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The Age of Data

» “We estimate Al-powered
applications will add $13 trillion in
value to the global economy in the
coming decade”

— McKinsey & Company

“The world’s most
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Task: Reconstruct the 3d molecule from noisy

projections taken from unknown directions

2017 Chemistry Laureates. IIl: N. Eimehed.

© Nobel Media 2017

2017 Nobel Prize
in Chemistry

The Nobel Prize in Chemistry 2017
was awarded to Jacques Dubochet,
Joachim Frank and Richard
Henderson "for developing cryo-
electron microscopy for the high-
resolution structure determination
of biomolecules in solution".
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Mathematics of Data

» Are there limits to what we
can learn?

» Which methods work?
Why?

» What are the bottlenecks?

THIS 15 YOUR MACHINE LERRNING SYSTETT?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEPR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT
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Mathematics of Data

» Are there limits to what we
can learn?

THIS 15 YOUR MACHINE LERRNING SYSTETT?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEPR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

» Which methods work? ”HHWTHE%%AREM?)

JUST STIR THE PILE UNTIL
Why? THEY START LOOKING RIGHT

» What are the bottlenecks?

» Can we a posteriori certify?
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Statistics — What are limits to learning?

» 1700's - Bayesian Statistics

The gomets o Staitics
4 1-51

» 1900-1920 - Fisher Information
. . F.Y. EDGEWORTH AND R. A. FISHER
— How much information about a ON THE EFFICIENCY OF MAXIMUM
LIKELIHOOD ESTIMATION!

parameter does a sample have? By Jorex W. Paarr

Harvard University
F. Y. Edgeworth's 1908-9 investigation is examined for its contribution
related
estimates, especially asymptotic eficiency. The nature and extent of his
progress and anticipation of R. A. Fisher are described. Fisher's relevant
work is briefly examined in relation to Edgeworth's and to the Cramér-
Rao inequality.

1. Introduction. Francis Ysidro Edgeworth (1845-1926), the notable statis-
tician (of the Edgeworth series) and economist (of the Edgeworth box), has been
more noted by ists than His work in statistics
has been surveyed extensively by Bowley (1928) and, more briefly but more cogent-
ly for modern readers, by Pearson (1967). For broader sketches, see Hildreth
(1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and
Neyman (1961; see also 1951) have said that R. A. Fisher’s remarkable results
on maximum likelihood estimation were considerably anticipated by Edgeworth
(1908-9). On both occasions Fisher denied Edgeworth all credit without coming
to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam,
1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and
L. J. Savage’s (1976) interest stimulated me to look into the matter.

Bayes  Laplace Lagrange Gauss K.Pearson Edgeworth Fisher
1760’s 1770's 1800's 1890's  1900's  1920's
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Statistics — What are limits to learning?

» 1700's - Bayesian Statistics

The Annals of Stats
1975, Vol 4, No. 3,50

> 1900-1920 - Fisher Information

F.Y. EDGEWORTH AND R. A. FISHER

— How much information about a ON THE EFFICIENCY OF MAXIMUM
LIKELIHOOD ESTIMATION'
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tician (of the Edgeworth series) and economist (of the Edgeworth box), has been
more noted by ists than His work in statistics
has been surveyed extensively by Bowley (1928) and, more briefly but more cogent-
ly for modern readers, by Pearson (1967). For broader sketches, see Hildreth
(1968), who gives further references, or Kendall (1968).

In formal public discussions, Bowley (1935, with reference to 1928) and
Neyman (1961; see also 1951) have said that R. A. Fisher’s remarkable results
on maximum likelihood estimation were considerably anticipated by Edgeworth
(1908-9). On both occasions Fisher denied Edgeworth all credit without coming
to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam,
1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and
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» 1700's - Bayesian Statistics

The dnnals of Statistics
197, Vol. 4, No.3, 501-514

> 1900-1920 - Fisher Information

F.Y. EDGEWORTH AND R. A. FISHER

— How much information about a ON THE EFFICIENCY OF MAXIMUM
LIKELIHOOD ESTIMATION'
parameter does a sample have? By Jorex W. Paarr

Harvard University
F. Y. Edgeworth's 1908-9 investigation is examined for it contribution
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work is briefly examined in relation to Edgeworth's and to the Cramér-
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In formal public discussions, Bowley (1935, with reference to 1928) and
Neyman (1961; see also 1951) have said that R. A. Fisher’s remarkable results
on maximum likelihood estimation were considerably anticipated by Edgeworth
(1908-9). On both occasions Fisher denied Edgeworth all credit without coming
to grips with the central issue. Others grant Edgeworth a modest claim (Le Cam,
1953; Pearson, 1967) or almost none (Rao, 1961; Norden, 1972, citing Rao and
Le Cam). L.J. Savage's (1976) interest stimulated me to look into the matter.
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Statistics — What are limits to learning?

Bayes
1760’s

1700’s - Bayesian Statistics

1900-1920 - Fisher Information
— How much information about a
parameter does a sample have?

1933: Neyman-Pearson Lemma:
— Limits on Hypothesis Testing

1940’s: Cramér-Rao Bound:
— Limits on Statistical Estimation

19504+ Minimax, Contiguity, ...

Laplace Lagrange Gauss

1770's 1800's 1890's  1900's

K.Pearson Edgeworth Fisher

1920's

E.Pearson Neyman
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Claude Shanon ’48: Richard Hamming ’50:
A Mathematical Theory of " Error detecting and error correcting
Communication codes”
Shannon Entropy Hamming Distance

Shannon Entropy: # of bits “of information” needed to identify a draw of X
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Learning/Estimating is (also) optimization

Goal: Find parameter/signal/model that best “fits" the data
» Maximum likelihood estimation

» Training of Neural Networks

Are these computational tasks feasible/easy?

1956: Godel's letter to von Neumann
(and John Nash’'s 1955)

Many optimization/computational
problems are NP-hard (e.g. Knapsack)

1971-72: Cook and Karp’'s NP-hardness

Should we design (statistical) models so that optimization is easy?
Linearity, Convexity, ...
7/17



An example: Communities in Social Networks

Given two disjoint sets of m = 5 nodes each. Independently:

» pairs between clusters have an edge with probability p

» pairs across clusters have an edge with probability g < p

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborovd, 2011
E. Mossel. J. Neeman, A. Sly, 2012, 2013.

L. Massoulie, 2013.

E. Abbe, A. S. Bandeira, G. Hall, 2014.

A. S. Bandeira, 2018.
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An example: Communities in Social Networks

Can we recover the labels?

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova, 2011
E. Mossel. J. Neeman, A. Sly, 2012, 2013.

L. Massoulie, 2013.

E. Abbe, A. S. Bandeira, G. Hall, 2014.

A. S. Bandeira, 2018.
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An example: continued

» Theorem: For p = a'og” and g = B'og”, If (iff)

Va—+/B>V2,

the Minimum Bisection coincides with the true communities.

E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014

A. S. Bandeira, 2015.
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An example: continued

» Theorem: For p = a'og” and g = B'og”, If (iff)

Va—+/B>V2,

the Minimum Bisection coincides with the true communities.

» Theorem: Minimum Bisection is an NP-hard problem.

E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
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An example: continued

» Theorem: For p = a'%” and q = B°87 If (iff)

n n '

Va—+/B>V2,
the Minimum Bisection coincides with the true communities.

» Theorem: Minimum Bisection is an NP-hard problem.

» Theorem: If

Va—+/B>V2,

Minimum Bisection can be computed efficiently.

E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014
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An example: continued

» Theorem: For p = a'%” and q = B°87 If (iff)

n n '

Va—+/B>V2,

the Minimum Bisection coincides with the true communities.

» Theorem: Minimum Bisection is an NP-hard problem.

» Theorem: If

Va—+/B>V2,

Minimum Bisection can be computed efficiently.

Does this always happen?

E. Abbe, A. S. Bandeira, G. Hall, 2014.
E. Mossel, J. Neeman, and A. Sly, 2014
B. Hajek, Y. Wu, and J. Xu., 2014

A. S. Bandeira, 2015.
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Hidden Clique Problem

» A graph G (n, %)

— each edge appears with
probability 3
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Statistical-to-Computational Gaps

Hidden Clique Problem

> A graph G (n,3) > G(n,3) + k-clique
— each edge appears with Vs k picked at random and all the
probability % edges between them added
Largest
2logn Clique k
> Alon-Krivelevich-Sudakov '98: Efficient algorithm for k 2 /n (as opposed to k > 2log n)

»  No improvement since; believed to be hard and used as reduction primitive (e.g. Berthet-Rigollet '12)

Statistical-to-Computational Gap “Hypothesis”
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What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

P ( node labels | SBM Graph ) < Spin Glass (Physics)

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborov4, 2011
D. Gamarnik, M. Sudan, 2013

A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018
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What Makes a Problem Hard?

Complexity/Geometry of Posterior/Solutions

P ( node labels | SBM Graph ) < Spin Glass (Physics)

What is the geometry of cliques > w in G (n, 3)

» Community Detection in the Stochastic Block Model has a
computational gap for > 5 communities

> Finding a clique of size (1+¢)lognina G (n,3) is hard

» Many versions of structured Random Matrix Spike Models have a
computational gap in recovery

> ...

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborov4, 2011
D. Gamarnik, M. Sudan, 2013
A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, 2018
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Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms

inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...

Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020
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Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms
inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)

What if we restrict to low-degree polynomials of the data?

(Hopkins-Steurer '17, ...)

» Exploiting sparsity pn in Sparse PCA requires exp(pZn) computation
X~ N(0, 1+ BxxT),  |Ixllo = pn
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Algebraic Considerations

Sum-of-Square: A Hierarchy of algorithms
inspired on Hilbert Nullstellensatz (Parrilo '00, Lassere '01, ...)

What if we restrict to low-degree polynomials of the data?

(Hopkins-Steurer '17, ...)

» Exploiting sparsity pn in Sparse PCA requires exp(pZn) computation
X~ N(0, 1+ BxxT),  |Ixllo = pn

» Certifying a non-trivial upper bound on the r‘?ix} xT Wx
S 1}n
Sherrington-Kirkpatrick Hamiltonian is hard Wj ~ N(0,1)
>

Y. Ding, D. Kunisky, A. S. Wein, A. S. Bandeira, 2019
A. S. Bandeira, D. Kunisky, A. S. Wein, 2020
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Statistics and Computation in Cryo-EM

» Connection between Statistics of Cryo-EM

and Algebraic Invariant Theory gives:

Optimal Reconstruction Quality ~ /# of samples x SNR3

Bandeira, Niles-Weed, Rigollet, 2017.
Perry, Weed, Bandeira, Rigollet, Singer, 2017.
Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein, 2017.
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Statistics and Computation in Cryo-EM

» Connection between Statistics of Cryo-EM
and Algebraic Invariant Theory gives:

Optimal Reconstruction Quality ~ /# of samples x SNR3

No computational gap!

» Computational gap believed to arise in Heterogeneity problem

Bandeira, Niles-Weed, Rigollet, 2017.
Perry, Weed, Bandeira, Rigollet, Singer, 2017.
Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein, 2017.
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Behavior observed 20 years ago!

100 /
¢ *1 C
&
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®
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L4 o
0.1 1 10 100
Data SNR

» The surprising 1/SNR? scaling at low SNR was observed in ‘98

F. Sigworth, Journal of Structural Biology, 1998.
14/17



Other Methods

» Reductions — If X is hard, sois Y

15/17



Other Methods

» Reductions — If X is hard, sois Y

» Geometry of Random Optimization Landscapes
e.g.. Kac-Rice formula

15/17



Other Methods

» Reductions — If X is hard, sois Y

» Geometry of Random Optimization Landscapes
e.g.. Kac-Rice formula

> Statistical Query Models

15/17



Other Methods

» Reductions — If X is hard, sois Y

» Geometry of Random Optimization Landscapes
e.g.. Kac-Rice formula

> Statistical Query Models

» Automatic algorithm learning
— Deep Learning, Graph Neural Networks, ...

15/17



Other Methods

» Reductions — If X is hard, sois Y

» Geometry of Random Optimization Landscapes
e.g.. Kac-Rice formula

> Statistical Query Models

» Automatic algorithm learning
— Deep Learning, Graph Neural Networks, ...

Are these related?

15/17
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Looking ahead

» What makes problems hard? How do we find SNR¢,,;,,?
» Are the methods/heuristics shown equivalent/related?

» Which atypical (random) properties are quiet? (Hidden Rare
Events)

» Is there a universality phenomenon?
» Can we develop an algorithm that refutes all this?

» Can this help explain Learning?
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Muito Obrigado

www.afonsobandeira.com

Shameless plug: Take a look at Ten Lectures and Forty-Two Open Problems in the
Mathematics of Data Science for some open problems
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