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Ignoring Fragmented Tracks

• We throw away all tracks that:
• Only hit one or two different layers in the barrel
• Have more than three hits elsewhere in the detector

E.g. Although most of this track 
is outside the barrel, we keep 
the track to challenge the GNN

𝑧𝑦

𝑥 𝑥

7 April 2020  -  Thomas Klijnsma  -  Exa.TrkX Virtual All Hands Meeting

Proof of concept: tau decays
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• Example event display: 
Clear particle-like clusters are constructed 

• Clusters are separated by EM ●, Hadronic 
̖, MIP ✚, and noise (not plotted)  

• Work in progress: 
• Pileup 
• Need better 'truth' definition (data prep)  
• Integration into CMSSW (longterm solution 

probably PyTorch in CMSSW)  
• Hardware acceleration 

• Many problems in common with the PF 
effort
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Overview

• Introduction 
- to the LHC the CMS Detector and their upgrade programs
- to the basics of machine learning and a touch of its history within particle physics
- to the pattern recognition problems that need to be solved in modern particle physics

• Turning particle physics pattern recognition into a learnable task
- The relationship of pattern recognition algorithms to graphs
- Graph neural networks as engines for pattern recognition
- Turning operations on graphs into particle physics reconstruction tasks
- Examples of successful differentiable reconstruction algorithms
- A pause to discuss the limitations of these methods

• Where to go next?
- Achieving tiny networks with meaningful loss constructions and activation functions
- Avenues for applying this to particle physics pattern recognition 
- Concluding remarks

2
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A Brief Introduction to the Large Hadron Collider (LHC)

3

The experiment 
I work on

Two counter-rotating beams of bunched protons each with an energy of ~7 TeV.
Bunches pass through each other at a rate of 40 MHz, we record a few kHz of that.

Compact
Muon
Solenoid (CMS)
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The CMS Detector

4
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Figure 3.2: 3D Drawing of the CMS detector using with sub-detectors labeled. A human figure is included for scale [45].

⌘ = � ln tan
#

2

Right handed coordinate system:

x (Towards LHC Center)

y (Radially outwards from ground)

(Anti-Clockwise beam direction) z
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Upgrading the LHC to the High Luminosity LHC

• LHC will be upgraded to deliver 5-7x more luminosity in the mid 2020s
- Driven by new physics objectives to measure detailed properties of the Higgs Boson,
- By end of Phase-1 there will be significant radiation damage to sub-detectors throughout 

CMS, and the upgraded accelerator delivers an even more challenging environment
• The accelerator and experiments will all need to be retrofitted and upgraded 

to approach this challenging 10 year task.

5

Original Phase-1 Phase-2we are here
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Corresponding Upgrades to CMS

6

Barrel Calorimeters 
• ECAL full crystal granularity 

readout at 40 MHz with 
precise e/γ at 30 GeV

• Upgraded ECAL & HCAL 
back-ends

Calorimeter endcap
• 3D shower topology with 

precise timing

Muon systems 
• New DT & CSC front- & back-ends
• Additional GEMs over 1.6 < |η| < 2.4
• Extended coverage to |η| ≈ 3

MIP timing detector 
• Target time resolution ≈ 30 ps

(effective pile-up 200 î 50)
• Barrel: crystals + SiPM

embedded in tracker support
• Endcap: avalanche diodes

Tracker 
• Increased granularity for both 

strips and pixels
• Strip tracker read-out at 40 MHz
• Extended coverage |η| ≈ 3.8

Trigger & DAQ 
• L1 Track trigger pT> 2 GeV
• L1 accept rate 750 kHz
• DAQ design throughput 44 Tb/s
• HLT output rate 7.5 kHz

• To deal with this increased luminosity the CMS detector is being significantly 
upgraded, improving its radiation tolerance and granularity.
• Utilizing this massive amount of data demands even more of our algorithms.
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ML and Neural Networks in a Nutshell
• Goal: find the parameters w of a function F that best maps x onto y
- Do this by minimizing a chosen “loss function”
- ML is the set of numerical algorithms that solve this problem

• Neural Networks are a subset of these algorithms that are defined recursively 
from inputs to outputs
- Any mapping function F can be approximated by a sufficiently large NN
• Since inputs are variable and relationship to output is learn, including new 

information is very straightforward, as is scaling up computation to more data

7

~x ~y~y = F~w(~x)

input
space

output
space

weight
space

mapping
function

particle four-momenta signal or background? important, each layer has 
a non-linear ‘activation’!
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Backpropagation and training of neural networks

• Each node in a network makes some 
prediction
- Each predictions error can be calculated using 

the chain rule
• Encode task to be done in a ‘loss’ function 

and minimize that loss
- Recursively update parameters based on 

estimated error at each pass over the data

8



14 Oct. 2020 Lindsey Gray | Graph Neural Networks for Pattern Recognition in Particle Physics

ML in Physics: Electromagnetic calorimeter energy corrections

• Boosted Decision Trees (BDTs) have had a long history of use within the 
CMS Collaboration
- Relatively fast inference and training times before 2012
- Functions by making progressively finer cuts in the input space 
• Use average over numerous binary-cut based selections to generate a 

classifier
- This can be used to discriminate categories or to regress quantities
- Can handle position dependent corrections as in CMS ECAL, with enough data

9
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Higgs to γγ Discovery

• Usage of ML techniques led to an 
analysis workflow that is easier to 
describe and maintain
- Training based workflow instead of re-

optimizing cuts by hand
- Trade some abstraction for ease of use

• Improved sensitivity
- At the cost of a lot of jokes about “BDTs all 

the way down”

• Demonstrable control of systematics 
related to multivariate modeling of the 
input data
- This is now the status quo

10

http://cds.cern.ch/record/1460419

http://cds.cern.ch/record/1460419
http://cds.cern.ch/record/1460419
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Current usage and performance of ML regression in CMS

• Coming to modern times: the ML-based analysis and energy reconstruction 
is being used to perform precision measurements
- Energy scale uncertainties for photons understood to ~0.1%
• ML-based regressions a critical piece for modern Higgs measurements!
• ML techniques are well-adopted in HEP, what more can we do with them?

11

https://cds.cern.ch/record/2691211

https://cds.cern.ch/record/2691211
https://cds.cern.ch/record/2691211
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Particle Detection in CMS

12
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Figure 3.3: A slice of the CMS detector and the path that various particles travel through it. Electrons (red solid
lines) leave a hits in the trackers and deposit all of their energy in the Electromagnetic Calorimeter. Charged and
neutral hadrons, components of jets, leave the bulk of their energy in the Hadron Calorimeter, while muons continue to
chambers outside the solenoid [46].
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A view from the upgraded endcap calorimeter of the HL-LHC

13

This is from simulation but it’s clear 
we’ve got our work cut out for us if 
we’re going to do physics with this.

O(3000) particles, 150k active 
detector readouts to describe 
them all.
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Modern detectors and data are significantly more complex

• Detectors are changing, they’re becoming more larger, more granular 
- DUNE, the CMS High Granularity Calorimeter (HGCAL)
- HL-LHC Trackers + Timing Detectors
• They’re aiming for high performance in strenuous environments
- ILD aiming for electron positron collider, HGCAL for HL-LHC
- Readouts include precision timing information, but have to correlate x,y,z,t & E
- Detector performance depends much more on algorithmic physics performance 

14

ILD Event Display (whole detector) HGCAL Event Display (one endcap)



14 Oct. 2020 Lindsey Gray | Graph Neural Networks for Pattern Recognition in Particle Physics

Imaging Calorimetry With HGCal

• Rough 6 million channels individually read out
- Provides sampling calorimetry with 50 instrumented readout planes
- Can capture the evolution of EM and hadron showers in space as well as time
• Dedicated timing readout with excellent precision for large energy deposits
- Higher-dimensional data leads to more easily discernible patterns
• Multiple reconstruction algorithms efforts ongoing to use this device
15

GEANT Track
s

Calorimeter clusters
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The cost of having more information:

• While the computing costs of more data are clear, it takes significant human 
time to engineer algorithms that take advantage of more data
- High dimensionality, while more sparse is far more difficult to reason with effectively
- For instance: thinking in projections often leads to designing algorithms that 

mischaracterize some behavior
• The best approach by far, is to try to handle the detector information in its full 

dimensionality, but humans are not well equipped to do that above 3D
- Moreover, each detector has its own unique geometry which has to be specifically 

accounted for
16

Overlapping photons in HGCal
Cross-referencing neutral and  
charged precision timing information

F. Pantaleo
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Exploiting granular information with machine learning

• Modern machine learning can determine important discriminating information 
in the course of training if the input ‘shape’ is fixed
- Using convolutional neural networks for example, images are given as-is for training 

examples, discriminating features encoded in filters and high-dimensional ‘latent spaces’
• However, many next generation particle physics detectors have irregular 

geometries with zero-suppressed outputs
- Varying material with sparse sampling of energy deposits
- Requires different approaches to apply machine learning to this data

17
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Graph Neural Networks: Edge Convolution

18

• Update xi → xi' by using edge features  
• i.e. learned features of the edges that connects xi with its neighbors  
• Still independent of ordering of points, but uses local geometry  
• 'Convolutional' as the operation is applied point by point to obtain x'

• These edge features and aggregation 
steps mimic the functionality of loops 
with if-statements in them (i.e. hand-
written pattern recognition)

Can set dim 
of edge 

feature vector

[1801.07829]

edge

node
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Graph Neural Networks: Dynamic Graph Convolutions

19

No neighborhood info (only global)

Only local information

Combination of both
• Dynamic: Redo kNN after every update 

• The connectivity matrix changes after every update

[1801.07829]
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• Tracks and clusters can also be described as connections between points
- We can then score these relationships between the detector data and select certain 

associations in the graph that we want to keep.

• This results in a useful abstraction: finding points comprising helices in tracks 
is the same as points in calorimeter clusters
- Can we simplify our lives and find one algorithm which can handle these different 

cases?

Looking at graphs on physics detector data

20

Xiangyang Ju CTD/IT 2019, Valencia Spain  3 Apr, 2019

Introduction

 3

In the CTD2018, Steve Farrell showed exciting performance of 
GNN on predicting edge scores. [link]Constructing the graph

• Select hits in neighborhood of 
true track 

• Label the seeds 

• Target is the true binary labels 
for every hit

21

Hit classification Segment classification

• Connect hits on adjacent layers 
using crude geometric 
constraints 

• delta(phi) < pi/4 

• delta(z) < 300mm

QCD data with pileup µ=10, pt>1GeV, 
barrel only, and duplicate hits removed

QCD data with μ = 10 
[link]

Hit classification model results

• Model settings 

• 7 graph iterations 

• 26k parameters 

• It works really well! 

• Good purity and 
efficiency

22

Test set metrics 
Accuracy:   0.9942 
Purity:     0.9918 
Efficiency: 0.9793

Great separation

Hit classification model results

• Model settings 

• 7 graph iterations 

• 26k parameters 

• It works really well! 

• Good purity and 
efficiency

22

Test set metrics 
Accuracy:   0.9942 
Purity:     0.9918 
Efficiency: 0.9793

Great separation

??????

la
ye
r

“same thing”

particles going this way particles going this waycollision point here
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Graph NN on FPGA

�17

Model: binary classification on the edges of the graph todistinguish true hit pairs 
based on HEP.TrkX GNN v1 architecture [arXiv:1810.06111]

Edge network uses the node features to compute edge weights

Node network aggregates forward and backward node 
features with the edge weights and updates node features

With each iteration, the model propagates information through the graph, strengthens 
important connections, and weakens useless ones.

Slide from Steve Farrell

Putting it all together: a model for reconstruction
• With an preliminary model the answer seems to be “yes”
- So long as we are willing to accept some light post processing

• Basic steps:
- Define an input graph
- train an ‘edge classifier’ based on information sharing on that graph
- Apply edge classification scores to yield a subgraph of just the connections of interest

21
Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.

3

https://arxiv.org/abs/2003.11603

just raw hit 
information + a 
“guess” at the 
graph

selected links 
between hits

https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2003.11603
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Preliminary Tracking Results with a GNN

• Many selections applied to yield training set
- Important: sectorization and no missing hits
• These are “easy” tracks but this also early days for the these kinds of 

network in HEP
- Applying GNN, assembling tracks -> 97% efficient relative to preselection
- Track-segment selection GNN executes significantly faster than Kalman filter

22
Xiangyang Ju CTD/IT 2019, Valencia Spain  3 Apr, 2019

Graph for one event

 8

• About 160k edges, 92% are 
fake (in gray)

• 8 gaps result from 8 
sections in φ

• Can GNN find the 13k true 
edges out of the 147k fake 
ones?

After all previous selections

Xiangyang Ju CTD/IT 2019, Valencia Spain  3 Apr, 2019

A summary

 24

GNN edge classifier achieves over 95% efficiency across the pT range
with a purity greater than 95%

one-event N-particles ratio w.r.t Total ratio w.r.t 
Reconstructable relative ratio

Total 11170 100% 100%

Reconstructable 9635 86% 100% 86%

Barrel 7492 67% 78% 78%

No-missing hits 6600 59% 69% 88%

Edge selection 3114 28% 32% 47%

Split graph 2668 24% 28% 86%

GNN 2590 23% 27% 97%
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Reconstruction of a charged pion with edge classification

23

true negatives
true positives
false positives
false negatives

T. Klijsnma, S. Ghosh, 
LG, K. Pedro https://arxiv.org/abs/2003.11603

https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2003.11603
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Simultaneous Reco & ID: Tau Lepton Example Prediction

24

T. Klijsnma, S. Ghosh, 
LG, K. Pedro

Hadronic Edges
EM Edges
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Simultaneous Reco & ID: Tau Lepton Example Truth

25

T. Klijsnma, S. Ghosh, 
LG, K. Pedro
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Edge Classification: Making a Clustering (I)

• In order to get calorimeter clusters, need to take the edges and convert to 
groups of points
- In this case we just make a union of all the points with common edges of the same type
- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively

• The same network and processing can also be used on tracking

26

T. Klijnsma, S. Ghosh, 
LG, K. Pedro
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Edge Classification: Making a Clustering (II)

• In order to get calorimeter clusters, need to take the edges and convert to 
groups of points
- In this case we just make a union of all the points with common edges
- It does a reasonable job already segmenting hadronic energy from electromagnetic
- We can reconstruct very close-by photons and hadrons effectively
- Proof of concept achieved
• The same network and processing can also be used on tracking

27

T. Klijnsma, S. Ghosh, LG, K. Pedro

all tau lepton 
decays
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Object Condensation: a loss function for reconstruction 

• Physics motivated loss function
- Potentials with charges
- like charges attract, opposites repel
- points that should be associated attract 

each other
- variable number of inputs and outputs

• The network is trained to predict the 
‘condensation points’ of the input data
- Points within the data that are 

representative of a whole object

• The condensation points can then be 
used to collect points around them into 
‘segmented’ objects
- at this point we have created particles in an 

event or clusters in a calorimeter

28

https://arxiv.org/abs/2002.03605

https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2002.03605
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Object Condensation: Results

• A first reconstruction model has been developed and benchmarked
- Using a toy detector and comparing to a simplified implementation of particle flow
- Specifically - only a tracker and only an electromagnetic calorimeter

• Particle reconstruction efficiencies significantly improved for object 
condensation
- Improved purities and resolutions (backup) across a range of multiplicities as well

29
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Other methods for one-shot graph pattern recognition
• Taking inspiration from object condensation’s embedding
- Make a network construction that attempts to predict groups of hits correctly
- Still based on using relational structure between hits
- But at no point is information concentrated to one point, less ‘hierarchy’ and sets are 

predicted rather than output properties (below, examples with a small number of tracks)

• Data are from https://www.kaggle.com/c/trackml-particle-identification
- Go give it a try yourself :-)

30

Tracking data in: embed hits in abstract clustering space output tracks

Chhavi Sharma, Thomas Klijnsma, LG

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification
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Very preliminary results on pixel tracking

31

Here we are reconstructing 
600 +/- 25 tracks per event.

Preference for longer tracks.
Under investigation.

Pardon the dust this is 
really a work in progress. :)
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Limitations of these methods

• These methods require repeated recalculation of a dynamically determined 
graph
- Within these networks are multiple layers of graph networks where the structure 

depends on the observed data, and the feature spaces are often 32 dimensional or 
greater

- So intrinsically there is a computational bottleneck in the determination of the graphs
- Typically it is possible to find some clever algorithm to ease this, but the scale of particle 

physics is enormous and the problem remains.

• Graph networks only ensure permutation invariance
- Permutation invariance encodes very little information about physics!
- These networks need mountains of data to achieve the best performance because they 

need many millions of examples of data that follow similar underlying patterns
- Training takes weeks

• These two things together make the maintenance burden of these networks 
quite high, and it is worth thinking about if we want to deal with it

32



14 Oct. 2020 Lindsey Gray | Graph Neural Networks for Pattern Recognition in Particle Physics

Getting around limitations with loss functions
• Taking as example the calculation of missing energy in an event
- Having good precision and accuracy for missing energy, and its direction, is important
- Related to important systematic uncertainties for precision measurements in particle 

physics
• Past attempts tried to use complex models to map various measurements 

together, requires enormous amounts of training data (millions) 
- A simpler model, below, does better with 60k events and 5000 parameters. How?

33

pa
rti

cl
es

The simple act of summing over weighted momenta encodes an enormous amount of 
physics knowledge. Lorentz invariance, energy conservation, etc. 
With so much information in the loss construction, the network becomes very simple.

Missing 
Energy

Yongbin Feng, Jan Steggeman
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Getting around limitations with equivariant activations
• The loss function trick can be done for a limited class of problems
- If we to use the known symmetries of the data in an abstract way we must change how the 

non-linear activations in neural networks
- One direction: enforce those activations to behave in a why that is isomorphic to the 

discrete symmetry group your data obeys, in this case SO+(1,3)
- Since SL(2,C) is a double cover of SO+(1,3) you can create sums of activations that obey 

the lorentz transformations, and enforce a network to learn only equivariant quantities!

34

https://arxiv.org/abs/2006.04780

better

https://arxiv.org/abs/2006.04780
https://arxiv.org/abs/2006.04780
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Mapping these ideas onto pattern recognition
• All of the data we reconstruct obeys some useful symmetries in the lab’s 

frame of reference
- Current options for ML-based reconstruction do not include any of this information
- We’ve been focused on the equally difficult task of encoding the reconstruction 

algorithms as differentiable programs in the first place.

• Knowing that a charged particle in a magnetic field follows a helix, or that 
particle showers are mediated by a splitting process are similar examples of 
rules that could be embedded in the basic operation of a neural network
- Then the job of the neural network becomes learning and exploiting relationships in the 

context of those rules rather than needing to encode those rules as well
- This also means that the behavior of the network is tied to rules that we understand as 

humans and greatly improves our ability to understand the performance and estimate 
systematic uncertainties.

• As we integrate these two lines of research together it will yield new 
powerful, compact, and understandable networks that can accurately perform 
the pattern recognition tasks we need.
- We are just at the beginning here and the near future is very exciting!

35
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Conclusions and Outlook
• Machine Learning is being used for more and more fundamental tasks in 

HEP
- Adoption of ML techniques has led to simplification in analysis definition
- We have also demonstrated that we can control the process of training and applying 

these techniques to yield precision results

• ML techniques have been evolving to become more dynamic and particle 
physics is following along
- We are now at the point where we can make differentiable versions of iterative 

algorithms, which was not possible 4 years ago
- We can now implement and use complex reconstruction algorithms end-to-end in ML

• The recent advent of enforcing symmetries in a general way in neural 
networks will improve and simplify the designs of these networks
- The will lead to learned pattern recognition machines with concise, understandable 

descriptions of what they are doing and significantly reduced burden on those 
maintaining it

36
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Extras
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How did we get to where we are going?

• The detectors and challenges, and the tools to address them are the result of 
a long story in particle physics
- We always want better discriminators that utilize more information

• HEP Physicists have to demonstrate control over methodologies
- We can’t just separate categories of data from one another
- Error models and confidence regions are required in order to report our results

• Using ML techniques as reconstruction algorithms is the result of decades of 
accumulated knowledge within HEP

38

Multijet Top discriminant from 1992  
Neural Network (left), Fisher discriminant (right)

https://www.osti.gov/biblio/10110749

https://www.osti.gov/biblio/10110749
https://www.osti.gov/biblio/10110749
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Object Condensation Performance

• Object condensation reconstructs individual particles significantly better
- Even in dense multi-particle environments
- Significant reduction in outliers

39
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Timing in Tracking for HL-LHC

• CMS - MIP Timing detector
- Strategy is to match precision timing hits to inner-detector tracks, back propagate time to 

vertices with ~30ps precision at beginning of life
- Results in pileup removal in isolation cones, particle ID capabilities, excellent sensitivity 

to a variety of long-lived particles
- Being integrated into general CMS tracking algorithms to make most informed choices
- Higher-dimensional data leads to more easily discernible patterns
• Forward-only detector in ATLAS - HGTD to bolster forward tracking
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MTD TDR CMS-TDR-020

CMS MIP timing detector: pileup mitigation 

3

•Phase-II upgrade: maintain excellent detector performance under high pileup of 
140-200 collisions per bunch crossing, and severe radia@on environment at HL-LHC 

•MTD will be added to CMS to help meet the high-pileup challenge. 

Beam spot: @me spread of 180 - 200 ps, 
largely uncorrelated with the spread in z

4D (x,y,z,t) vertex reconstruc@on: 
• Vertex merging reduced from 15% to 1% 

in 200 PU scenario 
• Disentangle overlapping ver@ces in 

space with precision @ming.

Nan Lu, ICHEP 2020

Real-life event with HL-LHC-like pileup from special 
run in 2016 with individual high intensity bunches

Precision Timing with CMS MTD Barrel Timing Layer

Endcap Timing Layer

Barrel Timing Layer

https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2667167
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Where granularity and timing in detectors is going:
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• FCC-hh concept designs include timing in most or all layers of trackers 
extending to |η| < 6
- Precision timing capabilities anticipated in all calorimetry as well, necessary to make 

sense of neutral particles in 1000 pileup, many billions of channels
• Timing pixel research ongoing, possible LHCb VELO upgrade

https://doi.org/10.22323/1.309.0030

https://doi.org/10.22323/1.309.0030
https://doi.org/10.22323/1.309.0030
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Algorithms govern detector performance more and more

• Finer granularity yields more precise shower identification
- At the cost of easily conceptualized energy summing rules (e.g. summing towers top left)
- Now need algorithms to define bounding volumes, etc…
• Particle Flow algorithms help by associating tracking with calorimetry
- Can use tracking information to bring additional topological information to clustering
- Further identification of particles allows precise calibrations to be applied (top right)
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Jet tagging and Jets as images

• Given the complex nature of jets, ML techniques have been commonplace
- Every particle in a jet has some information about that jet’s nature

• Common uses in b-tagging, and more recently merged-jet tagging
- Evolution from using the original jet clustering very rigidly to allowing the ML algorithm to 

pick out what relationships are interesting
- Only possible with modern ML techniques like deep networks or CNNs
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https://arxiv.org/abs/1511.05190

https://arxiv.org/abs/1712.07158

https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1712.07158
https://arxiv.org/abs/1712.07158


14 Oct. 2020 Lindsey Gray | Graph Neural Networks for Pattern Recognition in Particle Physics

Jets aren’t really images though!

• What is seen in the distribution of calorimeters and tracks is the outcome of 
relationships between hadrons and the QCD fluctuations that made them

• Jet formation is modeled well by a series of nested branchings of QCD 
splitting functions
- This is where the real information about the jet “lives”

• It would be better to try to learn classifying information using this tree of 
splittings
- It is more fundamentally related to the physics, a more clear “representation” of the data

• This is a graph, not an image!
- Moreover, this graph can vary from event to event and jet to jet
- How can we get around this since the techniques we have so far are static?

• A solution lies in Graph Neural Network (GNN) techniques
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How graph neural networks are more like general programming

• From the two prior slides - GNNs provide a way to dynamically encode 
relationships between pieces of data
- This is the equivalent of loops with nested if-statements, compared to more static fully 

connected or convolutional networks

• Each operation on the graph drives a new set of decisions based on a ruleset 
that is learned by the neural network
- Specifically the network within a GNN making themessages which are passed

• This means that significantly more complex processes can be encoded more 
precisely by representing recurrent relationships in the structure of the model 
itself
- Rather than having to learn it by example through training.
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Figure 2: Performance comparison in terms of ROC curves on (a) the top tagging bench-

mark dataset and (b) the quark-gluon tagging benchmark dataset.

4.2 Quark-gluon tagging

Another important jet tagging task is quark-gluon tagging, i.e., discriminating jets initiated

by quarks and by gluons. The quark-gluon tagging dataset from [55] is used to evaluate

the performance of the ParticleNet architecture on this task. The signal (quark) and

background (gluon) jets are generated with Pythia8 using the Z(! ⌫⌫) + (u, d, s) and

Z(! ⌫⌫) + g processes, respectively. No detector simulation is performed. The final state

non-neutrino particles are clustered into jets using the anti-kT algorithm [72] with R = 0.4.

Only jets with transverse momentum pT 2 [500, 550] and rapidity |y| < 2 are considered.

This dataset consists of 2 million jets in total, half signal and half background. We follow

the recommended splitting of 1.6M/200k/200k for training, validation and testing in the

development of the ParticleNet model on this dataset.

One important di↵erence of the quark-gluon tagging dataset is that it includes not

only the four momentum, but also the type of each particle (i.e., electron, photon, pion,

etc.). Such particle identification (PID) information can be quite helpful for jet tagging.

Therefore, we include this information in the ParticleNet model and compare it with the

baseline version using only the kinematic information. The PID information is included in

an experimentally realistic way by using only five particle types (electron, muon, charged

hadron, neutral hadron and photon), as well as the electric charge, as inputs. These 6

additional variables, together with the 7 kinematic variables, form the input feature vector

of each particle for models with PID information, as shown in Table 1.

Table 2 compares the performance of the ParticleNet model with a number of alter-

native models introduced in Section 4.1. Model variants with and without PID inputs

are also compared. Note that for the ResNeXt-50 model, only the version without PID

inputs is presented, as it is based on jet images which cannot incorporate PID information

– 10 –

Jet tagging using graphs

• Below are results for using a graph to describe associations in jets
- Improved performance with respect to image-based architectures!

• Train the classifier to learn what connections between particles are important

• Less need to pre-process the input properties for classification
- Little to no transformation of data about jet constituents
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https://arxiv.org/pdf/1902.08570.pdf

https://arxiv.org/pdf/1902.08570.pdf
https://arxiv.org/pdf/1902.08570.pdf
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Full results for deep double b-tag
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Deploying these techniques in the experiments (I)

• Experiment software stacks are often difficult to deal with, but are requiring 
more and more ML inference as part of their standard operation
- Difficult to update to cutting edge software without expert knowledge
- Already many moving parts, difficult to maintain
- Adding machine learning frameworks to this means even more complexity!
• We are exploring decoupling this by using machine learning as a service
- Experiment framework then makes standardized, lightweight api calls to a separate 

server running a big stack of GPUs and all the models one may require for 
reconstruction
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https://arxiv.org/abs/2007.10359

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.10359
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Deploying these techniques in the experiments (II)
• GNNs, being rather new, were not readily compatible with inference as a 

service frameworks
- Often required some contortion or limitation on how you were defining the model
- Makes the process of model development and maintenance a pain!
• Together with authors of a GNN package for pytorch we developed a way to 

make the models immediately deployable
- With no code changes, access to these powerful models to experiments is fairly easy
- First large-scale tests of GNNs in CMSSW using models from this talk underway
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change to

serialize jittable model

forward stays the same

https://pytorch-geometric.readthedocs.io/en/latest/notes/jit.html

https://pytorch-geometric.readthedocs.io/en/latest/notes/jit.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/jit.html
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Other methodologies of tackling irregular detectors

• LArTPCs and current calorimeters 
are being used to test ML based 
reconstruction as well
- Early successes for convolutional 

based approaches

• ML based approaches starting to 
take the lead in neutrino physics

• Collider detectors exploring the use 
of CNNs and Graph techniques to 
reconstruction particle-level 
information
- Similar or improved performance
- Some issues still left: variable sized 

outputs
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https://arxiv.org/abs/2003.08863

https://arxiv.org/abs/1903.05663

CNN-based particle flow algorithms

Sparse-CNN clustering for LArTPCs

https://arxiv.org/abs/2003.08863
https://arxiv.org/abs/2003.08863
https://arxiv.org/abs/1903.05663
https://arxiv.org/abs/1903.05663
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More methods yet to try and refine!
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BERKELEY LAB Office of
Science11
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• Message Passing

• Attention Message Passing

• Attention Message Passing 
with Recursion

GNN Edge prediction architecture

• Attention Message Passing
with Residuals

+ +

7 April 2020  -  Thomas Klijnsma  -  Exa.TrkX Virtual All Hands Meeting

Point-Voxel CNN

20

Low resolution, coarse 
neighbourhood information

High resolution, fine point features

• Use fine-grained point information in a small dense layer, 
and coarse-grained voxelization in convolutional layers  

• Mitigate effects from poor memory locality (pure point 
cloud) and huge memory consumption (pure voxelization) 

• In principle a point-cloud network, not graph based  
• Working with the authors to get to an edge-classification 

network
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Voxelization for computing efficiency: https://arxiv.org/abs/1907.03739

https://arxiv.org/abs/2003.08013

A variety of new message passing schemes (Exa.TrkX)
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Thoughts on using these techniques in analysis

• These GNN-based techniques will eventually be used directly in analysis 
• In a very general sense we get the most statistical sensitivity in an analysis 

by choosing some number of physics-rule based categories 
- e.g. VBF, VH, boosted Higgs
- Or, as in Higgs to 2 photons, having primary categories based off ML discriminator 

scores that tend to reflect reconstruction quality and detector performance

• However as the final states become more complex ( 6-8 jets ) it becomes 
less and less efficient and accurate to do that sorting by hand using some 
heuristics
- The probability to choose an improper combination of jets or leptons explodes as final 

state multiplicity increases

• Using a GNN in analysis to encode relationships of kinematic structure to 
play off kinematics vs. reconstruction quality vs. sensitivity to then create 
categories would help mitigate these combinatorial effects
- For at worst a linear increase in the background (so ~sqrt(2) improvements)
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