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Two faces of Quantum Field Theory

(1) Axiomatic

I Wightman, Haag-Kastler, Osterwalder-Schrader,
Belavin-Polyakov-Zamolodchicov, Segal,...

I Bootstrap and OPE for Conformal Field Theory

I Algebraic, explicit formuli

(2) Constructive

I Find examples satisfying axioms (QED, φ4
4, QCD...)

I Action functionals, path integrals, renormalization group

I Analytic, approximative, often perturbative

This talk: a path from (2) to (1) in Liouville CFT



Quantum fields→ Random fields

I Hilbert space of physical states H, "vacuum" state ψ0 ∈ H
I Space-time (x, t) ∈ Rd+1

I Fields V̂α(x, t) linear operators on H
I Physical content encoded in Wightman functions

(ψ0,

N∏
k=1

V̂αk (xk, tk )ψ0)

and axioms on their symmetries and regularity

I Positivity of energy =⇒ analytic continuation t → iτ

(ψ0,

N∏
k=1

V̂αk (xk, iτk )ψ0) = 〈
N∏

k=1

Vαk (xk )〉

Vα(x) random functions on x = (x, τ) ∈ Rd+1.



Random fields→ Quantum fields

I Probability space Ω, expectation 〈·〉
I Random (generalized) functions Vα(x , ω), x ∈ Rn, ω ∈ Ω

I Correlation functions

〈
N∏

k=1

Vαk (xk )〉

and axioms on their symmetries and regularity.

I Reflection Positivity =⇒ analytic continuation x → (x,−it),
=⇒ reconstruction of H, V̂α(x, t). (Osterwalder, Schrader 1972)



Conformal Field Theory

Random fields model statistical physics

At critical temperature such systems have conformal symmetry
and the QFT is conformal field theory

This extra symmetry gives rise to strong constraints on correlation
functions via conformal bootstrap

In 2 dimensions bootstrap was used by Belavin, Polyakov and
Zamoldchicov (1984) to classify CFT’s and find explicit expressions
for the correlation functions in several cases

In more than 2 dimensions bootstrap has led to spectacular numerical
predictions (e.g. 3d Ising model)



2d Conformal Field Theory (CFT)

Data

I 2d surface Σ , Riemannian metric g

I Expectation 〈·〉Σ,g
I Primary fields Vα(z), z ∈ Σ, conformal weights ∆α

Axioms (1): Diffeomorphism and Weyl covariance

〈
∏

i

Vαi (ψ(xi ))〉Σ,g = 〈
∏

i

Vαi (xi )〉Σ,ψ∗g

〈
∏

i

Vαi (xi )〉Σ,eϕg = ecA(ϕ,g)
∏

i

e−∆αiϕ(xi )〈
∏

i

Vαi (xi )〉Σ,g

A(ϕ,g) = 1
96π

∫
Σ

(|∇gϕ|2 + 2Rgϕ)dvg

c is the central charge that classifies the CFT’s.



Structure Constants

For Σ = S2 moduli space is one point:

I Every smooth metric can be written:

g = ψ∗(eϕĝ)

I Conformal automorphisms of ĝ ∼= PSL2(C)

Hence 3-point functions

〈Vα1 (x1)Vα2 (x2)Vα3 (x3)〉S2,ĝ

are determined up to constants C(α1, α2, α3), the structure
constants of the CFT.



Bootstrap
Axioms (2) Operator Product Expansion:

Vα1 (z1)Vα2 (z2) =
∑
α∈S

Cα
α1α2

(z1, z2, ∂z2 )Vα(z2)

Holds when inserted to expectation:

〈Vα1 (z1)Vα2 (z2)Vα3 (z3) . . . 〉Σ =
∑
α∈S

Cα
α1α2

(z1, z2, ∂z2 )〈Vα(z2)Vα3 (z3) . . . 〉Σ

I Cα
α1α2

are determined by the structure constants

I S is called the spectrum of the CFT

Iterating OPE:

I Correlations are determined by C(α1, α2, α3) and 〈Vα(z)〉Σ
I Σ = S2 =⇒ only C(α1, α2, α3) enter

Upshot: to “solve a CFT“ need to find its spectrum and structure
constants.



Bootstrap for structure constants

Compute 4-point function on the sphere S2 in two ways:

〈Vα1Vα2Vα3Vα4〉S2 =
∑
α∈S

Cα
α1α2
〈VαVα3Vα4〉S2 =

∑
α∈S

Cα
α1α3
〈VαVα2Vα4〉S2

This becomes a quadratic equation for structure constants.

It has proven to be a very constraining condition c.f. 3d Ising model.



Solutions

Compare w. harmonic analysis on compact/noncompact groups:

1. Compact CFT’s
(a) S is finite: minimal models (e.g. Ising model)
Belavin, Polyakov, Zamolodchicov (1983)
(b) S is countable: compact G WZW models, G/H coset theories
Explicit formuli for C(α1, α2, α3) in terms of Coulomb gas integrals
(Dotsenko,Fateev, .....)

2. Non-compact CFT’s
S is continuous: WZW with noncompact group, Liouville model,
Toda CFT’s
Explicit formula for C(α1, α2, α3) conjectured by Dorn, Otto,
Zamolodchicov, Zamolodchicov (1995) (the DOZZ formula).



Constructive CFT

Try to find examples satisfying the Axioms from functional integrals
over fields X : Σ→ M

〈
∏
α

Vα〉Σ =

∫ ∏
α

Vα(X )e−S(X)DX

Minimal models M = R and S is (scaling limit of)

S(X ) =

∫
Σ

((∇gX )2 + P(X ))dvg

with P, Vα polynomials in X with unknown coefficients.

WZW models M = G Lie Group, S explicit

Direct analysis from functional integral hard.



Liouville model

Classical Liouville action functional for X : Σ→ R

SL(X ) =

∫
Σ

((∇gX )2 + QRgX + µeγX )dvg

If Q = 2
γ the minimiser of SL solves the Liouville equation

∆gX = QRg + µγeγX ⇔ ReγX g = − 1
2µγ

2.

Solution defines a metric eγX g with constant negative curvature =⇒
uniformising map f : D→ Σ (Picard, Poincare).

Polyakov (81): natural probability law for Riemannian metrics:

P(eγX g) ∝ e−SL(X)

"Quantum uniformisation"



Quantum Liouville model

〈F 〉Σ =

∫
F (X )e−

∫
Σ

((∇gX)2+QRgX+µeγX )dvg DX

I Q = Qquantum = 2
γ + γ

2

I µ > 0 dependence explicit (KPZ scaling).

I γ only parameter

-Building block of noncritical string theory

-Kniznik-Polyakov-Zamolodchikov (86): scaling limit statistical physics
models on of random surfaces parametrized by γ.

-E.g. γ =
√

3 describes Ising model on a planar map

-Alday-Gaiotto-Tachicawa: related to SuSy Yang-Mills at d = 4



Conformal Field Theory

Curtright, Thorn (82) conjectured: spectrum of LCFT is continous
and primary fields are vertex operators

Vα = eαX , α ∈ Q + iR

What are the structure constants?

Polyakov: BPZ conformal field theory "unsuccessful attempt to solve
Liouville theory"

In 1995 Zorn and Otto and Zamolodchicov and Zamolodchicov
proposed a remarkable formula for the Liouville structure constants

C(α1, α2, α3) = 〈eα1X(0)eα2X(1)eα3X(∞)〉



DOZZ formula

CDOZZ (α1, α2, α3) =µ̂−s Υ′(0)Υ(α1)Υ(α2)Υ(α3)

Υ(α1+α2+α3−2Q
2 )Υ(α2+α3

2 )Υ(α1+α3
2 )Υ(α1+α2

2 )

I µ̂ =
πΓ(

γ2
4 )(

γ
2 )

4−γ2
2

Γ(1− γ
2

4 )
µ

I Υ is an entire function on C defined by

Υ(α)−1 = Γ2(α|γ2 ,
2
γ )Γ2(2Q − α|γ2 ,

2
γ )

CDOZZ (α1, α2, α3) has simple poles in αi on

{−γ2N−
2
γN} ∪ {Q + γ

2N + 2
γN}



Liouville Bootstrap

CDOZZ solves the quadratic bootstrap equations numerically and
seems to be the only solution for c > 1 with primaries of bounded
spins.

This would imply the bootstrap formula

〈eα1X(0)eα2X(z)eα3X(1)eα4X(∞)〉S2 =

=

∫
R+

CDOZZ (α1, α2,Q − ip)CDOZZ (α3, α4,Q + ip)|F(α,p, z)|2dp

F(α,p, z) purely representation theoretic spherical conformal
blocks determined by c, αi ,p.



Constructive LCFT

1. Give a mathematical meaning to the functional integral

〈
∏

i

eαi X(zi )〉S2 =

∫ ∏
i

eαi X(zi )e−SL(X)DX

2. Prove

〈eα1X(0)eα2X(1)eα3X(∞)〉S2 = CDOZZ (α1, α2, α3)

3. Prove the bootstrap formula for the four point function



Probabilistic Liouville model
What is the mathematical meaning of the integral∫

e−
∫

(|∇gX |2+QRgX+µeγX )dvg DX ?

We define it in terms of the Gaussian Free Field (GFF) on Σ:

φg(z) =
∞∑

n=1

xn√
λn

en(z)

I en are eigenfunctions of Laplacean ∆g on Σ:

−∆gen = λnen, n ≥ 0

I xn i.i.d. normal random variables variance 1

We set
X = ce0 + φg

e0(z) = constant (zero mode of ∆g) , c ∈ R and

e−
∫
|∇gX |2dvg DX := dc ×

∞∏
n=1

e−
1
2 x2

n dx√
2π



Gaussian Multiplicative Chaos (GMC)

The GFF φg is not a function but a distribution:

Eφg(x)φg(y) = log |x − y |−1 + bounded

so to define eγX we need to regularize

φg,N =
N∑

n=1

xn√
λn

en

and renormalize (Kahane ’86):

lim
N→∞

eγφg,N (z)− γ
2

2 Eφg,N (z)2
dz = Mg(dz) almost surely

Mg is called Gaussian Multiplicative Chaos measure on Σ.

Mg is a random multifractal measure

In particular Mg(Σ) <∞ almost surely.



Probabilistic Liouville Theory

By Gauss-Bonnet and X = c + φg

Q
∫

Σ

RgXdvg = Qχ(Σ)c + Q
∫

Σ

Rgφgdvg

so we define the Liouville theory by

〈F (X )〉Σ,g :=

∫
R

e−Qχ(Σ)cE
[
F (c + φg)e−Q

∫
φgRgdvg e−µeγcMg(Σ)

]
dc

Primary field correlation functions

〈
n∏

i=1

eαi X(zi )〉Σ,g =

∫
R

e(
∑
αi−Qχ(Σ))cE

[
n∏

i=1

eαiφg(zi )e−Q
∫
φgRgdvg e−µeγcMg(Σ)

]
dc

are defined by similar renormalisation (Wick ordering) as well.



Axioms (1)

Theorem (David, K, Rhodes, Vargas, 2015) The Liouville correlation
functions exist and are nontrivial if the Seiberg bounds hold:

(1) αi < Q ∀i , and (2)
n∑

i=1

αi > Qχ(Σ)

They satisfy Diff and Weyl Axioms with central charge

c = 1 + 6Q2

I (2): convergence of c-integral

I (1): regularity of GMC

I For Σ = S2: χ(S2) = 2 =⇒
∑n

i=1 αi > 2Q and αi < Q. Hence
only n ≥ 3 are finite!

I Probabilistic theory: α ∈ R, not in spectrum.



Structure constants

In particular the structure constants exist and are given by

C(α1, α2, α3) := 〈eα1X(0)eα2X(1)eα3X(∞)〉S2

= 2
γµ
−sΓ(s) lim

u→∞
|u|4∆α3E

(∫
|z∨1|γ(α1+α2+α3

|z|γα1 |z−1|γα2 |z−u|γα3 Mg(dz)

)−s

in the region

s :=
α1 + α2 + α3 − 2Q

γ
> 0, αi < Q

Similar expressions for n-point functions.



Integrability

Does the probabilistic expression satisfy the DOZZ formula?

Theorem (K, Rhodes, Vargas, Annals of Mathematics 191, 81) Let αi
satisfy the Seiberg bounds. Then

C(α1, α2, α3) = CDOZZ (α1, α2, α3)

Proof combines probabilistic analysis of GMC to derive algebraic
identities for the structure constants that determine them uniquely.

DOZZ is an integrability result for multiplicative chaos.

It is analogous to Fyodorov-Bouchaud conjecture on S1:

E
( ∫

S1
M(dz)

)p
=

Γ(1−p γ
2

2 )

Γ(1− γ2
2 )p

Indeed, this follows from Liouville on the unit disk (Remy 2018)



Bootstrap

To complete integrability of Liouville prove the bootstrap conjecture:
express the 4-point function

〈eα1X(0)eα2X(z)eα3X(1)eα4X(∞)〉S2

in terms of 3-point functions∑
α∈S

C(α1, α2, α)C(α3, α4, α)f ({α}, z)

Idea:

1. Express correlation functions as scalar products

2. S = spectrum of the Hamiltonian of the QFT

3. z-dependence from conformal Ward identities



Reflection positivity
Setup: Euclidean QFT

〈F 〉 =

∫
F (X )e−S(X)DX

for fields X (x, τ), x ∈M, τ ∈ R.

F±: functionals F (X ), depend on X |τ≥0 (X |τ≤0 resp.)

Reflection θ : τ → −τ , extends to Θ : F+ → F−
Definition. 〈·〉 is reflection positive if

〈FΘF 〉 ≥ 0 ∀F ∈ F+

Scalar product F ,G ∈ F+ → (F ,G) := 〈FΘG〉

QFT Hilbert space H = F+/{(F ,F ) = 0}

Time translation τ → τ + t , t ≥ 0, extends to Tt : H → H.

Tt is a semigroup with positive generator H: Tt = e−tH .

H is the Hamiltonian of the QFT and quantum fields are

V̂α(x, t) = e−itHVα(x,0)eitH



Hilbert space for LCFT

Consider LCFT on S2 = Ĉ = C ∪ {∞}. Map R× S1 → Ĉ by
z = e−t+iθ. Then
Hilbert space FD = functionals F (X ) that depend on X |D
Reflection t → −t becomes z → z̄−1

Hamiltonian H = generator of dilations z → e−tz.

Proposition (GKRV 2020) H is a positive self adjoint operator on H
for all γ < 2.



4-point function

By PSL2(C) the four-point function can be reduced to

G4(z) := 〈eα1X(0)eα2X(z)eα3X(1)eα4X(∞)〉S2

with |z| < 1. By reflection positivity

G4(z) = (Ψα1α2 (z),Ψα3α4 (1)) (∗)

with
Ψαβ(z) = eαX(0)eβX(z) ∈ FD.

Bootstrap is obtained by factorising (∗) using the spectral resolution
of H.



H as a Schrödinger operator

Reduce the functional integral

(F ,G) = 〈FΘG〉 =

∫
F (X )ΘG(X )e−SL(X)DX

to an integral over X |∂D. This can be done probabilistically:
Recall X (z) = c + φ(z). Let ϕ(θ) = φ(eiθ). Then

ϕ(θ) =
∑
n 6=0

ϕn√
n

einθ, <ϕn,=ϕn
law
= N(0,1)

Proposition. There is a unitary map

U : FD → L2(dc ×
∏
n>0

e−
1
2 |ϕn|2 dϕndϕ̄n

π ) := H

s.t.
(F ,G) = (UF ,UG)H



H as a Schrödinger operator

Furthermore for γ <
√

2.

UHU−1 = H0 + µV

H0 = − 1
2

d2

dc2 −∆ϕ + Q2

2

V (c, ϕ) = eγc
∫ 2π

0
eγϕ(θ)− γ

2
2 Eϕ(θ)2

dθ

where
∆ϕ =

∑
n>0

∂ϕn∂ϕ−n + . . .

Find eigenfunctions ψ(c, ϕ) of H:

(H0 + µV )ψ = Eψ



Toy Liouville

Keep only c variable:

H =
1
2 (− d2

dc2 + Q2) + µeγc

Schrödinger operator on L2(R) with a wall potential

V (c) = eγc →
{

0 if c → −∞
∞ if c →∞

Scattering theory: Generalized eigenfunctions

ψp(c) ∼
{

eipc + R(p)e−ipc c → −∞
0 c →∞

with p ∈ R+ and eigenvalue 1
2 (Q2 + p2) = 2∆Q+ip.



Spectrum of H0

H carries a unitary representation of two commuting Virasoro
algebras with generators Ln and L̃n:

[Ln,Lm] = (n −m)Ln+m +
c

12
(n3 − n)δn,−m

where the central charge is c = 1 + 6Q2 and H0 = L0 + L̃0.
The generalized eigenfunctions of H0 are

ψ0
p,ν,ν̃ = Lν1 . . . Lνn L̃ν̃1 . . . L̃ν̃nψ

0
p

where νn ≤ · · · ≤ ν1 < 0 and ψ0
p = eipc is the highest weight state

Lnψ
0
p = 0,n > 0, L0ψ

0
p = ∆Q+ipψ

0
p

and (let |ν| :=
∑
νi )

Hψ0
p,ν,ν̃ = (2∆Q+ip + |ν|+ |ν̃|)ψ0

p := E(p, ν, ν̃)ψ0
p



Spectrum of LCFT

Theorem (GKRV 2020). H has a complete set of generalized
eigenfunctions indexed by p ∈ R+ and ν, ν̃

ψp,ν,ν̃ ∼ ψ0
p,ν,ν̃ + reflected waves c → −∞

and
(ψp,ν,ν̃ , ψp′,ν′,ν̃′) = δ(p − p′)F(p)ν,ν′F(p)ν̃,ν̃′

with F(p) a Gram matrix (Shapovalov form).

Corollary. Let Ψp,ν,ν̃ = U−1ψp,ν,ν̃ . Plancharel identity holds

G4(z) =

∫
R+

∑
ν,ν′,ν̃,ν̃′

(Ψα1α2 (z),Ψp,ν,ν̃)(Ψp,ν′,ν̃′ ,Ψα3α4 (1))F(p)−1
ν,ν′F(p)−1

ν̃,ν̃′dp

Remains to connect (Ψα1α2 (z),Ψp,ν,ν̃) = (Vα1 (0)Vα2 (z),Ψp,ν,ν̃) to
structure constants.



Ward identity
Theorem. (GKRV 2020) For an explicit function T (α, β, p, ν)

(Vα1 (0)Vα2 (z),Ψp,ν,ν̃) = T (α1, α2,p, ν)T (α1, α2,p, ν̃)CDOZZ (α1, α2,Q + ip)
(1)

Heuristic explanation: Ψp,ν,ν̃ = Lν L̃ν̃VQ+ip(0) and

(Vα1 (0)Vα2 (z),Ψp,0,0) = (Vα1 (0)Vα2 (z),VQ+ip(0))

= 〈Vα1 (0)Vα2 (z)VQ+ip(∞)〉S2 = CDOZZ (α1, α2,Q + ip)

T produced by Lν L̃ν̃ via conformal Ward identities.
Actual proof:

I Analytic continuation of ψp,ν,ν̃ : Q + ip → α ∈ R
I Probabilistic proof of the Ward identity (1)

Remarks:

I ψp,ν,ν̃ are macroscopic states, not created by local fields.

I For α ∈ R Vα(z) is local field but creates a state not in the
spectrum.



Bootstrap

Corollary. (GKRV) Bootstrap formula holds:

〈eα1X(0)eα2X(z)eα3X(1)eα4X(∞)〉 =

=

∫
R+

CDOZZ (α1, α2,Q + ip)CDOZZ (α3, α4,Q + ip)|F(α,p, z)|2dp

where F are spherical holomorphic conformal blocks given by

F(α,p, z) :=
∞∑

n=0

βnzn

The sum converges for almost all p and

βn :=
∑

|ν|,|ν′|=n

T (α1, α2,p, ν)F(p)−1
ν,ν′T (α3, α4,p, ν).



Prospects

I Similar formuli for n-point functions

I Bootstrap for LCFT on Torus (in progress)

I Extension to γ ∈ [
√

2,2) (in progress)



Summary

Compare to harmonic analysis on SU(2) vs. SL(2,R):

Compact CFT’s: algebra

Non-compact CFT’s: analysis and probabilty



Thank you!



Proof ideas

1. Analyticity. C(α1, α2, α3) are analytic in a neighborhood of
α1 + α2 + α3 > 2Q, αi < Q.

2. Reflection. C(α1, α2, α3) has analytic continuation beyond
αi ∈ (0,Q) which satisfies

C(α1, α2, α3) = R(α1)C(2Q − α1, α2, α3)

3. Periodicity. Let α = γ
2 or α = 2

γ . Then for all α1 ∈ R:

C(α1 − α, α2, α3) = D(α, α1, α2, α3)C(α1 + α, α2, α3)

For γ2 /∈ Q this determines C = CDOZZ . Continuity in γ =⇒ �.



Reflection and Periodicity
DOZZ formula satisfies reflection and periodicity with

D(α, α1, α2, α3) = −
1

πµ

Γ(−α2)Γ(−αα1)Γ(−αα1 − α2)Γ(α2 (2α1 − ᾱ))

Γ(α2 (2Q − ᾱ))Γ(α2 (2α3 − ᾱ))Γ(α2 (2α2 − ᾱ))

×
Γ(1 + α

2 (ᾱ− 2Q))Γ(1 + α
2 (ᾱ− 2α3))Γ(1 + α

2 (ᾱ− 2α2))

Γ(1 + α2)Γ(1 + αα1)Γ(1 + αα1 + α2)Γ(1 + α
2 (ᾱ− 2α1))

R(α) = −((
γ

2
)
γ2
2 −2

µ̃)
2(Q−α)
γ

Γ( γ2 (α− Q))Γ( 2
γ

(α− Q))

Γ( γ2 (Q − α))Γ( 2
γ

(Q − α))
.

In particular the reflection relation has been a mystery:

eαφ = R(α)e(2Q−α)φ

In our proof

I Coefficients R and D follow from asymptotic analysis of
multiplicative chaos integrals

I The reflection coefficient R(α) has a probabilistic origin in tail
behaviour of multiplicative chaos.
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