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Introduction.

We will use the word curve to mean a complete, nonsingular, one dimensional scheme C
over the complex numbers C.

The canonical sheaf Q¢ of a curve C' is the sheaf of sections of its cotangent bundle.
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. Theorem (Serre’s Duality)

e Let L be an invertible sheaf on a curve C. Then there is a perfect pairing

Introduction. HY(C,Qc @ £L7Y) x HY(C, L) — K.
In particular, h*(C, L) = h°(C,Qc ® L71).

Theorem (Riemann-Roch)

Let L be an invertible sheaf on a curve C' of genus g. Then,

ro(C, L) —h%(C,Qc @ L7 =degL+1—g.
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Introduction.

An invertible sheaf £ on C'is said to be generated by global sections if for any point
P € C there is a global section of £ not vanishing at P.

If £ is an invertible sheaf generated by global sections, a basis so, ..., s, of H(C, L) has
no common zeros and induces a map to projective space:

C —=P" P+ (so(P):...:sn(P)).

Definition

If the previous map is a closed embedding we say that L is very ample.

6/34
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e

Let L be an invertible sheaf on a curve C. Then:

Introduction.

i) L is generated by global sections if and only if for every P € C,
ro(C, L(—P)) = h°(C, L) — 1.
ii) L is very ample if and only if for every P,Q € C,
hO(C,L(—P — Q)) = R2(C, L) — 2.
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A curve C of genus g > 2 is hyperelliptic if there exists a degree 2 morphism C — P!,

The canonical sheaf Q¢ is always generated by global sections. Moreover, it is very ample
if and only if C' is not hyperelliptic.
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Let C' be a non-hyperelliptic curve of genus g > 3. Our aim is to study its canonical ring:

P HO(C,ag™).
n>0

To do so, we are going to consider the map:

¢: S*H(C,Qc) — € HO(C,Q&™).
n>0

We are going to see that it is surjective and we are going to study its kernel I.

If C' is non-hyperelliptic, Q2¢ is very ample and it induces an embedding

C <Pt

The homogeneous coordinate ring of C' for this embedding is precisely @ HO(C, Q%n)
n>0
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Basic tools.

Let £ and M be invertible sheaves on a curve C such that H°(C, £), H°(C, M) # 0.
Let V' be the image of the map

H°(C, L) ® HY(C, M) — H°(C, L ® M).

Then
dimV > r%(C, L) + h°(C, M) — 1.

Theorem (Clifford)

Let L be an invertible sheaf on a curve C such that 0 < deg £ < 2g — 2. Then

2(h°(C, L) —1) < deg L.

Furthermore, equality holds if and only if
(i) L=0O¢ or L=Qc¢.

(ii) C is hyperelliptic and L is %(deg L)-times the invertible sheaf induced by the unique
linear system of dimension 1 and degree 2 on C'.

11/34
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Lemma (Base point free pencil trick)

Let L and M be invertible sheaves on a curve C and s1 and s2 two global sections of L
having no common zeros. If V is the subspace of H?(C, L) generated by s1 and sz, then

the kernel of the map
V ® H°(C, M) — H°(C, L ® M)

is isomorphic to HO(C, M ® L~1).

Lemma (Castelnuovo)

Let F be a coherent sheaf on a curve C and L an invertible sheaf on C' generated by
global sections, such that H*(C,F ® L~1) = 0. Then the map

HO(C,F)® HY(C, L) - H°(C,F® L)

is surjective.
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canonical

EE“%?’EC By Riemann-Roch's Theorem,
cone hO(C,Q0) =3,
e WO(C,QE™) =dn —2,  Vn> L.
Now, if P € C then,
H°(C,Qc(-2P)) C H(C,Qc(~P)) C H(C,90c)
Examples.
; and
RO (C,Qc(—2P)) =1,
ho(C,Qc(-P)) =2,
hO(C,Qc) = 3,
so we can find a basis {r, s,t} of H?(C,Q¢) such that,
ordp(r) =2,
ordp(s) =1,
ordp(t) = 0.

14 /34
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H°(C,Qc(~P)) ® H°(C,Q0) = HO(C,QE*(—P))

By the base point free pencil trick, it is surjective. Hence,

Examples. HO(C,Q (=P)) = (r?,rs,rt, s, st).

Now,
rO(C,08%) =6
¢ 0 ®2 2 2 2
= H(C,Q5%) = (r*,rs,rt, 57,51, t7).
2 € HY(C, Q&%) \ H(C,Q&* (- P))

15 /34
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o HY(C,Qo(=P)) ® HO(C,Q8%) — H(C, Q¢ (=P))
is also surjective because of the base point free pencil trick. Hence,
HO(C, Q%S(—P)) = (r3, 125,12t rs? rst, rt?, 3, 52, st?)
Examples.

Now,

hO(C,Q8?) = 10
= HO(C7 Q%g) = (rg,r2s,r2t, rs?, rst,

3 € H(C,Q8%) \ H°(C, Q8 (-P))

rt?, s, $%t, st2, t3>.

16 /34



The
canonical
map and the
canonical
ring of
algebraic
curves.

Examples.

Finally, the map
HO(C,Q0) ® HO(C, 08" ™) = HO(C,08™)

is surjective for every n > 4 because of Castelnuovo’s lemma.

Hence,

HO(C, 9234) = <r4, r3s, 13,7282, r2st, r2t2, rs®, rs?t, rst?, rt3, s, $3t, 242, st3, t4>.

Since h0(C,Q8*) = 14,
F=A ‘7"4+...+A15~t4

is zero in HO(C7 Q§4) for some A1,...,A15 € K, not all zero.

Since

dim (%) —an—2=00(C,Q%"),  Vn>4,

it follows that,
Clr,s,1] ~ P HO(C,08M).
n>0

17 /34
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Theorem (Max Noether)

If C' is a non-hyperelliptic curve of genus g > 4, then the canonical map

@:S*HY(C,Qc) — € HO(C,0%)
n>0

is surjective.

There exist P3,..., Py € C such that if we set D = P3 4 --- + Py then,
e Qc(—D) is generated by global sections.
e h0(C,Qc(—D)) = 2.
We can choose Py, P, € C and a basis {w1,...,wg} of HO(C,Q¢) such that,

w;(Pj) #0,
wi(P) =0 if i#j.

Moreover, H?(C, Qo (—D)) = (w1, wa).

19/34
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Now, for every ¢ > 2 the base point free pencil trick implies that the following map is
surjective,

v, : H(C,Qc(-D)) ® H(C, 081y = HO(C, 0% (-D)).

We have that:

o wi,...,wi € HY(C,QE)\ HO(C, Q8 (—D)).

° wg, S ,w; are linearly independent.
o hO(C, Q8" — hO(C, Q8 (-D)) =g — 2.
Hence,

HO(Cv le) = <H0(07 Q%i(_D))vwév R 7w;>'

Therefore, the following map is surjective,
HO(C,900) ® HO(C,Q20 1) = HO(C,087).
It follows that,

S*H(C,9c) — D HO(C,Q8™).
n>0

is surjective. O

20/34
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We know that,

0 2 2 2 2 2
H (C,Q% ) = (Wi, w1w2, w3, W1ws, . . . , W1Wg, W2W3, - - -, Walg, W3, « . ., Wy).

Let i,k € {3,...,g} be distinct. Then w;w;, € H°(C, Q%Q) and therefore there exist
Aisk, Hisks bik € C such that:
9
wiwg, = bjpwiwa + Z(Aiskwl + piskw2)ws € HO(C, ng)
s=3
It follows that
9
fik 7= wi - wp — bigwr - wa — Y (Njshw1 + pispws) - ws € S*H(C,Q0),

s=3

is in the kernel I of . Hence, the f;;'s are (9_2)2& linearly independent elements in

the %—dimensional vector space 3. So, I> is generated by the f;1's.

22 /34
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On the other hand,

W= (wiws, . .., wlwg, wiwaws, . . ., W1WaWg, WaWS, . . . , WEWg, WS, wiwa, w1w3, w3)
is a (3g — 2)-dimensional subspace of the (3g — 1)-dimensional space H°(C, Q%?’(—QD)).
Let us take n € HO(C, 9%3(—2D)) \ W, so that:

HO(C,08%(~2D)) = (W, ).
For each i € {3,...,g} we can find a; € H°(C,Qc(—D)) such that
aw? € H(C, Q83 (—2D)) \ W.
Therefore, there exists §; € W such that
aiw? =n+0;.
It follows that given distinct k,l € {3,...,g},
Gl = apwy, - Wi, — qqwy -wy +0; — 0, € S*HO(C,Q¢),

is in the kernel I of ¢.It turns out that I3 is generated by the w; - f;1's and the Gy;'s.

23 /34
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Now we are going to see that I,, can be reduced to the f;;'s and the Gy;'s for every
n > 4.

Firstly, by the base point free pencil trick we have that
O, : H%(C,Qc(-D)) ® HO(C, Q§<”*1)((2 —n)D)) — H°(C,Q8™((1 — n)D))
is surjective for every n > 4. Hence, we can prove by induction on n that,
HO(C,Q8™((1 = n)D)) = (wiws", wiwbw;, wiwhn :

i€{3,...,9hl+m=n,s+t=n—1,h+k=n-—3).

Now, for each i € {1,...,g} let us choose 8; € H(C,Qc(—D)) such that {«a;, B}
generates HO(C, Q¢ (—D)). In particular, ordp, (B;) = 1. For each j € {2,...,9} we
denote, o o

By = {8} Y, ..., 879w},

24 /34
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cen o B; C HO(C,Q8"™((j —n)D)) \ H°(C,Q&"((j — n—1)D)).
L : e B is a set with g — 2 linearly independent elements.
o h0(C,Q8"((j = n)D)) = hO(C, Q" ((j —n—1)D)) =g — 2.
Hence, for every j € {2,...,n},
H(C,QE"™((j —n)D)) = (H°(C,Q&"™((j — n — 1)D)), By).
In particular,
Enriques- H(](Cv an) = <H0(Cv Q?n((l - '”‘)D))’ Ba,..., Bg>'
Petri's
Thesrem This explicit basis allows us to eliminate generators of an arbitrary element of I, to write

it in terms of the f;;'s and the Gy;'s.

We conclude that I is generated by the f;;'s and the Gy;'s.

25 /34
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Theorem (Max Noether-Enriques-Petri)

Let C' be a non-hyperelliptic curve of genus g > 4. Then:

(1) The following map is surjective,

¢: S*HO(C,Qc) — @D HO(C, Q).
n>0

(2) The kernel I of ¢ is generated by its elements of degree 2 and of degree 3.

(3) I is generated by its elements of degree 2 except in the following cases:
(i) C is a nonsingular plane quintic.
(if) C is a trigonal curve.

26 /34
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Let C be a hyperelliptic curve of genus g > 3.

The degree two morphism C' — P! is induced by a degree two invertible sheaf £ such
that Q¢ ~ L£2(9-1) We have that,

n+1l fl<n<g-1,

hO(C, L&) =
2n+1—g ifn>g.

By the base point free pencil trick, the map
W, : HO(C, £) @ HO(C, 21y — HO(C, £®™)
is surjective for n # g + 1 and its image has codimension 1 in the case n = g + 1.

It follows that we may choose x1,x2 € H°(C, L), y € HO(C,£®<9+1>) such that
HO(C, L®™) equals,

(]~ igl.0<j<n) fl<n<g,

<x?7j:v%, n—(g+)=k 2hy:0<j<n,0<k<n—(g+1)) ifn>g+1.

28 /34
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Since y2 € HO(C, £L®(2912)), we have that

F::y2—(A1~zf9+2+~~+A39+5~ng

is zero for some Ay, ..., A3g42 € C not all zero.

Since c
dim( [1’173U27y]) :2n+1—g:h0(C,£®"),
() n

it follows that

C[m,xz,y] EB HO(C, L),
n>0

+1)

vn > g,

29 /34
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On the other hand, we have that.
g ifn=1,
KO(C,Q8") = hO(C, LM D) =
2n—1)g—(2n—-1) ifn>2.

Let us write,
o wii=af el € HO(C,LB8W0D) = HY(C,Q0), 1 <i<yg.
o ;= xf_Q_ixéfly € HO(C, L®2(g—1)) = HO(C, Q%Q) 1<i<g-—2.

Castelnuovo's lemma and the explicit description of the generators of HO(C, L®™) yield
that,

Clwr,. .., wg, 01,...,0q9-2] = @ HO(C, Q%)
n>0

is surjective.

30/34
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Jicens o {z'-af  Fiit4+ - 4ig=2(g—3)} CClwi,...,wqg,a1,...,ag—2]4.
e The 2 X 2 minors of the matrix
wi o o wg-1 Q1 o Qge3
w2 - Wy ay - age2 )
Evenmore, counting dimensions degree by degree, we see that I coincides with the kernel
of this map and therefore,
(C[WL ey Wg, Q. .,ag—Q} ~ @ HO(C Qn)
Hyperelliptic I B e

n>0

case.
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SN [ et C' be a hyperelliptic curve of genus g > 3. Then:

ring of
aliersfs'c (1) There exist a basis {w1,...,wg} of H(C,Q¢) and a1, ..., g3 € HO(C, 922)
such that the following map is surjective,

¢:Clwy,...,wg,a1,...,0g_ Q]H@H (C,Q8).
n>0

(2) For eachi,j,k € {1,...,g— 2} there exist homogeneous fk”, ij € Clwi, ..., wy]
of degrees 2 and 4 respectively, such that the kernel I of ¢ is generated by:

e The polynomials of the form

oo — I 4 Z fk”

Hyperelliptic
case.

e The 2 X 2 minors of the matrix

w1 ot Wg—1 @1t Qg-3
wy v wg Q- Og2
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Thank you very much for your attention.
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