaging” effects:

Over-paramerization helps in reducing the variance

•Complete & explicit Bias-Variance decompositions

architecture

algorithm

da
ta

Many thanks to the team(s)….

SMiLe

Friday, October 30, 15

http://florentkrakala.com

We want you in Switzerland!

I just created the IdePHICS lab. in EPFL
We are looking for talented postdocs & students, send me a mail!

