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Outline

• What is distributed learning?

• Example 1: distributed convex learning with a roaming token

• Example 2: distributed classification with random meetings
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What is distributed learning?
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The physical setup

• a team of robots, a wireless sensor network, a swarm of drones, . . .

agent

agent’s data

• agents are spatially distributed

• each agent measures data
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Centralized learning

solution

fusion

center

eventually

• each agent sends its data to a fusion center

• fusion center computes the solution

• drawbacks: single point of failure, traffic jams, lack of data privacy

5 / 38



Distributed learning

channel

• agents are linked by channels

• a channel can appear and disappear (randomly)

• a channel might be directed
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Distributed learning

solution
solution

solution

solution

solution

solution

solution
eventually

• agents send messages through channels

• all agents obtain the solution
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Example 1: distributed convex learning
with a roaming token
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• to illustrate, let the learning problem be logistic regression

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

optimal

• D = {(x1, y1), . . . , (xK , yK)} is dataset (xk=features, yk = ±1)

• goal is to learn the separating hyperplane
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• goal is to learn

θ? = argmin
θ

log
(

1 + e−y1θ
T x1

)
+ · · ·+ log

(
1 + e−yKθ

T xK
)

+ θTPθ
︸ ︷︷ ︸

fD(θ)

• . . . but with dataset D split across the agents:

D1

D2

D4

D3

D5

D6
D7

• objective function has the form

fD = fD1
+ fD2

+ fD3
+ fD4

+ fD5
+ fD6

+ fD7
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Learning with a random token

• goal is to learn θ? = argmin
θ

fD1 (θ) + fD2 (θ) + · · ·+ fDN (θ)

fD1

fD2

fD4

fD3

fD5

fD6

fD7

token

• the token carries a guess of θ?

• the token moves randomly across the network
• when the token visits an agent, it updates its guess of θ?
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fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(0)

• token starts at agent 3 with some initialization θ(0)
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fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(1)

• token updates θ(1) = θ(0)− α∇fD4
(θ(0))
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fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(2)

• token updates θ(2) = θ(1)− α∇fD3
(θ(1))
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fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(3)

• token updates θ(3) = θ(2)− α∇fD1
(θ(2))
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Does this scheme work?

• . . . no

• consider the network

1 2 3

4 5 6

7 8 9

• token chooses neighbor uniformly at random (current node included)
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• scheme fails:
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• it fails because it minimizes the wrong function:

π1fD1 (θ) + π2fD2 (θ) + · · ·+ πNfDN (θ)

• (π1, π2, . . . , πN ) is the stationary distribution of the random walk
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• scheme is minimizing

π1fD1 (θ) + π2fD2 (θ) + · · ·+ πNfDN (θ) ,

with π1, . . . , πN depending on the network topology

• what about unbiasing the scheme by redefining each local function as

fDn ←
1

πn
fDn?

• this works, but each agent n would need to know πn

• what about agent n guessing πn on the fly?
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Distributed learning algorithm

1: t = 0
2: initialize θ(0)
3: token starts at some node n(0)
4: repeat
5: t← t+ 1
6: token jumps to a random neighbor n(t)
7: token updates the parameter

θ(t) = θ(t− 1)− α 1

π(n(t), t)
∇fDn(t)

(θ(t− 1))

where π(n, t) is fraction of visits to node n, by time t
8: until some stopping criterion is met
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• the algorithm succeeds:
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• we can prove: with probability one, (and under suitable convexity),

lim inf
t→∞

fD (θ(t)) ≤ fD (θ?) +O (α)
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Blueprint of the proof

• fix an agent n

• define the stopping times t1, t2, t3, . . ., where tk is (random) time of
the kth visit to agent n, along with filtration Ft1 ,Ft2 ,Ft3 , . . .

• use the ergodic theorem for markov chains to show

E
(
‖θ(tk+1)− θ?‖2 | Ftk

)

≤ ‖θ(tk)− θ?‖2 − α (f (θ(tk))− f (θ?)) +O
(
α2
)

• use martingale arguments to get

lim inf
t→∞

f (θ(t)) ≤ f (θ?) +O (α)
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Example 2: distributed classification
with random meetings
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• each agent n observes a data stream Xn(1), Xn(2), Xn(3), . . .

• streams are samples of unknown random source θ? ∈ {θ1, . . . , θP }

X1(t)

X2(t)

X3(t)
X4(t)

X5(t)

X6(t) X7(t)

X1(t + 1)

X2(t + 1)

X3(t + 1)
X4(t + 1)

X5(t + 1)

X6(t + 1) X7(t + 1)

time t time t + 1

• channels change randomly over time

• agents want to learn which θ? is generating the streams

23 / 38



• we are at time t

• each agent n holds a belief µn(t) =
(
µθ1n (t), µθ2n (t), µθ3n (t)

)

n

✓1 ✓2 ✓3

µn(t)
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• we move to time t+ 1

• each agent n meets with available neighbors and updates its belief

n

✓1 ✓2 ✓3

µn(t + 1)
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Distributed learning algorithm

1: each agent n initialises µn(0) =
(
µθ1n (0), . . . , µθPn (0)

)
and sets t = 0

2: repeat
3: local Bayes update: each agent n observes Xn(t) and updates

µθn(t+ 1/2) =
P θn (Xn(t))µθn(t)∑
ϑ∈Θ P

ϑ
n (Xn(t))µϑn(t)

, for θ ∈ Θ

4: local fusion of beliefs: each agent n receives µθm(t+ 1/2) from its
neighbors m and updates

µθn(t+1) =
exp

(∑N
m=1Wnm(t) logµθm(t+ 1/2)

)

∑
ϑ∈Θ exp

(∑N
m=1Wnm(t) logµϑm(t+ 1/2)

) , for θ ∈ Θ

5: t← t+ 1
6: until some stopping criterion is met
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• weight Wnm(t) 6= 0 only if agent n is linked to agent m at time t

• example:

X1(t)

X2(t)

X3(t)
X4(t)

X5(t)

X6(t) X7(t)

W (t) =

2
666666664

⇤ 0 ⇤ 0 0 0 0
0 ⇤ ⇤ 0 0 0 0
⇤ ⇤ ⇤ 0 0 0 0
0 0 0 ⇤ 0 0 0
0 0 0 0 ⇤ ⇤ 0
0 0 0 0 ⇤ ⇤ ⇤
0 0 0 0 0 ⇤ ⇤

3
777777775
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• assumptions on the random weight matrices W (t):

I Wnm(t) ≥ 0

I each row of W (t) sums to one

I the sequence (W (t))t≥0 is i.i.d. and independent from (Xn(t))t≥0

I E (W (t)) is irreducible and aperiodic
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• we can prove: with probability one,

lim
t→+∞

1

t
log

µθ
?

n (t)

µθn(t)
=

N∑

m=1

E (πm)DKL

(
P θ

?

m , P θm

)

︸ ︷︷ ︸
K(θ?,θ)

, for θ ∈ Θ

where π = (π1, . . . , πN ) > 0 comes from
∏∞
t=1W (t) = 1πT

• interpretation: algorithm works

µθ
?

n (t) ≈ eK(θ?,θ)tµθn(t) for large t ⇒
{
µθ

?

n (t)→ 1
µθn(t)→ 0, for θ 6= θ?
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Blueprint of the proof

• fix θ ∈ Θ and introduce the N dimensional vectors

u(t) :=




log
µθ?1 (t)

µθ1(t)

...

log
µθ?N (t)

µθN (t)


 and l(t) :=




log
P θ?1 (X1(t))

P θ1 (X1(t))

...

log
P θ?N (XN (t))

P θN (XN (t))




• note that

1

t
u(t) =

1

t
Φ(t, 1)u(0) +

1

t

t−1∑

τ=0

Φ(t, t− τ)l(t− τ),

where
Φ(t, s) = W (t) · · ·W (s)
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• fix ε > 0

• show that there exists a random time T (t) ≤ t such that

1

t

t−1∑

τ=0

Φ(t, t− τ)l(t− τ) = 1


1

t

t−1∑

τ=T (t)

v(t− τ)T l(t− τ)


+O (ε) ,

where v(t− τ) is random vector in
∏∞
s=t−τ W (s) = 1v(t− τ)T

• use the ergodic theorem to get

1

t

t−1∑

τ=T (t)

v(t− τ)T l(t− τ)→ K (θ?, θ)
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Numerical example

1 2 3

4 5 6

7 8 9

• Θ = {θ1, θ2} with θ1 being the active one

• gaussian streams: Xn(t) ∼ N
(
cθn,
(
σθn
)2)

for θ ∈ Θ

• each channel is (independently) active with probability p = 0.7
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Belief µ1(t) =
(
µθ11 (t), µθ21 (t)

)
at agent 1
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Belief µ2(t) =
(
µθ15 (t), µθ25 (t)

)
at agent 5
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Log beliefs ratio 1
t log

µ
θ1
1 (t)

µ
θ2
1 (t)

at agent 1
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Log beliefs ratio 1
t log

µ
θ1
5 (t)

µ
θ2
5 (t)

at agent 5
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Thank you!
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