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L earning Interaction Laws

Problem: Given observations of trajectories of a dynamical system of interact-
ing agents, learn the interaction rules.

Motivation: particle-/agent-based systems ubiquitous in Physics, Biology, so-
cial sciences, Economics, ... Beyond model-based interaction rules.

Further goals: hypothesis testing for agent-based systems; transfer learning;
agents on networks; collaborative and competitive games.

Renewed interest in learning ODE’s and PDE’s in Applied Math and Engineer-
ing e.g. S. Osher, H. Shaeffer, N. Kutz, Y. Kevrekidis, D. Giannakis, C. Shi
tte, R. Ward...; also in the ML community, e.g. Battaglia, Tenenbaum et al.,
especially in view of applications to control/reinforcement learning.

Newton:

“That force by which
the moon is held back
in its orbit is that very

force which we

"

usually call ‘gravity’.

From https://www.youtube.com/watch?v=glhn7WmXWVY Felix Munoz, https://www.youtube.com/watch?v=OxYn3e_imhA




Estimation/Learning for ODE systems

Suppose we have a system driven by of ODEs in the form
x(t) = f(x(t)) ,xcRP f:RP - RP
and we are given observations of positions and velocities
(x™ (1)), %™ () ) 121, Lom=1.... 01

where:
O=t1 < --- <t =1
m indexes trajectories corresponding to different initial conditions at t; =0

Objective: construct an estimator f that is close to f.

No randomness: this is an approximation problem.

Randomness: this is a statistical problem. Sources of randomness:
- initial conditions x(0) are random, e.g ~i;.q o, a prob. meas. on R:
- the observations are corrupted by noise.



Nonparametric regression

Suppose we have a system driven by of ODEs in the form
x(t) = f(x(t)) ,xeRP f:RP - RP
and we are given observations of positions and velocities

(x™) (t7), %™ (1) )1=1.. Lom=1....M

where:
O=t1 <--- <ty =T
m indexes trajectories corresponding to different initial conditions at t; =0

Objective: construct an estimator f that is close to f.

Given (x("™) (), %™ (t;))i=1.... Lim=1.... 0, With x™(0) ~iiq. po, we want to
approximate the unknown f in x(¢) = f(x(?)).

Possible approach: regression. In regression one is given pairs

{(Z’i7 f(ZZ) —|_ TI’L) ?:1 7W1th Z; ~i.i.d. /07

p a probability measure on RP and 1 independent noise, and outputs an esti-
mator f,,.



Nonparametric regression

Suppose we have a system driven by of ODEs in the form
x(t) = f(x(t)) ,xeRP f:RP - RP
and we are given observations of positions and velocities

(x™) (1), X" (t)))i=1.... Lom=1....M 5

where:
O=t1 <--- <ty =T
m indexes trajectories corresponding to different initial conditions at t; =0

Objective: construct an estimator f that is close to f.

Map our problem to regression? z; = x(™)(¢;) and f(z;) = x™)(¢;) (so i runs
over the product of the index sets for [ and m). Warning: no independence in [.

Even if we pretended to have independence, without further assumptions on f,
besides s-Holder regularity, the best attainable rate is n~ 2+D, where n = LM
(L observations in each of M trajectories) and D = Nd (N agents in R?).

For a system of N agents in RY, D = Nd is typically very large, and the rate
n~ 2s+D0 unsatisfactory. Further assumptions are needed for better rates.




A widely used model:
N
%" = = > ol = x D" -
=1

Given observations {(x;,x;)}Y_; at different times {t;}~, and/or for different
initial conditions {x(")(0)}M_. we want to learn the interaction kernel ¢.
Different limits: N — 400 (mean-field limit, joint work with M. Fornasier and

M. Bongini), M — +oo (joint current work with F. Lu, M. Zhong and S. Tang).

2T

Interesting extensions to:
higher-order systems,

stochastic systems, | \ ;\
agents of different types, T
varying environment. L NN/

| |
Coord. 2 of x;(t)
—)
Coord. 2 of x;(t)
)
5o

Second-order prey-predator model.
Left: true trajectories; Right: trajec-
tories with learned interactions.
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—
8o

- Coord. 1 of xl(t) - 7 Coord. 1 of %;(t) »



The Mean-field limit i

Rewriting

- '([|x; —xir|])
X; =~ > ollxi — xir|]) (xir — x5) = N > T — 0| (x; —%41)

v/ v/

we see this is the gradient flow of the energy Jn (X) = 5& Z?fi,:l O (|]x; —x471]).

Considering the measure p¥ () = + Zf\;l Ox,(t), we may let N — 400 to obtain

(under suitable regularity assumptions on ®) the mean field equations

Opp(t) = =V - ((‘ (I)/,(‘” ”H) *M(ﬂ) u(t)> , 1w(0) = po -

This is also a gradient flow for the energy J (1) = Jpaxa @(||x —y||)dp(x)du(y)
on the space of probability measures with Wasserstein distance.

Estimation in the limit as N — oo: studied in Inferring Interaction Rules from
Observations of Evolutive Systems I: The Variational Approach, M. Bongini, M.
Fornasier, M. Hansen, MM, published in M3S, 2017



Measures on pairwise distances

Observations: {(x;,%;)(™) (tl)}i\f:’f’lﬂi __1, where x(™)(0) ~ pg for some p on

RY. Note that each state of the system is in R%V.
All we want however is the one-dimensional interaction kernel ¢ in the equations

N

K0 (6) = = S 0% () — ) e (1) =" ().

/=1

ri (@)

For a fixed t = t; and m, we cannot solve for ¢(r;;): N(N —1)/2 unknowns and
only dN knowns (typically d < N). We have to leverage observations in time.

At time scale [0, T], we define the probability measure on R :
L N

1 1
p%(r) = E:I:(O)N,uo T Z m Z 5T§;7)(tl)(7“) :

=1 \ 2/ 4i'=1,i<i’

average over  average over  average over § on Ry
initial observations  pairs of agents at every observed
conditions in time pairwise distance

! Nonparametric inference of interaction laws in systems of agents from trajectory data,
Fei Lu, Ming Zhong, Sui Tang, and MM, PN.A.S., 2019



Example: L-J kernel and p7

Example. The Lennard Jones force is the
derivative of the potential

12 o\ 6
Via(r) =4e((2)" = (9)°).
Right figure: In blue the LJ ¢,
in red an empirical estimate of pk,

for a system of N = 7 agents.
Two cases: L,T small, and L,T" large.
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The estimator

Observations: {(Xgm),kgm))(tl) évz’ﬁ’l]\il .1, for M different initial conditions
i.i.d. ~ ug, from

%" Z¢ 1™ (1) = <™ N 0 (1) - <™ (1) = f¢<<§m> (1)).

linear map applied

Consider the emplrlcal error functional to unknown ¢
| LMN
L) = oy 2 670 - L)

Our estimator is defined as a minimizer of £, js over ¢ € H, a suitable hypoth-
esis space of functions on Ry, with dim(#H) = n (with n = n(M)):

; — in & :
O v = arg gél% L. (@)

For ‘H linear subspace, this is a least squares problem (Gauss, Legendre); the
subspace serves as a regularizer.



Coercivity condition

1 & m) (m) 2
Erm(e) = oy 2o &™) = f ™ @)
l,m,i=1

} = in & .
¢L,M,”H arg gél% L,M(SD)

We shall assume that the unknown interaction kernel ¢ is in the admissible class

Kr.s:={p € C*(Ry) : supp.¢ C [0, R],sup,c(o g lo(r)| + &' (r)] < S}.
Coercivity condition: Vo : ¢(-)- € H, for cp n

1 1 )
cr,nmlle() - ||2L2(p%)§ NT ZZJLEHN 2@(%‘/ (t1))r s (tz)H :

Lemma. Coercivity = unique minimizer of limp;_, o, £ () over ¢ € H
p— et — conmullel):—00) - [2aipn) < Eroelp — 0)

The coercivity constant cy, n 34 also controls the condition number of the matrix
in the least squares problem yielding ¢, nr 3.



Blas/variance trade-off

| LM
o . (m) (m) 2
Epm(p) == IMN Z HXz‘m (t1) — fw(Xim (tl))‘ ;
l,m,i=1
¢r,my = argmin & p () -
peH
+ coercivity
bias decreases as dim H increases; depends only on
approximation properties of H Kr s L?(pk
variance increases as dim A increases, for fixed M; - RRLTNN
measures randomnesso of ¢ € ‘H ¢
bias
Pick dim ‘H an increasing function of M, P
to attain the minimum of the sum of = Janance
bias (squared) and variance. ¢ 2

Unlike regression, we do not have access to values of ¢, but only observations
that are linear functions (via fy) of ¢; coercivity implies stable invertibility.



Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

R C log M 741
E ). — <) . 5 . T < .

- The good: Rate in M is optimal, in fact even optimal in the case of

regression, where we would be given (r,,, ¢(r,,))M_,.

- The bad: no dependency on L. Numerical examples: suggest in some
cases that effective sample size is LM = #obs.

We choose H,, to be the space of piecewise linear functions on a uniform partition
of cardinality n of [0, Ryax] (estimated supp.p? ), for n = n,.

In the end solving the minimization problem is a least-squares problem in n = n,
dimensions. Algorithms for constructing the LS matrix and computing the
estimator run in time O(N?Ld - M + Mn?) (online versions also possible).



Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

R C log M 741
HE ). — <) . 5 . T < .

- The good: Rate in M is optimal, in fact even optimal in the case of

regression, where we would be given (7,,, d(r,))M_;.

Learning rate

-5.5 ‘
- The bad: no dependency on L. . ® errors
6~ e — slope -0.36/-
65| N
S .
%7 .
Example. The Lennard Jones kernel .. .
is not admissible, yet since particles rarely 5 haN .
get very close to each other, we obtain a 85/ el

1 1 1 1 1 1 1 1 \\\\,
-9
12 13 14 15 16 17 18 19 20 21
log,(M)

convergence rate close to optimal.



Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

C (log M) T
CL,N,H M .

E[ll¢r,m5,. () - =) - l2(om)] <

- The good: Rate in M is optimal, in fact even optimal in the case of

regression, where we would be given (7,,, d(r,))M_;.

- The bad: no dependency on L. o
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Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

R C log M 741
E ). — <) . 5 . T < .

cr,N,# can be as small as NN_Ql, but in fact we conjecture that under some
general conditions it is independent of N when evaluated on compact subspaces
H C L?(pL). We can prove this in special cases, for L = 1 and g exchangeable
Gaussian.

Uniform Spherical Uniform
—N/(N-1) 2 —N/(N-1) 2

0.16 Gaussian |
Soaf —N/(N-1)2

10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30



Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

A C  [log M\ >
Elll¢r, v, () - —o(-) - HL2(pL)] ( Oi ) |

CL,N,H

Theorem. Suppose L = 1, N > 1 and assume that the distribution of X(t1) =
(x1(t1),...,xn(t1)) is exchangeable Gaussian with cov(x;) — cov(x;,x;/) = Aly
for some constant A\ > 0 (and all ¢,7"). Then the coercivity condition holds
in LQ(pZ}) with constant c; = %, and on any compact hypothesis space
H C L?*(pk) with a constant ¢y n 3 = cy independent of N.

Many significant generalizations possible guaranteeing coercivity.

On the identifiability of interaction functions in systems of interacting particles, Z. Li, F. Lu,
MM, S. Tang, C. Zhang, to appear in Stochastic Processes and their Applications,
arxiv.org/pdt/1912.11965.pdf




Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg, c1, R, S)

C (log M) T
CL,N,H M .

E[ll¢r,m5,. () - =) - l2(om)] <

This result may be extended to heterogeneous agent systems (e.g. prey-predator)
[Lu, Tang, MM, on arXiV].

It may also be extended to multi-variable interaction kernels, depending on more
observables than pairwise distances, as well as second-order systems (work in
progress).

Learning interaction kernels in heterogeneous systems of agents from
multiple trajectories, F. Lu, MM, S. Tang, arxiv 1910.04832

8 Learning theory for inferring interaction kernels in second-order interacting
g agent systems, J.Miller, M. Zhong, S. Tang, MM, in preparation.




Errors on trajectories

Standard arguments yield bounds on trajectories between trajectories of the
true system and those of the system driven by the estimated interaction kernel.

Proposition. Assume g/b\(|| |- € Lip(R%), with Lipschitz constant Cp;,. Let

X (t) and X(¢) be the solutions of systems with kernels ¢ and ¢ respectively,
started from the same initial condition. Then for each trajectory

~ 2o [ 2
sup [K(1) = X (0 < 277 || X(0) — £ X000,
t€[0,T] 0

and on average w.r.t. the distribution ug of initial conditions:

E,[ sup [|X(t) = X(®)||] < C(T, CLip)VN[6(-) - —6(-) - [ 22(pr) -

te[0,T]

where C'(T, Cy,;p) is a constant depending on 7" and Chip,.



Opinion Dynamics

M =16 %107

1 2 3 4 S 6 7
r (pairwise distance)

Learning interaction kernels in heterogeneous systems of agents from multiple trajectories,
F. Lu, MM, S. Tang, ArXiv 1910.04832, submitted.




Examp\es Opinion Dynamics
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initial condition

initial condition

Examp\es Opinion Dynamics

= (driven by ¢) X (t) (driven by ¢)
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time interval part of training time interval part of training



Examp\es Opinion Dynamics

. (driven by ¢) X(t) (driven by qb)
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(pairwise distance)

Examples: Opinion Dynamics

10 12 14 16 18 20

Unif(|—0.15,0.15]) noise in the observed positions and velocities.

Observing only positions but not
velocities: the numerical approximation
error (which depends on L) constrains
the ability of estimating the

interaction kernel.

From now on, all experiments will not
have observed velocities.

4Rel Err, Finite Differenc
® Rel Err, True Derivative
—Slope=-0.29
-- Optimal decay

3.5

4.5



Exam p\e Z2nd Order systems &
N al i
miit; = FY (24,&) + Z N, . Q%kz/ (73 )i + ¢kzk1/ (riir )Tiir )

< ‘N energy and alignment
interactions

simple environment one kernel for each

(food, light, ...) — 01 &z = 1‘7g &z —- Z N 2 (bkzk‘l/ (T’m )Sml pair of interacting

agent types

E B : . . .
(ko VS Deg, X(t) (driven by ¢) X(t) (driven by ¢)
<107 a0 x10! 30F ( sof ( 7
‘ 7 ol b ‘ ‘ ' v 1015 25| i \ a5l |
T o
6 M 20 20 .
-01 : | 15 15 =
5 I
-0.2 \ 100 o 1.0 1.0 _
W\“ /\ 4 03 [ \ T 05) 05+ 0
\ -0. | E 21
Nanos” \ 3 [ < 00 0.0 -
\ -0.4 / N
\ - / W\ 0.05 -05F -05 -
\ 2 /// R 1.0 1.0 T
. 05 \ EXIS 10+
\\\ 1 06 4 \\\\ A5F A5+
; - 0o ; — - 0 20 20
2 3 4 5 1 2 3 4 5 I L I I I | | . 0
5 1 JERR 05 00 05 1.0 1.5 20 25 30 05 00 05 1.0 15 20 25 30
10 10 10 2/80@aqx10
0.12 = 0.7 3.0 / L(t)] 307 7/ %(t) 2T
] % 015 — —10] v \ : E—10]
0.1 o = } )
| ih 2y 008 20
J \ Prr Ty . T
0.08 [ 21 0.05 10122
| \ Prr -0 Pryr 0.06
0.06 | \ a0 P 10~ P
/ N\ 0 = 0
0.04 / \ 0.04 g 2T
1 S oo 0.0
/ \\ 0.05 g5
0.02 ) N
N 0.02 ) ) |
0 7 1 10f ; 1.0~ ; \ T
I I ;\(:*\4‘—’%—— —_— O I ' 0
1 2 3 4 5 0 02 04 06 038 1 20k 20
r (pairwise distance) r (pairwise distance) T . , . , , , L | | . . 0
0.5 00 05 1.0 15 20 25 30 05 00 05 1.0 15 20 25 30
Coord. 1 Coord. 1

Example 2nd order Prey-Predator system. Left: the interaction kernels and
1s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Fxamples: prey-predator systems 3
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Trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



Examples: prey-predator systems
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Trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



Examples: prey-predator systems
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Trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



Examples: model of phototaxis
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Trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



Jesting hypotheses for agent systems
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Example We want to test if a 2nd order system is driven by energy or alignment
interactions. Left: we learn a general model (with both types of interaction)
on a system with only energy interaction terms: we obtain ¢2A is = 0. Right:
learning on a system with only alignment term yields QASE ~ 0.

Example We want to test if a system is governed by 1st or 2nd order interac-
tions. We are able to tell the

_ . . True Learned as 1°t order Learned as 2"% order
dlfference I‘ellably, by teStlng 15t order 0.039 -+ 0.16 28 + 21
the predictions of the learned 274 order 3.1 +0.99 0.58 =+ 0.89

models on trajectories.



Emerging behaviors

Ming Zhong,
Jason Miller

Organized collecting stable patterns at large spatial /temporal scale.

Simple, local interaction kernels can learn to complex, organized behavior.
Most of the above is ill-defined, and quotes needed a.e.

Examples include flocking of bird, milling of fish, synchronization in systems of
oscillators (neurons, frogs, ...), etc...

In general difficult to characterize and predict; however if robust, we may hope
to recover them with systems driven by estimated interaction kernels.

Not only we are often able to recover them in general, but even predict them
correctly for each initial condition.

s,

Felix Munoz, https://www.youtube.com/watch?v=OxYn3e_imhA BBC Blue Planet




Emerging behaviors: flocking — oresens

The governing equations of Cucker-Smale-Dong (*) dynamics,

IEEE Transactions on
Automatic Control, 2010.

X; = —bi(t)%; + Z @i (x) (%o — %3) + f(l[xi — %0 |]) (xir — x3)] -

Here a; /(x) = H(1+ H_xzz —3|1?)77; b; : [0,00) — [0,00) is a bounded and
uniformly continuous damping function, and f : (d,00) — [0,00) is a non-

increasing C' repulsion function integrable at +oo0.
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Emerging behaviors: Fish mill patterns

The governing equations of fish milling dynamics in R? of (*) are

(*) Y. Li Chuang, M. R. D’Orsogna,
D. Marthaler, A. L. Bertozzi, L. S.
Chayes, Physica D: Nonlinear Phe-
nomena 232 (2007)

mik; = ax; — B||%xi|[*%; — VU;

with U; a potential for the interaction of the i*" agent with the other agents:

U = S0 (—Cue~Iimxull/ta 0 e~ llximxull/tr),
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Parametrized Families of Interaction Kernels

We consider the 5 innermost planets and the Sun in our solar system, moving
according to Newton’s law:

N
. G
/=1

|50 — %43

where m; are the unknown masses, and G is the known gravitational constant.

We do not know that the agents follow a common law, modulo parameters
(mass), so we treat all of them as being of different type, with interactions ¢;;.

We will then discover the relationships between these interaction kernels, namely
that they are all multiple of 1/73, and the multiple is mass.

( : (

Ny ) Data-driven Discovery of Emergent Behaviors in ¥
i Collective Dynamics, &
Physica D: Nonlinear Phenomena, 2019

,,,,,



Discovering the parameters

5 —True 5 —True
10°°1 o 4051 =S
- Estimated ¢,,(r,) —Extended ¢,,

107 107 We are able to estimate
to identity, in a fully
nonparametric fashion,

3

107 107 L/re.

50 100 150 200 50 100 150 200

r (pairwise distance) r (pairwise distance)

We also estimate masses quite accurately.

Sun Mercury Venus Earth Mars
True Mass 1.9885 - 106 3.3-10°1 4.87 5.97 6.42 - 1071
Estimated Mass || 2.01-10°+1-10* | 3.35-1071+2.10"° 4.884+ 31072 6.05 +4-102 6.52-10"1+5-1073
Rel. Err. 1.1-1072+7-103% | 1.4-1072+6-10"° [ 4-107°+4-103[1.3-10°+6-10"2 | 1.6-1072+8-103




Gravity Kernels - learned independently

Estimated interaction kernels between Sun, Mercury, Venus, Earth and Mars,
®;i’, as a function of pairwise distance.
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Gravity Kernels, re-estimated

Estimated interaction kernels between Sun, Mercury, Venus, Earth and Mars,
®;i’, as a function of pairwise distance.
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Trajectories from gravity kernels

Trajectory predictions are accurate (relative errors O(10™%) with M = 500
and daily observations for about 6 months), exhibit stability, and approximate
energy conservation.
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Trajectories from gravity kernels

Trajectory predictions are accurate (relative errors O(10~%) with M = 500 and
daily observations for about T' = 6 months), exhibit stability, and approximate
energy conservation, even for longer times (below, T ~ 2.5yrs).

0,7 T, Ty)
meanjc: Training ICson x || 6.6-107*+2-107° | 3.9-1073+£2-10"*
meanic: Training ICson v || 3.9-10724+1-10"* | 2.13-1072+8-10*
stdic: Training ICs on « 5.107*+1-107% | 27-1073+4-1074
stdic: Training ICsonwv || 2.5-1073£3-10=* | 1.30-1072 £ 2-10~*
meanjc: Random ICson x || 6.8-107%+2-107° | 3.9-1073+1-10~*
meanic: Random ICson v || 39-107°+1-10"% | 2.13-1072+6-10"*
meanic: Random ICsonx || 5.3-107*+1-10% | 2.5-1073+3.10~*
stdic: Random ICsonv || 26-1073+4-10~* | 1.2-10724+1-1073




(Generalizations

The theory has been extended to:

- multi-type agent systems;

- second-order systems;

- possible interactions with simple environments;

- parametrized families of interaction kernels;

- interaction kernels depending on multiple variables (beyond pairwise distances).

With suitable definitions and assumptions, the results we obtain appear optimal,
with a rate depending on the total number v of distinct variables inside the
interaction kernels, over all pairs of agent types, e.g.:

R C logM 283—1)
E ). — e ) . o0 T < .

This is joint work with J. Miller, M. Zhong, S. Tang (preprint appearing shortly).



The Stochastic case

1
dxip = > dlIxje — xial) (X, — Xi¢)dt + 0dBi g

This is joint work with F. Lu and S. Tang, Learning interaction kernels in
stochastic systems of interacting particles from multiple trajectories, arXiv, 2020.
We are currently studying convergence in the stochastic ergodic case as T" — oo.

Note that in the stochastic case we do not (cannot!) observe velocities, but only
positions. We have studied carefully the dependence on the observation time
gap At = tl_|_1 — tl = T/L:

. . n T
or,T.m1 — Dl 2(por) S 07,00, — @l L2(pp) +C (\/ 76\ L) ,

where qu,oo,H is the projection of the true kernel ¢ onto H.



The Stochastic case

Note that in the stochastic case we do not (cannot!) observe velocities, but only
positions. We have studied carefully the dependence on the observation time
gap At = tl_|_1 — 1t = T/L
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tochastic Opinion
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Stochastic Opinion Dynamics
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Stochastic Lennard-Jones
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Conclusions

- Learning agent-based type system may be performed efficiently, nonparametri-
cally, at least in special cases, notwithstanding the high-dimensional state space.
- Important generalizations: 1st- and 2nd-order, multi-type; more general inter-
action kernels.

- Hypothesis testing; transfer learning; dictionary learning for dynamical sys-
tems.

- Many open problems. E.g.: quantifying information needed for learning;
stochasticity; hidden variables; general interaction kernels; ...

- Many applications: biological systems, particle systems, learning forces in
molecular systems, ...

Nonparametric inference of interaction laws in systems of Learning interaction kernels in heterogeneous systems of

agents from trajectory data, agents from multiple trajectories,

F. Lu, S. Tang, M. Zhong, MM, P.N.A.S., July 2019. F. Lu, MM, S. Tang, ArXiv 1910.04832, submitted.
Data-driven Discovery of Emergent Behaviors in Learning theory for inferring interaction kernels in
Collective Dynamics, second-order interacting agent systems,

MM, J.Miller, M. Zhong, Physica D, 2020. J.Miller, M. Zhong, S. Tang, M. Maggioni, in preparation.
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