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Overview

* Introduction
- to the LHC the CMS Detector and their upgrade programs
- to the basics of machine learning and a touch of its history within particle physics
- to the pattern recognition problems that need to be solved in modern particle physics

* Turning particle physics pattern recognition into a learnable task
The relationship of pattern recognition algorithms to graphs

Graph neural networks as engines for pattern recognition

Turning operations on graphs into particle physics reconstruction tasks
Examples of successful differentiable reconstruction algorithms

A pause to discuss the limitations of these methods

* Where to go next?
- Achieving tiny networks with meaningful loss constructions and activation functions
- Avenues for applying this to particle physics pattern recognition
- Concluding remarks
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A Brief Introduction to the Large Hadron Collider (LHC)
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Two counter-rotating beams of bunched protons each with an energy of ~7 TeV.

Bunches pass through each other at a rate of 40 MHz, we record a few kHz of that
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The CMS Detector
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Upgrading the LHC to the High Luminosity LHC
LHC / HL-LHC Plar HiLum y
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* LHC will be upgraded to deliver 5-7x more luminosity in the mid 2020s
- Driven by new physics objectives to measure detailed properties of the Higgs Boson,
- By end of Phase-1 there will be significant radiation damage to sub-detectors throughout
CMS, and the upgraded accelerator delivers an even more challenging environment
* The accelerator and experiments will all need to be retrofitted and upgraded

to approach this challenging 10 year task.
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Corresponding Upgrades to CMS

Muon systems
Trigger & DAQ * New DT & CSC front- & back-ends
L1 Track trigger p> 2 GeV e - Additional GEMs over 1.6 < |n| < 2.4

L1 accept rate 750 kHz * Extended coverage to |n| =3

DAQ design throughput 44 Tbis @0 ’
HLT output rate 7.5 kHz L

Barrel Calorimeters

rr <xeyy S ' b, + ECAL full crystal granularity
MIP timing detector i readout at 40 MHz with
« Target time resolution = 30 ps precise e/y at 30 GeV
(effective pile-up 200 W 50) « Upgraded ECAL & HCAL

« Barrel: crystals + SiPM back-ends

embedded in tracker support

« Endcap: avalanche diodes Calorimeter endcap

« 3D shower topology with

Tracker precise timing

 Increased granularity for both
strips and pixels
» Strip tracker read-out at 40 MHz

« Extended coverage |n| = 3.8 N M

|

* To deal with this increased IuminoSity the CMS detector is being significantly
upgraded, improving its radiation tolerance and granularity.

* Utilizing this massive amount of data demands even more of our algorithms.
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ML and Neural Networks in a Nutshell

* Goal: find the parameters w of a function F that best maps x onto y
- Do this by minimizing a chosen “loss function”
- ML is the set of numerical algorithms that solve this problem

* Neural Networks are a subset of these algorithms that are defined recursively
from inputs to outputs

- Any mapping function F can be approximated by a sufficiently large NN

* Since inputs are variable and relationship to output is learn, including new
information is very straightforward, as is scaling up computation to more data

particle four-momenta signal or background? important, each layer has
\? non-linear ‘activation’!
x — O
@
= Y= Fgz() 7 A N Y
input output / I
space . _ space X — O '\ /‘
mapping weight t Dutpuks
function space Inputs Hidden layers
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Backpropagation and training of neural networks

 Each node in a network makes some

prediction
- Each predictions error can be calculated using
the chain rule (80.8,) |

» Encode task to be done in a ‘loss’ function .| *
and minimize that loss

- Recursively update parameters based on
estimated error at each pass over the data

Forwardpass Backwardpass
z 4L — dLde
? i
/ %-$4
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ML in Physics: Electromagnetic calorimeter energy corrections

* Boosted Decision Trees (BDTs) have had a long history of use within the
CMS Collaboration
- Relatively fast inference and training times before 2012
- Functions by making progressively finer cuts in the input space

* Use average over numerous binary-cut based selections to generate a
classifier
- This can be used to discriminate categories or to regress quantities

- Can handle position dependent corrections as in CMS ECAL, with enough data
x10° - x10°
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Higgs to yy Discovery

* Usage of ML techniques led to an
analysis workflow that is easier to
describe and maintain

- Training based workflow instead of re-
optimizing cuts by hand
- Trade some abstraction for ease of use

* Improved sensitivity

- At the cost of a lot of jokes about “BDTs all
the way down”

* Demonstrable control of systematics
related to multivariate modeling of the
input data
- This is now the status quo

http://cds.cern.ch/record/1460419
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Current usage and performance of ML regression in CMS

* Coming to modern times: the ML-based analysis and energy reconstruction
IS being used to perform precision measurements
- Energy scale uncertainties for photons understood to ~0.1%

* ML-based regressions a critical piece for modern Higgs measurements!
* ML techniques are well-adopted in HEP, what more can we do with them?

Energy scale correction

CMS 35.9 fb'! (13 TeV) CMS Preliminary https://cds.cern.ch/record/2691211
1003 . Run 1:5.1 fo'' (7 TeV) + 19.7 fo™ (8 TeV) —— Total Stat. Only
2016: 35.9 fb™ (13 TeV)
1.002 |- N Total (Stat. Only)
T ] Run 1 Hoyy = 124.70 + 0.34 ( + 0.31) GeV
1.001 §—| — Run 1 H— ZZ*— 4l —— 125.59 + 0.46 ( + 0.42) GeV
M’E i Run 1 Combined — 125.06 + 0.29 ( + 0.27) GeV
A { .
i T 2016 H—yy H—— 125.78 + 0.26 ( + 0.18) GeV
i &—1:;::!:1
0.999 | , : - 2016 H— ZZ*— 4l — 125.26 + 0.21 (+ 0.19) GeV
i (3 .
- O0<|n|=1 e 2016 Combined — 125.46 + 0.17 ( + 0.13) GeV
0.998 |- 1.0<|n|=<1.2 Fe- ] i
I 1.20<|n|=1.44 +ed Run 1 + 2016 o 125.35 + 0.15 (+ 0.12) GeV
j Nonlinearity syst. unc. |
0997 | II|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II
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P (GeV) m,, (GeV)
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Particle Detection in CMS
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A view from the upgraded endcap calorimeter of the HL-LHC
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o detector readouts to describe
we’re going to do physics with this. them all.
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Modern detectors and data are significantly more complex

* Detectors are changing, they’re becoming more larger, more granular
- DUNE, the CMS High Granularity Calorimeter (HGCAL)
- HL-LHC Trackers + Timing Detectors

* They’re aiming for high performance in strenuous environments
- ILD aiming for electron positron collider, HGCAL for HL-LHC
- Readouts include precision timing information, but have to correlate x,y,z,t & E
- Detector performance depends much more on algorithmic physics performance

ILD Event Display (whole detector) HGCAL Event Display (one endcap)
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Imaging Calorimetry With HGCal

2 ]
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* Rough 6 million channels individually read out

- Provides sampling calorimetry with 50 instrumented readout planes

- Can capture the evolution of EM and hadron showers in space as well as time
« Dedicated timing readout with excellent precision for large energy deposits

- Higher-dimensional data leads to more easily discernible patterns

* Multiple reconstruction algorithms efforts ongoing to use this device _
3F Fermilab
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The cost of having more information:
Cross-referencing neutral and

charged precision timing information

CMS Simulation <u> =20
. Simulated Vertices

Overlapping photons in HGCal
F. Pantaleo CMS.|
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* While the computing costs of more data are clear, it takes significant human
time to engineer algorithms that take advantage of more data
- High dimensionality, while more sparse is far more difficult to reason with effectively
- For instance: thinking in projections often leads to designing algorithms that
mischaracterize some behavior
* The best approach by far, is to try to handle the detector information in its full
dimensionality, but humans are not well equipped to do that above 3D

- Moreover, each detector has its own unique geometry which has to be specifically

accounted for ” _
af Fermilab
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Exploiting granular information with machine learning

* Modern machine learning can determine important discriminating information
In the course of training if the input ‘shape’ is fixed

- Using convolutional neural networks for example, images are given as-is for training
examples, discriminating features encoded in filters and high-dimensional ‘latent spaces’

* However, many next generation particle physics detectors have irregular
geometries with zero-suppressed outputs
- Varying material with sparse sampling of energy deposits
- Requires different approaches to apply machine learning to this data /4-

fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 K—M
(5 x 5) kernel Max-Pooling (5 x 5) kernel Max-Pooling .
valid padding (2x2) valid padding (2x2) 4 ut)

T%i

---------

INPUT nl channels n2 channels n2 channels \‘

(28x28 x 1) (24 x24 x n1) (12x12 xn1) (8x8xn2)  (4x4xn2) '/

OUTPUT

n3 units
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Graph Neural Networks: Edge Convolution

18
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gagecons 72[1801.07829]
dge /.\o .//‘\o

node
Update xi = xi' by usmg edge features
* |.e. learned features of the edges that connects x; with its neighbors
o Still independent of ordering of points, but uses local geometry

‘Convolutional’ as the operation is applied point by point to obtain x’

These edge features and aggregation
steps mimic the functionality of loops ¢; @ @ ‘ ‘ 00

o . . Can set dim
with if-statements in them (i.e. hand- hyO @ Q . ‘ o of edge
written pattern recognition) feature vector

EEEEEN
Xg = D h@(xiaxj) X X
j{i.j)e& " -"
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Graph Neural Networks: Dynamic Graph Convolutions

00660 [1801.07829]

W 0000 ® x; = [ hei xj)
j:(i,j)e&
HEEENEN

X. X.
I J

he(xi,x;j) = hg(x;) No neighborhood info (only global)
he(xi,X;j) = hg(xj — X;) Only local information

he(X;, Xj) = B@(Xi, Xj — X; ) Combination of both

 Dynamic: Redo kNN after every update

e [he connectivity matrix changes after every update

T :
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Looking at graphs on physics detector data

* Tracks and clusters can also be described as connections between points

- We can then score these relationships between the detector data and select certain
associations in the graph that we want to keep.

* This results in a useful abstraction: finding points comprising helices in tracks
IS the same as points in calorimeter clusters

- Can we simplify our lives and find one algorithm which can handle these different
cases?

1000 ~
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E 47

X! "/ ;¢
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> ‘«\s"q'."‘ 77
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‘K:‘.’I :' 4
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layer

“same thing”’ .

200 A

01 , ; . ,
~1000  -500 0 500 1000
z[mml  collision point here particles going this way particles,going this way
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Putting it all together: a model for reconstruction

* With an preliminary model the answer seems to be “yes”
- S0 long as we are willing to accept some light post processing

* Basic steps:
- Define an input graph
- train an ‘edge classifier’ based on information sharing on that graph
- Apply edge classification scores to yield a subgraph of just the connections of interest

=]

—>
just raw hit selected links
information + a between hits
“‘guess” atthe | @ o o €, O

n Ji3 \ / EdgeCony Xj,;; K 7
grap ) eij,-
//‘7\ e/zc\‘

X, O i, . X,
X. " Jis Ji1

Jid4

x. x. https://arxiv.org/abs/2003.11603
Jis Jis
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Preliminary Tracking Results with a GNN

* Many selections applied to yield training set
- Important: sectorization and no missing hits

* These are “easy” tracks but this also early days for the these kinds of
network in HEP
- Applying GNN, assembling tracks -> 97% efficient relative to preselection
- Track-segment selection GNN executes significantly faster than Kalman filter

1.04¢ o—e—o—o—o

©
o

©
o

o
N

—e— total

—e— reconstructable
—e— barrel

—e— no-missing-hits
—e— Edge selection
—e— Split Graph
—e— GNN+CTD

N particles after selection / N total particles

o
[N)

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT [GeV]
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Reconstruction of a charged pion with edge classification

true negatives
true positives
false positives
false negatives

50 1 Correct noise (E = 24.33) B 50 - Correct noise (E = 24.33)
False signal (E = 6.58) o False signal (E = 6.58)
False noise (E = 2.45) N False noise (E = 2.45) —
Correct signal (E = 519.21) ;4% Correct signal (E = 519.21) © [
40! — T 40 | N/ |
N
'8 301 '8 30
S, S,
(. (.
) )
> >
(G 20 (G 20-
— —
10 10
0+ A 0
—200 -100 0 100 200 —200 -100 0 100 200
T. Klijsnma, S. Ghosh, x [cm] y [cm] |
LG, K. Pedro httpS://arxiv.org/abs/2003.11603
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layer [arb]

Simultaneous Reco & ID: Tau Lepton Example Prediction

. Hadronic Edges o T. Klijsnma, S. Ghosh,
LG, K. Pedro
EM Edges
=150 -100 =50 0 ] 50 100 150 200 =200 -100 y[c,:] 100 200
$& Fermilab
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layer [arb]

Simultaneous Reco & ID: Tau Lepton Example Truth

o . T. Klijsnma, S. Ghosh,
LG, K. Pedro
40 40
/’
‘Q ] X -
301 N 30 -
z
20 20 1
10 1 10 4
0 » 0
—1'50 —1'00 —5'0 (') 5‘0 10'0 15'0 260 —2’00 —1'00 (') 160 260
[cm] y [em]
Je. ;
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Edge Classification: Making a Clustering (I)

* In order to get calorimeter clusters, need to take the edges and convert to
groups of points

- In this case we just make a union of all the points with common edges of the same type
- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively

* The same network and processing can also be used on tracking

., | CMS Phase-2
Simulation Preliminary

40 A

Predicted hit types:
4 Hadronic Hit

¢ Electromagnetic Hit
+ Minimum lonizing Hit

Tau lepton decay
to charged and
neutral pions.

W
o

Layer (arb)

N
o
1

104 One color per cluster.

T. Klijnsma, S. Ghosh,
LG, K. Pedro -

—300

—200 —100

(I) 160 2(I)O 300
Global X (cm)
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Edge Classification: Making a Clustering (ll)

* In order to get calorimeter clusters, need to take the edges and convert to
groups of points
- In this case we just make a union of all the points with common edges
- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively
- Proof of concept achieved

* The same network and processing can also be used on tracking
CMS Phase-2_Simulation_ CMS Phase-2_Simulation_ CMS Phase-2_Simulation_

n 1] 0 T ] [ o]
3001~ Categorized as | 1 390 Categorized as ' ‘: L Categorized as :
| hadronic ] - electromagnetic {2001~ minimum ionizing B
- all tau lepton | o2s0f 1 150l h
2001 - N 1 i l
. [ decays |~ | =
c c 200 1 €
3 150l 137 {3 |
@) @) . { O 100} -
i 1 150 N - .
100} . - ] I i
- | 100~ B - -
i 2 i 1 9Or -
50__ 7 50__ _ :
Ozﬂmﬂmm. A e 0:1.. R 1 e O_HAL*.I._LHH.IL,L..f
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Epred / Etrue Epred / Etrue Epred / Etrue

T. Klijnsma, S. Ghosh, LG, K. Pedro .
J 2% Fermilab
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Object Condensation: a loss function for reconstruction

* Physics motivated loss function A
- Potentials with charges p—
- like charges attract, opposites repel ‘// '*

- points that should be associated attract
each other

- variable number of inputs and outputs

* The network is trained to predict the
‘condensation points’ of the input data

- Points within the data that are
representative of a whole object

=

0 -
20 A

30 -

* The condensation points can then be
used to collect points around them into
‘'segmented’ objects

- at this point we have created particles in an 50

event or clusters in a calorimeter 5 o 20 30 40 50 eo
https://arxiv.org/abs/2002.03605

40 A

50 -
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Object Condensation: Results

* Afirst reconstruction model has been developed and benchmarked
- Using a toy detector and comparing to a simplified implementation of particle flow
- Specifically - only a tracker and only an electromagnetic calorimeter

* Particle reconstruction efficiencies significantly improved for object
condensation
- Improved purities and resolutions (backup) across a range of multiplicities as well

2 - > B
< i —— Condensation S 1:____*______:------*------='""'j"'"':;::;;:;::::::::::::::::::::
% 1= — Baseline PF g 008 v B Foo
- F ) -
I ER 1-5 particles 0.96 =1t
- '_L'* ----- 6-10 particles -
1071 — — 11-15 particles 0.94FH
- N R e s C I
S _'-1‘-F*_"‘.-;,-."*"__4_:-5--—“5--"*"'*""3"‘ 0.92— —— Condensation
- L ' - — Baseline PF
102k RIS TR S S 0.9
= B I 1-5 particles
:_{_ 0.88— : —— 6-10 particles
- C I
3 K | | | | | | | | | 0.86 | | | | | | | | |
10 O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
p(r) [GeV] p(t) [GeV]

https://arxiv.org/abs/2002.03605
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Other methods for one-shot graph pattern recognition

* Taking inspiration from object condensation’s embedding
- Make a network construction that attempts to predict groups of hits correctly
- Still based on using relational structure between hits

- But at no point is information concentrated to one point, less ‘hierarchy’ and sets are
predicted rather than output properties (below, examples with a small number of tracks)

* Data are from https://www.kaggle.com/c/trackmi-particle-identification
- Go give it a try yourself :-)

output tracks

pphi/eta_pred = 0,520/0.036/1.625
ABSR 522 AP B e
ptiphileta_true = 0.859/-2.601/1.843

embed hits in abstract clustering space

Vv
v

Tracking data in:

<«
&

ptiphijeta_pred =
priphijeta_true =

eeeeeeeeeeeee

Chhavi Sharma, Thomas Klijnsma, LG
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piphi/etal pred = 0.877/-1646/-0.425
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1111111111111111


https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification

Very preliminary results on pixel tracking
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Here we are reconstructing

600 +/- 25 tracks per event. _
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Limitations of these methods

* These methods require repeated recalculation of a dynamically determined
graph
- Within these networks are multiple layers of graph networks where the structure

depends on the observed data, and the feature spaces are often 32 dimensional or
greater

- So intrinsically there is a computational bottleneck in the determination of the graphs

- Typically it is possible to find some clever algorithm to ease this, but the scale of particle
physics is enormous and the problem remains.

* Graph networks only ensure permutation invariance
- Permutation invariance encodes very little information about physics!

- These networks need mountains of data to achieve the best performance because they
need many millions of examples of data that follow similar underlying patterns

- Training takes weeks

* These two things together make the maintenance burden of these networks
quite high, and it is worth thinking about if we want to deal with it

T =
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Getting around limitations with loss functions

* Taking as example the calculation of missing energy in an event
- Having good precision and accuracy for missing energy, and its direction, is important
- Related to important systematic uncertainties for precision measurements in particle
physics
* Past attempts tried to use complex models to map various measurements
together, requires enormous amounts of training data (millions)
- A simpler model, below, does better with 60k events and 5000 parameters. How?
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jﬁm{embeddmgo LX) :
N D D D 5
) ?2x4500x8§ C E E E £
7%4500x1 embeddingl b ?2x4500x3 N | 7x4500x68 n | 2x4500x33 N | ?7x4500x16
w'?x450011'. ?7_'5_’5_’5_":—
S N LomB o ccaimgz 245008 ¢ E E e .
 — ?
= Z ?x4500x N ) 3
i )
S Continuous > ; ?x4500x 1
?7x4500x8
A 4 %2
, Py 7x4500x2 miss _ Zw
Px; Py Px ,- iDix OUTPUT

The simple act of summing over weighted momenta encodes an enormous amount of | pmiss = z WDy

Missing

physics knowledge. Lorentz invariance, energy conservation, etc. Ener
With so much information in the loss construction, the network becomes very simple. . 9y
Yongbin Feng, Jan Steggeman
3¢ Fermilab
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Getting around limitations with equivariant activations

* The loss function trick can be done for a limited class of problems
- If we to use the known symmetries of the data in an abstract way we must change how the

non-linear activations in neural networks

- One direction: enforce those activations to behave in a why that is isomorphic to the
discrete symmetry group your data obeys, in this case SO+(1,3)

- Since SL(2,C) is a double cover of SO+(1,3) you can create sums of activations that obey
the lorentz transformations, and enforce a network to learn only equivariant quantities!

34
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Mapping these ideas onto pattern recognition

* All of the data we reconstruct obeys some useful symmetries in the lab’s
frame of reference
- Current options for ML-based reconstruction do not include any of this information

- We’ve been focused on the equally difficult task of encoding the reconstruction
algorithms as differentiable programs in the first place.

* Knowing that a charged particle in a magnetic field follows a helix, or that
particle showers are mediated by a splitting process are similar examples of
rules that could be embedded in the basic operation of a neural network

- Then the job of the neural network becomes learning and exploiting relationships in the
context of those rules rather than needing to encode those rules as well

- This also means that the behavior of the network is tied to rules that we understand as
humans and greatly improves our ability to understand the performance and estimate
systematic uncertainties.

* As we integrate these two lines of research together it will yield new
powerful, compact, and understandable networks that can accurately perform
the pattern recognition tasks we need.

- We are just at the beginning here and the near future is very exciting!
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Conclusions and Outlook

* Machine Learning is being used for more and more fundamental tasks in
HEP
- Adoption of ML technigues has led to simplification in analysis definition

- We have also demonstrated that we can control the process of training and applying
these techniques to yield precision results

* ML techniques have been evolving to become more dynamic and particle
physics is following along

- We are now at the point where we can make differentiable versions of iterative
algorithms, which was not possible 4 years ago

- We can now implement and use complex reconstruction algorithms end-to-end in ML

* The recent advent of enforcing symmetries in a general way in neural
networks will improve and simplify the designs of these networks

- The will lead to learned pattern recognition machines with concise, understandable
descriptions of what they are doing and significantly reduced burden on those
maintaining it
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Extras
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How did we get to where we are going?

* The detectors and challenges, and the tools to address them are the result of
a long story in particle physics
- We always want better discriminators that utilize more information

* HEP Physicists have to demonstrate control over methodologies
- We can't just separate categories of data from one another
- Error models and confidence regions are required in order to report our results

* Using ML techniques as reconstruction algorithms is the result of decades of
accumulated knowledge within HEP

Figure 2
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: 7 2 b |
40 E“‘“ ) ; do O 3 - Multijet Top discriminant from 1992
" il —_ !' <0 ?‘ s | Neural Network (left), Fisher discriminant (right)
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Object Condensation Performance

* Object condensation reconstructs individual particles significantly better
- Even in dense multi-particle environments
- Significant reduction in outliers
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Timing in Tracking for HL-LHC

CMS,

Simulated Vertices

t (ns)

3D Reconstructed Vertices
—=©6—— 4D Reconstruction Vertices

—— 4D Tracks
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0.4

0.2

-0.2

o
|III|III|III|III|

-0.4

MTD TDR CMS-TDR-020

* CMS - MIP Timing detector

- Strategy is to match precision timing hits to inner-detector tracks, back propagate time to
vertices with ~30ps precision at beginning of life

- Results in pileup removal in isolation cones, particle ID capabilities, excellent sensitivity
to a variety of long-lived particles

- Being integrated into general CMS tracking algorithms to make most informed choices
- Higher-dimensional data leads to more easily discernible patterns

* Forward-only detector in ATLAS - HGTD to bolster forward tracking
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Where granularity and timing in detectors is going:

* FCC-hh concept designs include timing in most or all layers of trackers

extending to Inl <6

- Precision timing capabilities anticipated in all calorimetry as well, necessary to make
sense of neutral particles in 1000 pileup, many billions of channels

* Timing pixel research ongoing, possible LHCb VELO upgrade

Assume o, = 30 ps per layer

pixel
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https://doi.org/10.22323/1.309.0030
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Algorithms govern detector performance more and more

C
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* Finer granularity yields more precise shower identification
- At the cost of easily conceptualized energy summing rules (e.g. summing towers top left)
- Now need algorithms to define bounding volumes, etc...
* Particle Flow algorithms help by associating tracking with calorimetry
- Can use tracking information to bring additional topological information to clustering
- Further identification of particles allows precise calibrations to be applied (top right)
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Jet tagging and Jets as images https://arxiv.org/abs/1511.05190
250 < pT/GeV <260 GeV, 65 < mass/GeV <95
Pythia 8, QCD dijets, ¥s =13 TeV

CMS Simulation 13 TeV, 2016 = F 10° o
== - ~ s [}
- = = Subjet CSVv2, minimum among two subjets Ry, 2 4 102 O,
~ ....AK8 jet CSVv2 [Pt g 1 o0 o
- ——AK4 jet CSVv2, AR(AK4 jet, AK8 jet)<0.4 .=~ 7 = i E
g 1 &
§ 0.5 10"
7 102
g 0 10°
o 10
= = 10°
- -0.5
: 10-6
- :.: AK8 jet 10—7
o 50 < m < 200 GeV .
=1 1200 < p_< 1800 GeV 10
:.tll: . . N [ . . . 1 . N . t . . . 1 N N . [ o Croire e 10-9
_ -1 -0.5 0 0.5 1
https://arxiv.org/abs/1712.07158 [Translated] Pseudorapidity (n)

* Given the complex nature of jets, ML techniques have been commonplace
- Every particle in a jet has some information about that jet’s nature

 Common uses in b-tagging, and more recently merged-jet tagging

- Evolution from using the original jet clustering very rigidly to allowing the ML algorithm to
pick out what relationships are interesting

- Only possible with modern ML techniques like deep networks or CNNs
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Jets aren’t really images though!

* What is seen in the distribution of calorimeters and tracks is the outcome of
relationships between hadrons and the QCD fluctuations that made them

* Jet formation is modeled well by a series of nested branchings of QCD
splitting functions
- This is where the real information about the jet “lives”

* |t would be better to try to learn classifying information using this tree of
splittings
- It is more fundamentally related to the physics, a more clear “representation” of the data

* This is a graph, not an image!
- Moreover, this graph can vary from event to event and jet to jet
- How can we get around this since the techniques we have so far are static?

* A solution lies in Graph Neural Network (GNN) techniques

3¢ Fermilab
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How graph neural networks are more like general programming

* From the two prior slides - GNNs provide a way to dynamically encode
relationships between pieces of data

- This is the equivalent of loops with nested if-statements, compared to more static fully
connected or convolutional networks

* Each operation on the graph drives a new set of decisions based on a ruleset
that is learned by the neural network
- Specifically the network within a GNN making themessages which are passed

* This means that significantly more complex processes can be encoded more
precisely by representing recurrent relationships in the structure of the model

itself
- Rather than having to learn it by example through training.
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Jet tagging using graphs

* Below are results for using a graph to describe associations in jets
- Improved performance with respect to image-based architectures!

* Train the classifier to learn what connections between particles are important

* Less need to pre-process the input properties for classification
- Little to no transformation of data about jet constituents
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https://arxiv.org/pdf/1902.08570.pdf
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Full results for deep double b-tag
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Deploying these techniques in the experiments (l)

* Experiment software stacks are often difficult to deal with, but are requiring
more and more ML inference as part of their standard operation
- Difficult to update to cutting edge software without expert knowledge
- Already many moving parts, difficult to maintain
- Adding machine learning frameworks to this means even more complexity!

* We are exploring decoupling this by using machine learning as a service

- Experiment framework then makes standardized, lightweight api calls to a separate
server running a big stack of GPUs and all the models one may require for
reconstruction Data Center | Cloud | Edge

&£ 00

Al Inference Cluster
CPU | GPU
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Deploying these techniques in the experiments (ll)

* GNNSs, being rather new, were not readily compatible with inference as a

service frameworks
- Often required some contortion or limitation on how you were defining the model
- Makes the process of model development and maintenance a pain!

* Together with authors of a GNN package for pytorch we developed a way to
make the models immediately deployable
- With no code changes, access to these powerful models to experiments is fairly easy
- First large-scale tests of GNNs in CMSSW using models from this talk underway

import torch

import torch.nn.functional as F

from torch_geometric.nn import GCNConv

change to def __init__ (self, in_chapnels, out_channels):
class Net(torch.nn.Module): ) super(Net, self).__init_ ()
def __init__(self, in_channels, out_channels): self.convl = GCNConv(in_channels, 64).jittable()

super(Net, self).__init_ () self.conv2 = GCNConv(64, out_channels).jittable()
self.convl = GCNConv(in_channels, 64)
self.conv2 = GCNConv(64, out_channels)

def forward(self, x, edge_index):
x = self.convl(x, edge_index) forward stays the same

X = F.relu(x)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1) \ 4

model = torch.jit.script(model) serialize jittable model

model = Net(dataset.num_features, dataset.num_classes)
https:/pytorch-geometric.readthedocs.io/en/latest/notes/jit.html
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Other methodologies of tackling irregular detectors

. LArTPQs and current calorimeters Sparse-CNN clustering for LArTPCs
are being used to test ML based
reconstruction as well

- Early successes for convolutional
based approaches

* ML based approaches Star“ng to https://arxiv.org/abs/1903.05663
take the lead in neutrino physics

CNN-based particle flow algorithms

* Collider detectors exploring the use
of CNNs and Graph techniques to
reconstruction particle-level
iInformation
- Similar or improved performance

- Some issues still left: variable sized
outputs

https://arxiv.org/abs/2003.08863
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More methods yet to try and refine!

A variety of new message passing schemes (Exa.TrkX)

Input Gra h | Gra h Output
—|Network | Network Network *°*° Network

[Ho, X] [wo] [H1, X] [wi] [Hi X] [W.[ [ [

Message Passing

— [t | oo | oo - - - [ —

+ +
/\ /\
[Ho, X] [wo] [H1, X] [wi] [Hi X] [wi]
— -—-—'-—'-—'--—’l [ [

Attention Message Passing

Attention Message Passing
with Residuals

Attention Message Passing

EIJ [Ho, X]  [wo] [Hy, X] :
N [ [ l with Recursion

n tlmes

Voxelization for computing efficiency: https://arxiv.org/abs/1907.03739
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Thoughts on using these techniques in analysis

* These GNN-based techniques will eventually be used directly in analysis

* In a very general sense we get the most statistical sensitivity in an analysis
by choosing some number of physics-rule based categories
- e.g. VBF, VH, boosted Higgs

- Or, as in Higgs to 2 photons, having primary categories based off ML discriminator
scores that tend to reflect reconstruction quality and detector performance

* However as the final states become more complex ( 6-8 jets ) it becomes
ess and less efficient and accurate to do that sorting by hand using some
neuristics

- The probability to choose an improper combination of jets or leptons explodes as final
state multiplicity increases

* Using a GNN in analysis to encode relationships of kinematic structure to
play off kinematics vs. reconstruction quality vs. sensitivity to then create
categories would help mitigate these combinatorial effects

- For at worst a linear increase in the background (so ~sqgrt(2) improvements)
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