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The sensori-motor problem

Brain is a sensori-motor machine:
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• perception causes action
• action causes perception
• learning by trial and error
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The sensori-motor problem

Brain is a sensori-motor machine:

• perception
• action
• perception causes action
• action causes perception
• learning by trial and error

Separately, we understand perception and action (somewhat):

• Perception is (Bayesian) statistics, information theory, max entropy
• Learning is parameter estimation
• Action is control theory, but

– computing ’backward in time’?
– representing control policies, action hierarchies, learning multiple tasks?
– model based vs. model free?

We seem to have no good theories for the combined sensori-motor problem.

• Sensing depends on actions, features depend on task(s)
• Dual control formalism seems too hard
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Optimal control theory

Given a current state and a future desired state, what is the best/cheapest/fastest
way to get there.
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Why stochastic optimal control?
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Why stochastic optimal control?

Optimality depends on the uncertainty.
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Optimal control theory

dx
dt

= f (x, u) x0, u0:T → x0:T

C(u0:T , x0:T ) = φ(xT ) +

∫ T

0
dtV(xt, ut)

Three hard problems:
- a learning and exploration problem: f , x, φ,V
- a stochastic optimal control computation: compute u∗

- a representation problem u∗(x, t)
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The idea: Control, Inference and Learning

Path integral control theory
Express a control computation as an inference computation.
Compute optimal control using MC sampling
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The idea: Control, Inference and Learning

Path integral control theory
Express a control computation as an inference computation.
Compute optimal control using MC sampling

Importance sampling
Accellerate with importance sampling (=a state-feedback controller)
Optimal importance sampler is optimal control

Learning
Learn the controller from self-generated data
Use Cross Entropy method for parametrized controller
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Outline

• Intro to optimal control theory

• Review of path integral control theory

• Importance sampling

– Relation between optimal sampling and optimal control

• Cross entropy method for adaptive importance sampling (PICE)

– A criterion for parametrized control optimization
– Learning by gradient descent

• Some examples
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Discrete time optimal control

Consider the control of a discrete time deterministic dynamical system:

xt+1 = xt + f (xt, ut), t = 0, 1, . . . ,T − 1

xt describes the state and ut specifies the control or action at time t.

Given x0 and u0:T−1, we can compute x1:T .

Define a cost for each sequence of controls:

C(x0, u0:T−1) =

T−1∑
t=0

V(xt, ut)

Find the sequence u0:T−1 that minimizes C(x0, u0:T−1).
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Dynamic programming

Find the minimal cost path from A to J.

J(J) = 0

J(H) = 3 J(I) = 4

J(F) = min(6 + J(H), 3 + J(I)) = 7

J(B) = min(7 + J(E), 4 + J(F), 2 + J(G)) = . . .

Minimal cost at time t easily expressable in terms of minimal cost at time t + 1.
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Discrete time optimal control

Dynamic programming uses concept of optimal cost-to-go J(t, x).

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following way:

J(t, xt) = min
ut

(V(xt, ut) + J(t + 1, xt + f (t, xt, ut)))

J(T, x) = 0

J(0, x) = min
u0:T−1

C(x, u0:T−1)

This is called the Bellman Equation.

Computes ut(x) for all intermediate t, x.
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Stochastic control theory
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Consider a stochastic dynamical system

dXt = f (Xt, u)dt + dWt E(dWt,idWt. j) = νi jdt

Given X0 find control function u(x, t) that minimizes the expected future cost

C = E

(
φ(XT ) +

∫ T

0
dtR(Xt, u(Xt, t))

)
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Control theory
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Standard approach: define J(x, t) is optimal cost-to-go from x, t.

J(x, t) = min ut:TEu

(
φ(XT ) +

∫ T

t
dtR(Xt, u(Xt, t))

)
Xt = x

J satisfies a partial differential equation

−∂tJ(t, x) = min
u

(
R(x, u) + f (x, u)∇xJ(x, t) +

1
2
ν∇2

xJ(x, t)
)

J(x,T ) = φ(x)

with u = u(x, t).This is HJB equation. Optimal control u∗(x, t) defines distribution
over trajectories p∗(τ) (= p(τ|x0, 0)).
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Path integral control theory
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dXt = f (Xt)dt + g(Xt)(u(Xt, t)dt︸                          ︷︷                          ︸
f (Xt,u)dt

+dWt) X0 = x0

Goal is to find function u(x, t) that minimizes

C(u|x0) = E

φ(XT ) +

∫ T

0
dt V(Xt, t) +

1
2

u(Xt, t)2︸                  ︷︷                  ︸
R(Xt,u(Xt,t))

 = E

(
S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2
)

S (τ) = φ(XT ) +

∫ T

0
V(Xt, t)
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Path integral control theory
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Equivalent formulation: Define distributions

p(τ|x0) : dXt = f (Xt)dt + g(Xt)(u(Xt, t)dt + dWt)

q(τ|x0) : dXt = f (Xt)dt + g(Xt)dWt

Find distribution over trajectories p that minimizes

C(u|x0) = E

(
S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2
)
→ C(p|x0) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)

The optimal solution is given by p∗(τ|x0) = 1
ψ(x0)q(τ|x0)e−S (τ)
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Path integral control theory
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So we have two solutions to the same problem:

p∗(τ|x0) =
1

ψ(x0)
q(τ|x0)e−S (τ) p(τ|x0, u∗(x, t))

These solutions are identical (Girsanov Thm).
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Path integral control theory
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The optimal control cost is C(p∗|x0) = − logψ(x0) with

ψ(x0) =

∫
dτq(τ|x0)e−S (τ) = Eqe−S

Thus, we identify J(x, t) = − logψ(x, t) as the optimal cost-to-go. J(x, t) can be
estimated by forward sampling from q(τ|x, t).
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Path integral control theory
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The optimal control

u∗(x, t)dt = Ep∗(dWt) =
Eq

(
dWe−S

)
Eq

(
e−S )
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Delayed choice

Time-to-go T = 2 − t.
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J(x, t) = −ν logEq exp(−φ(X2)/ν)

Decision is made at T = 1
ν
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Delayed choice

Time-to-go T = 2 − t.
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J(x, t) = −ν logEq exp(−φ(X2)/ν)

”When the future is uncertain, delay your decisions.”
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Some demonstrations

• Coordination of UAV (Gomez et al. 2015)

• Pocket drones (with TUDelft)

• Aggressive driving (Georgia Tech)
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”To compute or not to compute, that is the question”

There are two extreme approaches to compute controls:

• precompute u(x) for any possible situation x. Complex to learn and to store. Fast to execute
• compute u(x) for the current situation x. Low learning and storage cost. Slow execution.

A compromise is the idea of importance sampling.
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Importance sampling
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Consider simple 1-d sampling problem. Given q(x), compute

a = Prob(x < 0) =

∫ ∞

−∞

I(x)q(x)dx

with I(x) = 0, 1 if x > 0, x < 0, respectively.

Naive method: generate N samples Xi ∼ q

â =
1
N

N∑
i=1

I(Xi) Eâ = a Var(â) =
1
N

Var(I)
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Importance sampling
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Consider another distribution p(x). Then

a = Prob(x < 0) =

∫ ∞

−∞

I(x)
q(x)
p(x)

p(x)dx

Importance sampling: generate N samples Xi ∼ p

â =
1
N

N∑
i=1

I(Xi)
q(Xi)
p(Xi)

Eâ = a Var(â) =
1
N

Var
(
I

p
q

)

Unbiased (= correct) for any p
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Optimal importance sampling
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The distribution

p∗(x) =
q(x)I(x)

a

is the optimal importance sampler.

One sample X ∼ p∗ is sufficient to estimate a:

â = I(X)
q(X)
p∗(X)

= a Eâ = a Var(â) = 0
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Estimating ψ = Ee−S
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ESS = 1.8, C=31.7

Sample N trajectories from uncontrolled dynamics

τi ∼ q(τ) wi = e−S (τi) ψ̂ =
1
N

∑
i

wi

ψ̂ unbiased estimate of ψ.

Effective sample size quantifies sampling efficiency

ES S =
N

1 + N2Var(w)
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Importance sampling
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ESS = 1.8, C=31.7
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ESS=9.5, C=2.0

Sample N trajectories from controlled dynamics and reweight yields unbiased es-
timate of cost-to-go:

τi ∼ p(τ) wi = e−S (τi) q(τi)
p(τi)

= e−S u(τi) ψ̂ =
1
N

∑
i

wi

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt
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Importance sampling
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ESS=9.5, C=2.0

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt

Thm:
• Better u (in the sense of optimal control) provides a better sampler (in the sense
of effective sample size).
• Optimal u = u∗ (in the sense of optimal control) requires only one sample and
S u(τ) deterministic!

Thijssen, Kappen 2015
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Proof

Control cost is C(p) = Ep

(
S (τ) + log p(τ)

q(τ)

)
= ES u

Using Jensen’s inequality:

C∗ = − log
∑
τ

q(τ)e−S (τ) = − log
∑
τ

p(τ)e−S (τ)−log p(τ)
q(τ) ≤

∑
τ

p(τ)
(
S (τ) + log

p(τ)
q(τ)

)
= C(p)
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Proof

Control cost is C(p) = Ep

(
S (τ) + log p(τ)

q(τ)

)
= ES u

Using Jensen’s inequality:

C∗ = − log
∑
τ

q(τ)e−S (τ) = − log
∑
τ

p(τ)e−S (τ)−log p(τ)
q(τ) ≤

∑
τ

p(τ)
(
S (τ) + log

p(τ)
q(τ)

)
= C(p)

The inequality is saturated when S (τ) + log p(τ)
q(τ) has zero variance: left and right

side evaluate to S (τ) + log p(τ)
q(τ) .

This is realized when p = p∗ 1.

1p∗ exists when
∑
τ q(τ)e−S (τ) < ∞
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The Path Integral Cross Entropy (PICE) method

We wish to estimate

ψ =

∫
dτq(τ)e−S (τ)

The optimal (zero variance) importance sampler is p∗(τ) = 1
ψ
q(τ)e−S (τ).

We approximate p∗(τ) with pu(τ), where u(x, t|θ) is a parametrized control function.

Following the Cross Entropy method, we minimise KL(p∗|pu).

∆θ ∝ −
∂KL(p∗|pu)

∂θ
∝ −Eue−S u

∫ T

0
dWt

∂u(Xt, t|θ)
∂θ

u(x, t|θ) is arbitrary.

Estimate gradient by sampling.

Kappen, Ruiz 2016
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Adaptive importance sampling
for k = 0, . . . do

datak = generate data(model, uk) % Importance sampler
uk+1 = learn control(datak, uk) % Gradient descent

end for

In each iteration we estimate the same control, but more accurately.

Parallel sampling
Parallel gradient computation
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Example

Geometric Brownian motion on the interval t = 0 to T .

dXt =Xt (u(tXt, t)dt + dWt) ,

C =E
1
2

(log XT )2 +

∫ T

0

1
2

u(x, t)2

u(x, t) =a(t) + b(t)x + c(t)x2 -3
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(t
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)

p
ar
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x(t) at t = 1/2

u(0)

u(1)

u(2)

u∗

u = 0 constant linear quadratic optimal
C 7.526 5.139 1.507 1.461 1.420
FES(%) 34.3 42.08 87.5 95.2 99.3
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Inverted pendulum

Simple 2nd order pendulum with noise, X = (α, α̇)

α̈ = − cosα + u C = E

∫ T

0
dtV(Xt) +

1
2

u(Xt, t)2

Naive grid: u(x) =
∑

k ukδx,xk.
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ES S < 1 due to time discretization, finite sample size effects and u(x, t) = u(x).

‘
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Integrating perception, control and learning

Path integral control theory suggest that controls can be computed by forward sim-
ulation in a world model.

Monte Carlo sampling for

• Perception: Bayesian posterior computation combining sensory data and prior world model
• Planning: simulate future trajectories in the world model
• Learning:

– improve the sampler/controller from these samples
– improve the world model

This provides an abstract model of what neural computation in the brain is.

Bert Kappen 40/46



Computing control by mental simulation

Pfeiffer & Foster (Nature 2013).
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Time series inference

Prior process p(x1:T |x0):

dXt = dWt x0 = 1

Observation at end time only: p(yT |xT ) = exp(−βx2
T )
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Sampling efficiently from the posterior distribution becomes a control problem.
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Controlled noisy Lorenz attractor
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u(t, x) = A(t)x + b(t). N = 6000
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Neural activity from BOLD

u(z, t) = a(t)z + b(t),N = 5000,K = 200 iterations.
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Summary

Path integral control is a class of control problems where the optimal control can
be computed by MC sampling.
- It yields state of the art results for challenging non-linear, noisy, real-time control problems.
- It relates control theory (cost-to-go) and statistical physics (partition sum) and displays phase
transitions

The sampling efficiency can be improved by importance sampling, which takes the
form of an adaptive controller.

Optimal control and optimal sampling are related:
- better controllers are better samplers
- optimal controllers are optimal samplers

Iterative importance sampling has bootstrapping problem: poor initial controller
yields poor samples yields poor controller ...

PI control improves particle filtering methods for time series smoothing problems.
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Thank you!
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