
Learning from distributed datasets
An introduction with two examples

Pedro Guerreiro and João Xavier
Institute for Systems and Robotics, Instituto Superior Técnico

University of Lisbon

Mathematics, Physics & Machine Learning seminar
June 18, 2020

1 / 38



Outline

• What is distributed learning?

• Example 1: distributed convex learning with a roaming token

• Example 2: distributed classification with random meetings

2 / 38



What is distributed learning?

3 / 38



The physical setup

• a team of robots, a wireless sensor network, a swarm of drones, . . .

agent

agent’s data

• agents are spatially distributed

• each agent measures data

4 / 38



Centralized learning

solution

fusion

center

eventually

• each agent sends its data to a fusion center

• fusion center computes the solution

• drawbacks: single point of failure, traffic jams, lack of data privacy

5 / 38



Distributed learning

channel

• agents are linked by channels

• a channel can appear and disappear (randomly)

• a channel might be directed

6 / 38



Distributed learning

solution
solution

solution

solution

solution

solution

solution
eventually

• agents send messages through channels

• all agents obtain the solution

7 / 38



Example 1: distributed convex learning
with a roaming token

8 / 38



• to illustrate, let the learning problem be logistic regression

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

optimal

• D = {(x1, y1), . . . , (xK , yK)} is dataset (xk=features, yk = ±1)

• goal is to learn the separating hyperplane

9 / 38



• goal is to learn

θ? = argmin
θ

log
(

1 + e−y1θ
T x1

)
+ · · ·+ log

(
1 + e−yKθ

T xK
)

+ θTPθ
︸ ︷︷ ︸

fD(θ)

• . . . but with dataset D split across the agents:

D1

D2

D4

D3

D5

D6
D7

• objective function has the form

fD = fD1
+ fD2

+ fD3
+ fD4

+ fD5
+ fD6

+ fD7

10 / 38



Learning with a random token

• goal is to learn θ? = argmin
θ

fD1 (θ) + fD2 (θ) + · · ·+ fDN (θ)

fD1

fD2

fD4

fD3

fD5

fD6

fD7

token

• the token carries a guess of θ?

• the token moves randomly across the network
• when the token visits an agent, it updates its guess of θ?

11 / 38



fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(0)

• token starts at agent 3 with some initialization θ(0)

12 / 38



fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(1)

• token updates θ(1) = θ(0)− α∇fD4
(θ(0))

13 / 38



fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(2)

• token updates θ(2) = θ(1)− α∇fD3
(θ(1))

14 / 38



fD1

fD2

fD4

fD3

fD5

fD6

fD7

✓(3)

• token updates θ(3) = θ(2)− α∇fD1
(θ(2))

15 / 38



Does this scheme work?

• . . . no

• consider the network

1 2 3

4 5 6

7 8 9

• token chooses neighbor uniformly at random (current node included)

16 / 38



• scheme fails:

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

optimal

original

• it fails because it minimizes the wrong function:

π1fD1 (θ) + π2fD2 (θ) + · · ·+ πNfDN (θ)

• (π1, π2, . . . , πN ) is the stationary distribution of the random walk

17 / 38



• scheme is minimizing

π1fD1 (θ) + π2fD2 (θ) + · · ·+ πNfDN (θ) ,

with π1, . . . , πN depending on the network topology

• what about unbiasing the scheme by redefining each local function as

fDn ←
1

πn
fDn?

• this works, but each agent n would need to know πn

• what about agent n guessing πn on the fly?

18 / 38



Distributed learning algorithm

1: t = 0
2: initialize θ(0)
3: token starts at some node n(0)
4: repeat
5: t← t+ 1
6: token jumps to a random neighbor n(t)
7: token updates the parameter

θ(t) = θ(t− 1)− α 1

π(n(t), t)
∇fDn(t)

(θ(t− 1))

where π(n, t) is fraction of visits to node n, by time t
8: until some stopping criterion is met

19 / 38



• the algorithm succeeds:

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

optimal

modified

original

• we can prove: with probability one, (and under suitable convexity),

lim inf
t→∞

fD (θ(t)) ≤ fD (θ?) +O (α)

20 / 38



Blueprint of the proof

• fix an agent n

• define the stopping times t1, t2, t3, . . ., where tk is (random) time of
the kth visit to agent n, along with filtration Ft1 ,Ft2 ,Ft3 , . . .

• use the ergodic theorem for markov chains to show

E
(
‖θ(tk+1)− θ?‖2 | Ftk

)

≤ ‖θ(tk)− θ?‖2 − α (f (θ(tk))− f (θ?)) +O
(
α2
)

• use martingale arguments to get

lim inf
t→∞

f (θ(t)) ≤ f (θ?) +O (α)

21 / 38



Example 2: distributed classification
with random meetings

22 / 38



• each agent n observes a data stream Xn(1), Xn(2), Xn(3), . . .

• streams are samples of unknown random source θ? ∈ {θ1, . . . , θP }

X1(t)

X2(t)

X3(t)
X4(t)

X5(t)

X6(t) X7(t)

X1(t + 1)

X2(t + 1)

X3(t + 1)
X4(t + 1)

X5(t + 1)

X6(t + 1) X7(t + 1)

time t time t + 1

• channels change randomly over time

• agents want to learn which θ? is generating the streams

23 / 38



• we are at time t

• each agent n holds a belief µn(t) =
(
µθ1n (t), µθ2n (t), µθ3n (t)

)

n

✓1 ✓2 ✓3

µn(t)

24 / 38



• we move to time t+ 1

• each agent n meets with available neighbors and updates its belief

n

✓1 ✓2 ✓3

µn(t + 1)

25 / 38



Distributed learning algorithm

1: each agent n initialises µn(0) =
(
µθ1n (0), . . . , µθPn (0)

)
and sets t = 0

2: repeat
3: local Bayes update: each agent n observes Xn(t) and updates

µθn(t+ 1/2) =
P θn (Xn(t))µθn(t)∑
ϑ∈Θ P

ϑ
n (Xn(t))µϑn(t)

, for θ ∈ Θ

4: local fusion of beliefs: each agent n receives µθm(t+ 1/2) from its
neighbors m and updates

µθn(t+1) =
exp

(∑N
m=1Wnm(t) logµθm(t+ 1/2)

)

∑
ϑ∈Θ exp

(∑N
m=1Wnm(t) logµϑm(t+ 1/2)

) , for θ ∈ Θ

5: t← t+ 1
6: until some stopping criterion is met

26 / 38



• weight Wnm(t) 6= 0 only if agent n is linked to agent m at time t

• example:

X1(t)

X2(t)

X3(t)
X4(t)

X5(t)

X6(t) X7(t)

W (t) =

2
666666664

⇤ 0 ⇤ 0 0 0 0
0 ⇤ ⇤ 0 0 0 0
⇤ ⇤ ⇤ 0 0 0 0
0 0 0 ⇤ 0 0 0
0 0 0 0 ⇤ ⇤ 0
0 0 0 0 ⇤ ⇤ ⇤
0 0 0 0 0 ⇤ ⇤

3
777777775

27 / 38



• assumptions on the random weight matrices W (t):

I Wnm(t) ≥ 0

I each row of W (t) sums to one

I the sequence (W (t))t≥0 is i.i.d. and independent from (Xn(t))t≥0

I E (W (t)) is irreducible and aperiodic

28 / 38



• we can prove: with probability one,

lim
t→+∞

1

t
log

µθ
?

n (t)

µθn(t)
=

N∑

m=1

E (πm)DKL

(
P θ

?

m , P θm

)

︸ ︷︷ ︸
K(θ?,θ)

, for θ ∈ Θ

where π = (π1, . . . , πN ) > 0 comes from
∏∞
t=1W (t) = 1πT

• interpretation: algorithm works

µθ
?

n (t) ≈ eK(θ?,θ)tµθn(t) for large t ⇒
{
µθ

?

n (t)→ 1
µθn(t)→ 0, for θ 6= θ?

29 / 38



Blueprint of the proof

• fix θ ∈ Θ and introduce the N dimensional vectors

u(t) :=




log
µθ?1 (t)

µθ1(t)

...

log
µθ?N (t)

µθN (t)


 and l(t) :=




log
P θ?1 (X1(t))

P θ1 (X1(t))

...

log
P θ?N (XN (t))

P θN (XN (t))




• note that

1

t
u(t) =

1

t
Φ(t, 1)u(0) +

1

t

t−1∑

τ=0

Φ(t, t− τ)l(t− τ),

where
Φ(t, s) = W (t) · · ·W (s)

30 / 38



• fix ε > 0

• show that there exists a random time T (t) ≤ t such that

1

t

t−1∑

τ=0

Φ(t, t− τ)l(t− τ) = 1


1

t

t−1∑

τ=T (t)

v(t− τ)T l(t− τ)


+O (ε) ,

where v(t− τ) is random vector in
∏∞
s=t−τ W (s) = 1v(t− τ)T

• use the ergodic theorem to get

1

t

t−1∑

τ=T (t)

v(t− τ)T l(t− τ)→ K (θ?, θ)

31 / 38



Numerical example

1 2 3

4 5 6

7 8 9

• Θ = {θ1, θ2} with θ1 being the active one

• gaussian streams: Xn(t) ∼ N
(
cθn,
(
σθn
)2)

for θ ∈ Θ

• each channel is (independently) active with probability p = 0.7

32 / 38



Belief µ1(t) =
(
µθ11 (t), µθ21 (t)

)
at agent 1

0 10 20 30 40 50

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µθ1
1 (t)

µθ2
1 (t)

33 / 38



Belief µ2(t) =
(
µθ15 (t), µθ25 (t)

)
at agent 5

0 10 20 30 40 50

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µθ1
5 (t)

µθ2
5 (t)

34 / 38



Log beliefs ratio 1
t log

µ
θ1
1 (t)

µ
θ2
1 (t)

at agent 1

0 100 200 300 400 500

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
t
log

µ
θ1
1 (t)

µ
θ2
1 (t)

theorem

35 / 38



Log beliefs ratio 1
t log

µ
θ1
5 (t)

µ
θ2
5 (t)

at agent 5

0 100 200 300 400 500

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
t
log

µ
θ1
5 (t)

µ
θ2
5 (t)

theorem

36 / 38



References

• The algorithms on slides 19 and 26 and their proofs of convergence
are in the PhD thesis “Distributed Algorithms for Collaborative
Learning,” Pedro Guerreiro, Instituto Superior Técnico, Universidade
de Lisboa, 2019.

• Algorithm on slide 19 is inspired from Björn Johansson, Maben Rabi,
and Mikael Johansson, ”A randomized incremental subgradient
method for distributed optimization in networked systems,” SIAM
Journal on Optimization 20, no. 3 (2010): 1157-1170.

• Algorithm on slide 26 is inspired from Anusha Lalitha, Tara Javidi,
and Anand D. Sarwate, ”Social learning and distributed hypothesis
testing,” IEEE Transactions on Information Theory 64, no. 9 (2018):
6161-6179.

37 / 38



Thank you!

38 / 38


