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Empirical Risk Minimisation

1 n
(X, € IRd,yiE R),i=1,...,n R = _Zg()’iafe(xi))
"t =1
Loss : £ (v, h) Square Loss L(f(Z),y) = (1 — yf(f))Q
Logistic loss/Cross-entropy L(f(Z),y) = é In(1 + e ¥/ (@)

Ex: linear network

Model: fo(X) =0 X



Empirical Risk Minimisation

1 n
(X, € IRd,yiE R),i=1,...,n R = _Zg()’iafe(xi))
"t =1
Loss : £ (v, h) Square Loss L(f(Z),y) = (1 — yf(f))Q
Logistic loss/Cross-entropy L(f(Z),y) = é In(1 + e ¥/ (@)

Ex: neural networks

modet:  f,(X) = 7© (W%(” (W“)...n@) (W X)))

0= {WO w Wi



Statistical learning 101

Supervised Binary classification

Dataset, m examples {y®), X“}»_|

“unction class f-= € #

Theorem: Uniform convergence

With probability at least 1-0,

Viw € F, €gen(f 7 = GtTain(f w) < mm(g) \/

log(1/6)

/ \ -

Generalization error Train error

Classical result

Rademacher Complexity is bounded 5 dyo(F)
by VC dimension for some constant C m(F)




UNDERSTANDING MACHINE LEARNING
WORST CASE ANALYSIS IS NOT ENOUGH

* Deep learning brought unprecedented empirical/engineering
progress into many applications, including fundamental sciences.

e Some theory open questions:

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:
@ Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
s  Why doesn’t backpropagation head for a poor local minima?
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UNDERSTANDING MACHINE LEARNING
WORST CASE ANALYSIS IS NOT ENOUGH

* Deep learning brought unprecedented empirical/engineering
progress into many applications, including fundamental sciences.

e Some theory open questions:

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

s Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
s Why doesn’t backpropagation head for a poor local minima?

From “Reflections after refereeing papers for NIPS”, Leo Breiman

Still not answered!




Physicists like models of data

Instead of worst case analysis, we could instead study models of data

V‘J_U'RE TRYING TO PREDICT THE BEHAVIOR,

T A A A Teacher - Student
SOME. SECONDARY TERMS TO ACCOUNT R
o Framework
£, RGHT?
56, WHY DOES 0 NEED

AWAXLE TOORNAL, AfYWAY?

LIEERAL-AIKTS MATOR5 MAY BE ANNOYING SOVETIVES,
Sl e I HIORE DRNORCLS Ty [P. Carnevali & S. Patarnello (1987)

A PHYSICIST FIRST ENCOUNTERING A NEW SUBTECT.
credit: XKCD N. Tishby, E. Levin, & S. Solla (1989)
E. Gardner, B. Derrida (1989)]




Can a neural network learn a neural network?

Teacher-network Student-network

o Generates data X, n samples of p
dimensional data, e.g. random input o Observes X, y

vectors.

o How does the generalisation error

X : N .
Generates weights w*, e.g. iid random. depend on the number of samples n?

o Generates labelsy.

teacher-weights student-weights

data / l data / l
W; labels Wo labels

W3 Y W3 Y




Statistical mechanics

0 = argminZ (6, {X, y}) % (0, (X, y}) Z L i X))

1
P 0,{X,y}) = ~pR (0. (X, y})
Boltzmann( { y}) Z({X, y}) €

Effective Statistical Mechanics problem, with disordered interaction depending on { X, y}

Need to study the zero-temperature limit of the averaged “free energy” —[E log Z({ X, y})

SPIN GI.ASS °
THEORY AND =
BEYOND

An Introduction (o
[ the ReplicaMethod =
and te Applications

$ e



MANY DIRECTIONS EXPLORED IN MY GROUP

Study of energy landscape

Kernel vs Neural nets

Alternative to back-propagation

Direct Feedback Alignment

W, Wy

b - - of e - -y

W, W

- - -

=

e LK)
e XXX X
T’f—[oooooo]

Rigorous approach
to replica method

B

Dynamics of learning in NN
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Bias-Variance trade-off:
Reasonable expectations...

Bias-Variance trade-off




Bias-Variance trade-off:
Reasonable expectations...
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Bias-Variance trade-off:
... versus reality

0.12 E
E === normal
0.11 -
0.050
0.10 - B
-; 0.025 1 zero training
- 009 7 g error
S 0.000 »
008 - 10° 10°
error :
0.07 -
0.06 -
0,05 ~—r—mmrrri—r e Complexit
102 N* =825 104 10° 10° 1P p y

#Pa

Parity-MNIST, 5 layers, FCN, [Geiger et al. *18]
hinge loss, no regularisation

See also [Geman et al. '92; Opper '95; Neyshabur, Tomyoka, Srebro, 2015; Advani-Saxe 2017;
Belkin, Hsu, Ma, Soumik, Mandal 2019; Nakkiran et al. 2019]



lest / Train Error

Bias-Variance trade-off:
... versus reality

Classical Regime Modern Regime
Bias-Variance Tradeoff Larger Model is Better
/&‘. /“-.
' N
/ 1
|
‘i |
0.5 \ |
I
\ ! -<+—— Critical Regime ; s
0.4 The “Double-Descent
:
I
- : —— -
0.5 : e
I
I
5 l
0.2 :
|~ Interpolation Threshold
L
0.] X
I
£
~ - l _—
0.0 .
1 10 20 30 40 50 60
ResNet18 Width Parameter
® oot — [Nakkiran et al. 2019]

See also [Geman et al. '92; Opper '95; Neyshabur, Tomyoka, Srebro, 2015; Advani-Saxe 2017;
Belkin, Hsu, Ma, Soumik, Mandal 2019; Nakkiran et al. 2019]
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Learning with
a simple one-layer network



Teacher-student perceptron

), Phas, AL Mah Gen 220 1492531 195321994 Printed in the UK I 989

Three unfinished works on the optimal storage capacity
of networks

E Gardner and B Derrida

The Institute fot \d vans -dSwd ies, The H brew Universaty o( salem, Jerunalen, [ecacl
404 Servics de sique Theorigue de Sschayt, | ‘Jl ) Likes Y Mte Cedex, Fr:-.r.

Recerved L3 Ddecsmber 145K

Abstruct. The optimal sto@aes properies o chree diderert newral netwot mocde’s are
studied. Fortwo of these models the arcnitecturs of the network 5 o perceprron with =/
imtery -'um. wi cnae for the thd medel the owtput san be an arbitrary funaton of the

inputs. Anzlytic bounds and numerer) esumates of th2 opiimal caracities and o7 the
minimal M' of er-nrs obhrained =71 the first twa models. The third model cin be
salved m(l d the =xac: salution is comparzd 1¢ the beunds 2and tc the ~esults cf

numerical simulations used fOI’ the wo DlhlA mcCeI!.‘

Physics literature

[..., Opper Kinzel 'A0, Kleinz, Seung ‘90,
Opper, Haussler '91, Seung Sompolinsky, Tishby
'92, Watkin Rau & Biehl '93, Opper, Kinzel '95,...]

Simplest version

TWeRL,u=1...m
Py(x) =/ (0,1,

—

W *)

Data

Labels J Y, = s1gn( X,
W ~ #(0,1))

High-dimensional limitn,d — o0,
with ¢ = n/d fixed

Rigorous proofs

[...., Barbier, FK, Macris, Miolane, Zdeborova '17
Trampoulidis, Abbasi, Hassbi '18
Montanari, Ruan, Sohn, Yan '20
Aubin, FK, Lu, Zdeborova '20,
Gerbelot, Abbara, FK ‘20... ]



Teacher-student perceptron

Teacher Student

1, Phas, A Math Gen 22019251 195321994 Printed in the UK I 989

data | data
Three unfinished works on the optimal storage capacity X Welghts X weights
of networks A% W

labels
y

labels
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Abstruct. The optimal sto@aes properies o chree diderert newral netwot mocde’s are
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inputs. Anzlytic bounds and numerier) estmates of th2 opiimal capacities and o7 the
minimal frecrian of er-nrs are obrained =71 the first twa models. The third model cin be
salved sxactly and the e2xac: solution is comparzd 1¢ the beunds and te the results cf
numerical simulations vsed for the two other medels.
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[..., Opper Kinzel '90, Kleinz, Seung ‘90, Trampoulidis, Abbasi, Hassbi '18
Opper, Haussler '91, Seung Sompolinsky, Tishby Montanari, Ruan, Sohn, Yan '20
'92, Watkin Rau & Biehl '93, Opper, Kinzel '95,...] Aubin, FK, Lu, Zdeborova '20,

Gerbelot, Abbara, FK ‘20... ]



A rigorous solution

For binary classification (y € +1), the generalization error of ERM is given b

[Aubin, FK, Lu, Zdeborova '20]

o : | — .
e. (@) = —acos(y/n) with n =
/"

and pyx = éE :||w' | ]

Thearem (Gordon’s minimax - £, - classification)

As n,d — oo with n/d = a = ©(1), for £> regularization r(w) = %‘wzs

- -y 2 FeRND )
m — pwrib q — (" )"+ (07)°, X — T
— X

=X C == (X

where parameters i° and §° are solutions of

Mp2+6%) o :
{ n ) 27‘ | rl‘IEvgvsj\"ir[(‘)g I IIS)’]} -

-—

(1",6") = arg min sup
p,6>20 7230

The saddle point equations vyield
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with y = vouer (/pw-5), M and P the Moreau-Yosida

proximal map.




Simplest version

{ FW e Ry =1...m
Data | p (%)= #(0,1)

Labels {yﬂ = sign(X, - W*)
W ~ H(0,1))

Vo

0 = argmin£ (0, { X, y}) High-dimensional limitn, d — oo,
with a = n/d fixed

1 n
ZCAs SHESPNEIAE
=1



L2 loss: what to expect?

Training error
A

‘ overparametrized '

Zero energy
Solutions

‘ ‘ L No zero energy solution



Ordinary least square

) = argmin(||Y — A0]|?)
Y — A0||2 = (Y — A0 (Y —A40) =YY + 07 AT A0 — 2Y " A0

Taking the extremum yields the normal equations:

d x d dxn
T T
ATA0=A"Y
dx | nx |
Unique solution if ATA is full rank Otherwise, many solutions may exists.
This requires (at least) n>p A popular choice leads
(no more unknown than datapoints) to the least-norm (in 12 norm) solution:

0= (ATA)1ATY o, = AT(AATY 1Y

T —




Least norm solution

Training error
A

Zero energy
Solutions

‘ ‘ ] No zero energy solution



Least norm solution yields the “double descent”

Generalisation
error _
.4 -
0.3 -
-:(:
0.2 1
0.1 -
w— [3aves — [xge A=(: Pscudo mv.
(.0 T T . .
l 2 3 14 D
(Y

Rigorous result from [Aubin, FK, Lu, Zdeborova ’20], but first discussed by Manfred Opper in ’95!



Least norm solution yields the “double descent”

0.4 1

0.3 1

0.1 1

— o yes —

')_I) ? T T T
{ 2 3 !
. Y

Biasing to low 12 norm solutions is good!

This explains the non-monotonic curve

Zero energy : :
. No zero enerqy solution
Solutions ‘ ‘ ‘ l gy



What if | do gradient descent?

0.4 1

0.3 1

0.1 1

0.0

Biasing to low 12 norm solutions is good!

This explains the non-monotonic curve

‘ ‘ ] No zero energy solution

Zero energy
Solutions




A lesson from representer theorem

[ R? = span({X}) + null({X})

«9?:—23()71'»9”‘1') L _
= 0= pX;+ N
=1

Simple mathematical fact:

If you do gradient descent, ./ is ever never updated!

Initialising weights close to zero implies /' = 0 at all times:
In this case gradient descent converges to the least norm solution

This is an example of “implicit regularisation”
See also Advani-Saxe ’17, N. Sbrero et al ’'18



Ridge loss (now with explicit regularisation)

Simplest version

{ TWeRu=1...m
Data =
Py(x) = /4(0,1,)

é — argmin@(@, {X,y}) Labels {yﬂ = Sign(Yﬂ N *)
W ~ H(0,1))

High-dimensional Iimitn,d — oo,
with ¢ = n/d fixed

1 n
R =— D lly; = OXII3 + 2013
=1



Ridge loss (now with explicit regularisation)

0.5

A=0 Pseudo inv. — \°P'—=(.5708
A=0.0001 —_— A=1
—— A\=0.001 — 2\=10.0
— A\=0.01 — )\=100.0
— \=0.1 — Bayes
0.4
0.3
(<Y0)
\B)
0.2 1
0.1 1
0.0 .
0 1 2 3 4

[Aubin, Krzakala, Lu, Zdeborova’20]



Still far from Bayes!

10° -

. 4 S~
|
|

Bayes

. _2 | .
107= 1 .

1 — l i;l .\y-_‘

| = Logistic A=0: Max-margin

— R¥lge A=(: Pscudo mv. ¢

=== Rademacher

10!

T

10!
(

[Aubin, Krzakala, Lu, Zdeborova’20]



Cover you Losses!

f(¥)=0-T+ «

Square Loss

L(f(Z),y) = (1 —yf(2))*

Hard margin

; L(f(Z),y) = L(yf(Z) > 1)

Hinge loss

L(f(%),y) = max(0,1 — y (7))

Logistic loss/Cross-entropy

L(f(@).y) = 15 In(1 + @)



Pushing the boundaries

Which frontier should we choose?

P 4
/i L]
A *
24 2 ’ °
.4 °
°
& L L)
o [ ]
°
p [ ]
¥ g °
Y pv °
L]
4 P
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Pushing the boundaries




Implicit regularization (again)

Margin Maximizing Loss Functions

2006
Saharon Rosset Ji Zhu Trevor Hastie
Watson Research Center Department of Statistics Department of Statistics
IBM University of Michigan Stanford University
Yorktown, NY, 10598 Ann Arbor, MI, 48109 Stanford, CA, 94305
srosset(@us.ibm.com Jizhu@umich.edu hastie(@stat.stanford.edu

As A\ goes to zero, many losses
Converges to the max-margin solution!

Abstract

Margin maximizing propertics play an important role in the analysis of classi£-

cation models, such as boosting and support vector machines. Margin maximiza-
tion is theoretically interesting because it facilitates generalization error analysis,
and practically interesting because it presents a clear geometric interpretation of
the models being built, We formulate and prove a suffcient condition for the
solutions of regularized loss functions to converge to margin maximizing separa-
tors, as the regularization vanishes. This condition covers the hinge loss of SVM,
the exponential loss of AdaBoost and logistic regression loss. We also generalize
it to multi-class classifcation problems, and present margin maximizing multi-
class versions of logistic regression and support vector machines.

n

1
R =— D L0 fyX) + 2116113
1

=



Ex: 12 LOSS




Ex: logistic LOSS




Max-margin is good

0.5

9 0.4 -

)

C

O 0.3

©

D

o 0.2

qc) Bayes Rldge, A=0

% Ul Max-Margin

0.0 - . u .
l 2 3 1 D

#datapoints/#dimension
a=ml/d(with m,d — o)

[Aubin, Krzakala, Lu, Zdeborova’20]



Reaching Bayes rates

10" -

102 |

1 = Bayes — R¥lge A=(: Pscudo mv. ¢

| — l.n}:.'tﬁ!i-" LS .‘-l:n.\:-lnid‘:,l'll - == Ralemae her 2

10! - ”l'[;“:' - ”'l'[')' - ”1'[3'{‘

(Y \‘ __]

[Aubin, Krzakala, Lu, Zdeborova’20]



Chasing the Bayes optimal result

100 0.5
| \x\\ A=0.001
] ~~. —— A=0.01
S~ — A=0.1
~
\\\ —_— =1
~ —
Sso 0.4 1 A=10.0
. . — A=100.0
\.'Q N ==+ A=0 Max-margin
Q N —— Bayes
N, \\
B 0.3 1
101
] \
a0 o0
) NN O
N 0.2
\
\
XN
\
\
\
A=0.001 = A=100.0 N 0.1 1
—2 = )\=0.01 = Bayes
1072 N
] — =01 ==+ A=0 Max-margin \\ _______
1 — =10 == Rademacher \3
| — x=10.0 1\
1 ' ' "HHIO ' ' ""Hll ' ' 2 0.0 I I I I
10~ 10 10 10 0 2 4 6 8 10
o (8

Regularised logistic losses (almost) achieve Bayes optimal results!
(And specially designed losses do achieve it)

[Aubin, Krzakala, Lu, Zdeborova’20]



Ok, does this explain double-descent?

(.30 - linear student

(.20
margin classifier

0.10

0.00 | | |
0 l '

-
e
.
N

6

FIGURE 10 Learning curves for a linear student and for a
margin classifier. & = m/N.



Ok, does this explain double-descent?
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error
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> 7 p £ C | 0o, Complexity
~J

5 101 brs lnsbule 1sonil 5 101 29viuo gnimssd 01 AAUDIF
Vit = v oilieeso nigism



Ok, does this explain double-descent?

errcv
. Teacher

data
X weights
W%

labels
y

Student

data

X weights

A\

labels
y

0.12 I:

=== normal

0.050
0.025 A
' Zero

0.11 A

0.10 o

In error

0.09 -

tra

EN

0.08
0.07
0.06 -
102 N*=825 10* 10° 10° 1p
#P
Parity-MNIST, 5 layers, ~ [Gelger et al.

Complexity

While such models explains non-monotonicity, and the pick close to the exact

interpolation threshold, they do not explain the lack of overfittin
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Learning with
random feature neural networks



I |

Generalisation error in learning with random features ICML | 2020

and the hidden manifold model Thirty-seventh International Conference
on Machine Learning

Federica Gerace', Bruno Loureiro',

Florent Krzakala*, Marc Mézard *, Lenka Zdeborova'




Random features neural net

Architecture:

wo-layers neural network with fixed first layer F

x € R?

Random Features for Large-Scale Ker

Ali Rahimi Benjamii
Intel Research Seattle Caltecl
Seattle, WA 98105 Pasadena, (

ali.rahimi@intel.com brecht@ist.c

N I PS ‘07 Ali Rahimi - NIPS 2017 Test-of-Time Award presentation



Random features neural net

AUUNEMTIER Two-layers neural network with fixed first layer F

Deep connections with genuine neural networks in the “Lazy regime”
[Jacot, Gabriel, Hongler '18; Chizat, Bach '19; Geiger et al. '19]



Random feature model...

e nvector X; € R¢ drawn randomly from A(0,1 )
. nlabels y; given by a function yl.o = fO(x - 6%)

AUUNEMTIER Two-layers neural network with fixed first layer F

x € R? RP y € R

Cost function: = Logistic loss
Z == C0x3)) + 21613 e e
n
i=1

r (.)= Square loss

? What is the training error & the generalisation error
. in the high dimensional limit (d, p,n) — c0?



... and its solution

T _ [Loureiro, Gerace, FK, Mézard, Zdeborova, *20]
Definitions:
Consider the unique fixed point of the following system of equations

[ e | 911 (v, @) i B
V= P E:y |2 (s @o) v Vs = 0 I=z8,(-2).
: 7 + 4 ,
o 5 <;7(y, a)l) - a)1>2 qs = v ll e 2Zg’u(—Z) + Zzgﬂ(—z)l
ds = 7’(1 [Efy Z (y 0)0) V2 ) G 5
— |—28,(-2) +2°g, —z], : VI S
L A+ V)V, [ AR n(y, ) = argmin [(x 2;)) +HZ(y, X)
R . 1(y. @;) — o)) M, x€R T
3 ms = 7K1|E§’y aa)z (y, a)o) :/ 1 ] < mS = 7 <1 =% g’u(_Z)), 3 . _L(x_ w)z :--(;--.‘
" o Bt o) = [T S10)
5 0,1 (Y, @ = = = L s
= CAIW 1 2
— — —_— 1 + —_ ],
2 ( ) <’7(y,w1) —601>2 A A+V,)? [7 e8l=2)
Gy = ok Eey | Z (3, @y = ; w2+ 4, 5
_ D [—zgﬂ(—z) Tk 4 gﬂ(—z)l,
2 TN T T e
where V=iV, +«iV,, V' =p — —, 0 = «q, + k3q,, M = Kymg, 0y = MI\/OE, w; = /OE and g is the Stieljes transform of FF'

---------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

i k= E [06)],x = E [26(2)],x, = E [0(2))] — 2 — k7§ and 2 ~ #(0, 1)

Then in the high-dimensional limit:

Y A
gon = Ep | (@) = JOP] g = et + gy [ 7 (3.0) € (1 0))
: 0 p M*
with (y,/l)Na/V[<O>,<M* Q*)] with a)()*=M*/ Q*fawl*: Q*é

Agrees with [Louart , Liao , Couillet’18 & Mei-Montanari ’19] who solved a particular case using
random matrix theory: linear function 0, £(x,y) = ||x — y||? & Gaussian random weights F...



... and its solution

4 v B . 2 2 9 /Z b 2
Loureiro, Gerace, FK, Mézard, Zdeborova, ICML’20
Definitions:
Consider the unique fixed point of the following system of equations
P | 9,11(y, @y) [y 1
Vs =7K12[E§,y z(y’G)O) % ]’ VS _73 (1 2 gﬂ(_z)>’
[ 2 m?'*'(?s 2
» <77(y, a)l) - a)1> qs = v ll R 2Zg’u(—Z) +Z gﬂ(—z)l
@S = 7K12[E‘5y Z (y 0)0) V2 =
_ 9w l_zg (_Z)_l_ZZg/(_Z)], (x—a))2 :‘------.‘-
- A+ V)V, a a n(y, w) = argmin [ o +HZ(y, X)
N a m(y, 1) — @) 1 €eR |
3 ms = 7K1|E§’y aa)z (y, a)o) ]7<y V) ] 3 mS = 7 <1 — % g’u(_Z))a ] g d | ) RLITETR
- s 1 :’Zo(y, a)) = I%e_zv_o(x - W) 5 (y _EfO(x)g
A o Ny, ®; A Y I e 27V | ——
V,, = a;E; [ Z (. ay) ”(i )], S [y I+zg,( z)], !
& CAIW 1 2
— — —_— 1 + —_ ],
(ﬂ(y,wl) —w1)2 by =l (4 +V,)? [7 k. g”( 2)
éw == aK#Z([Ef,y Z (y’ 0)0) V2 2 i + 4 0
10 [—zgﬂ(—z) +2 gﬂ(—z)l,
: 2 T R S S
where V=V, +«iV,, V' =p ——, 0 = g, + k;q,, M = kym, 0y = M/\/Qf, | = \/65 and g is the Stieltjes transform of FF"

---------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

i ko= E [06()],x, = E [26(2)], K, = E [0(2))] — 2 — k7 and 2 ~ #(0,1,)

Then in the high-dimensional limit:

A A
: o =lE ) — )P Lsing = 50 + Egy | Z (1:03) £ (3.10.0D)|
: 0 p M*
Wlth (y,/’l)N/V(<O>,<M* Q*)] Wlth a)()*=M*/ Q*faa)l*: Q*é

... and recently proven in full generality by [Dhifallah, Lu, "20]



A classification task

Generalisation error

Training loss

- Logistic loss
- Square loss

p/n




A classification task

Generalisation error

i . : - Logistic loss
0.6 —— Square loss
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1 1

Training loss
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—
N
w -
N
(93]

p/n

. : : - [Rosset, Zhy, Hastie, '04]
Implicit reqularisation of gradient descent INeyshabur. Tomyoka, Srebro, "15]

As A — 0, in the overparametrized regime,
Logistic converges to max-margin, ¢, converges to least norm




Generalisation error

Generalisation error

Asymptotics accurate even at d=200!
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Regression task

£ loss

Classification task

logistic loss
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Generalisation error

Gaussian projection

Orthogonal projection

Gaussian projection Orthogonal projection

Optimal A Optimal A

Generalisation error
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ayer: random Gaussian Matrix
ayer: subsampled Fourier matrix



Generalisation error

Generalisation error

Regularisation & different First Layer
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The Unreasonable Effectiveness of Structured
Random Orthogonal Embeddings

Krzysztof Choromanski * Mark Rowland *
Google Brain Robotics University of Cambridge
kohoralRgong™ e.com mr50423cam.ac.uk
Adrian Weller

University of Cambridge and Alan Turing Institute

aweeshkcam.ac.uk
- |
Nips '17



Logistic loss, no regularisation

0.50+

0.457

©
N
Ce

o
w
4

104J9 uoljesijelausn

o
W
Q




Phase transition of perfect separability

A modern maximum-likelihood theory for

A high-dimensional logistic regression Gaussian
40 Pragya Sur and Emmanuel J. Candes Orthogonal
* MLE does not exist
30
S
20
10 \separable
MLE exists . : :
0 o4 05 06 0.7

0.1 0.2 0.3 0.4
K ~ [ Theory ‘65

Generalize a phase transition discussed
by [Cover '65; Gardner '87; Sur & Candes, '18]



We now see over-parametrisation does not hurt, but why?



Bias-Variance reloaded...

Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime

Stéphane d’Ascoli ' Maria Refinetti*' Giulio Biroli' Florent Krzakala '

ICML | 2020

Thirty-seventh International Conference
on Machine Learning




Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime

Stéphane d’Ascoli *' Maria Refinetti "' Giulio Biroli' Florent Krzakala'

e N vector X; € R4 drawn randomly from A(0,1 )
. nlabels y; given by a function yl.o = f(x - %)

A= R Two-layers neural network with fixed first layer F

Square loss




Generalization g Bias + Variance
Error



] o 2 Bias
EBias = L ((B, ) — X}Eéﬁ [f ("’}D (Unavoidable error)
Generalization — Bias + Variance
Error




i . 5 Bias
EBias = L ((B, ) — x}hé,e [f (“’)D (Unavoidable error)

Generalization — Bias + Variance
Error
\ 4
Variance Variance
Sampling Initialization:
(Finite training set) Choice of the

random features

e = E [2|E[f@)]'] - & [f@)]]

X |9 |¢




Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime

Stéphane d’Ascoli*' Maria Refinetti'' Giulio Biroli' Florent Krzakala '

All these terms can be computed exactly using random metric theory & statistical physics methods

(See paper)

It wns showr m [11] that the raadom featires model 13 equnvalent, m the lngh-cmensional s of Assimprion
2. tnoa Ganssan eavanate maodel m which the activation funchion o s replaces as:

(e x.. ol'X
L1 [T | Hhe *Rpa k) ’
a |\ /D ) TR TS b W, (49)

with W'<) ¢ RV*F W",? ~ N0, 1) and po, ¢ and ., defined in (20). To simplify the caleulations, we taks
e = [, which amounts 1o adding a constant term 1o the activation function 7.

Thizs powerful mapping allows to express the quancitice U, V. We will not repeat their calrulerions here: the only
ditference Leve is 8% whiek caries extra indices &, i due to the diferent intialization of he random features
B®) 1o our cese,
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» Complexity

Bias decreases and has a phase transition at interpolation

Noise & Initialitation variances diverges at the peak...

... but decay later on (self-averaging!
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See also: [Geiger, et al, ’19, Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, ’19,
Ascoli, Sagun, Biroli 20, Lin & Dobriban ’20, Adlam, Pennington ’20]



Neural networks and the bias/variance dilemma
S Geman, E Bienenstock, R Doursat - Neural computation, 1992 - MIT Press

Feedforward neural networks trained by error backpropagation are examples of
nonparametric regression estimators. We present a tutorial on nonparametric inference and
its relation to neural networks, and we use the statistical viewpoint to highlight strengths and ...

v D9 Cited by 3819 Related articles All 28 versions
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Figure 16: Total error, bias, and variance of feedforward neural network as a
function of the number of hidden units, Training :s by error backpropagation.
Figure 13: Nearest-neighbor regression for kandwritten numeral recognition. Fur o lixed ufuulw! ol Jidden uu.ilf, t'lu.' runbre of iterations of the buckpop-
Bias, variance, and total ertor as a function of numher of nei ghbors. agation algorithim is chosen to minimize total error.




Reducing the variances by ensembling

Averaging many two-layer networks
with different random features should reduce the variance!
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e
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[See also Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, *19]
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Stochastic Gradient Descent



MANY DIRECTIONS EXPLORED IN MY GROUP

Study of energy landscape

Kernel vs Neural nets

Alternative to back-propagation

Direct Feedback Alignment

W, Wy

b - - of e - -y

W, W

- - -
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e LK)
e XXX X
T’f—[oooooo]

Rigorous approach
to replica method

B

Dynamics of learning in NN
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Bias-Variance trade-off:
Reasonable expectations...

Bias-Variance trade-off




Two-layers teacher-student problem

The teacher generates a dataset...

O

.M hidden units
- /?
. <_——J¢
\ 1 \ ¢

- 0p v*

Inputs x# € R? are i.i.d. Gaussians
M %
wkx
Output  @(x, 6*) = Z vio =z
" Vd
Label y" = ¢(z",0%) + oC* TN

Additive
output noise

d — o©
Large dimensional vector

... and the student learns from it

K hidden units

AN
T

¢

Trained by SGD on the quadratic error:

1
E(Ha .X) — 5(¢(X, 9) o y)Z

M,K = O(1)

Finite-size hidden layer



On-line gradient descent, one sample at a time...

PHYSICAL REVIEW E VOLUME 52, NUMBER 4 OCTOBER 1995

On-line learning in soft committee machines

David Saad! and Sara A. Solla?
! Department of Physics, University of Edinburgh, King's Buildings, Mayficld Rocd, Edinburgh EHY 3JZ, United Kingdom
*CONNECT, The Niels Hohr Institute, Blegdamsdvej 17, Copenhagen 2100, Denmark
(Received 4 April 1995)

The problem of on-line learning in twe-layer neural networks is studied within the framework
of statistical mechanics. A fully connected committee machine with K hidden units is trained by
gradient descent to perform a task defined by a teacher committee machine with M hidden units
acting on randomly drawn mputs. The approach. based on a dircct averaging over the activation
of the hidden units, results in a set of Hrst-order differential equations that describes the dvnamical
evolution of the overlans amene the various hidden units and allows for a computation of the
generalization ¢
provide a power
learming scenari
convergence of t

Dynamics of On-Line Gradient Descent
Learning for Multilayer Neural Networks

PACS number(s

David Saad® Sara A. Solla'

Dept. of Comp. Sci. & App. Math. CONNECT, The Niels Bohr Institute
Aston University Blegdamsdvej 17
Birmingham B4 7ET, UK Copenhagen 2100, Denmark
Abstract

We consider the problem of on-line gradient descent learning for
general two-layer neural networks. An analytic solution is pre-
sented and used to investigate the role of the learning rate in con-
trolling the evolution and convergence of the learning process.




... our rigorous proof just took 25 years (NeurlPS ’19)

Dynamics of stochastic gradient descent for two-layer
neural networks in the teacher-student setup

Sebastian Goldt, Madhu S. Advani, Andrew M. Saxe, Florent Krzakala, Lenka Zdeborova

(Submitted on 18 lun 2019 (v!), last revised 27 Oct 2019 (this version, v2))

Deep neural networks achieve stellar generalisation even when they have enough parameters to
easily fit all their training data. We study this phenomenon by analysing the dynamics and the
parformance of over-parameterised two-laver neural netwaorks in the teacher-student setup,
where one network, the student, is trainad on data generated by another network, called the
teacher. We show how the dynamics of stochastic gradient descent (SGD) is captured by a set of
differential equations and prove that this description is asymptotically exact in the limit of large
inputs. Using this framework, we czlculate the final generalisation error of stucent networks that
have more parameters than their teachers. We find that the final generalisation error of the
student increases with network size when training only the first layer, but stays constant or even
decreases with size when training both layers. We show that these different behaviours have
their root in the different solutions SGD finds for different activation functions. Our results
irdicate that achieving good generalisation in neural networks goes beyond the properties of
SGD alone and depends on the interplay cf at least the algorithm, the model architecture, and
the data set.




ODEs are accurate even for small dimension

100 M=4,0=0.01,n=0.4
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a =time/d




Implicit regularisation of SGD

>

All neurons find relevants features,

and the second later average them!
(As in the previous section)

No overfitting even when K>M !
(Student larger than teacher)

Which neurons learn which neurons an example with M=2, K=5:

1.0 Rin 1.0 .
0
1
0.5 ~ D 0.5 .
3
- WL ®
0 1 '
n

2 %
- | | - Teacher Student
0 1 2 3 4
k

http://github.com/sgoldt/pyscm



SGD learns more complicated functions over time

(Aka “the specialisation phenomenon?)
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f(x) = sign(x), glx) = g(x) = erf(x/\/z),M =35,K=3,n=0.005



SGD learns more complicated functions over time

(Aka “the specialisation phenomenon?)
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f(x) = sign(x), g(x) = g(x) = erf(x/\/z),M =5, K="7,n=0.005



Conclusions

Some examples of exactly solvable models of statistical machine learning
(Using rigorous and non-rigorous methods from statistical mechanics)
These models shed lights on many interesting phenomena

® \Worst case versus typical

® Implicit regularisation (small I2 norm solutions, large margin)

® Divergence of the generalisation at the interpolation peak

® | arge 2-layer networks display some “self-averaging” effects:
Over-paramerization helps in reducing the variance

® Complete & explicit Bias-Variance decompositions
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Many thanks to the team(s)....
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http://florentkrakala.com

We want you in Switzerland!
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INFORMATION, IEARNING B FHWSICS LAB.

| just created the IdePHICS lab. in EPFL
We are looking for talented postdocs & students, send me a mail!




