Rational and algebraic links and knots-quivers correspondence

Marko Stošić

${ }^{1}$ CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Portugal
${ }^{2}$ Mathematical Institute SANU, Belgrade, Serbia
TQFT online seminar, 26.6.2020.

Ingredient 1: Knots

Colored HOMFLY-PT polynomials:
Symmetric (S^{r})-colored HOMFLY-PT polynomials are 2-variable invariants of knots:

$$
P_{r}(K)(a, q)
$$

For $a=q^{N}$ they are $\left(s /(N), S^{r}\right)$ quantum polynomial invariants:

$$
P\left(a=q^{N}, q\right)=P^{s /(N), S^{r}}(q) .
$$

Ingredient 1: Knots

Colored HOMFLY-PT polynomials:
Symmetric (S^{r})-colored HOMFLY-PT polynomials are 2-variable invariants of knots:

$$
P_{r}(K)(a, q)
$$

For $a=q^{N}$ they are $\left(s /(N), S^{r}\right)$ quantum polynomial invariants:

$$
P\left(a=q^{N}, q\right)=P^{s l(N), s^{r}}(q)
$$

Already interesting is the "bottom row": the coefficient of the lowest nonzero power of a appearing in $P_{r}(a, q)$

$$
P_{r}^{-}(q)=\lim _{a \rightarrow 0} a^{\sharp} P_{r}(a, q)
$$

LMOV conjecture

Generating function of all symmetric-colored HOMFLY-PT polynomials of a given knot K is:

$$
\begin{gathered}
P(x, a, q):=\sum_{r \geq 0} P_{r}(a, q) x^{r}=\exp \left(\sum_{n, r \geq 1} \frac{1}{n} f_{r}\left(a^{n}, q^{n}\right) x^{r n}\right), \\
f_{r}(a, q)=\sum_{i, j} \frac{N_{r, i, j} a^{i} q^{j}}{q-q^{-1}} .
\end{gathered}
$$

LMOV conjecture

Generating function of all symmetric-colored HOMFLY-PT polynomials of a given knot K is:

$$
\begin{gathered}
P(x, a, q):=\sum_{r \geq 0} P_{r}(a, q) x^{r}=\exp \left(\sum_{n, r \geq 1} \frac{1}{n} f_{r}\left(a^{n}, q^{n}\right) x^{r n}\right), \\
f_{r}(a, q)=\sum_{i, j} \frac{N_{r, i, j} a^{i} q^{j}}{q-q^{-1}} .
\end{gathered}
$$

One can easily get: $\quad N_{r, i, j} \in \mathbb{Q}$

LMOV conjecture

Generating function of all symmetric-colored HOMFLY-PT polynomials of a given knot K is:

$$
\begin{gathered}
P(x, a, q):=\sum_{r \geq 0} P_{r}(a, q) x^{r}=\exp \left(\sum_{n, r \geq 1} \frac{1}{n} f_{r}\left(a^{n}, q^{n}\right) x^{r n}\right), \\
f_{r}(a, q)=\sum_{i, j} \frac{N_{r, i, j} a^{i} q^{j}}{q-q^{-1}} .
\end{gathered}
$$

One can easily get: $\quad N_{r, i, j} \in \mathbb{Q}$
LMOV conjecture: $\quad N_{r, i, j} \in \mathbb{Z} \quad$!

LMOV conjecture

Generating function of all symmetric-colored HOMFLY-PT polynomials of a given knot K is:

$$
\begin{gathered}
P(x, a, q):=\sum_{r \geq 0} P_{r}(a, q) x^{r}=\exp \left(\sum_{n, r \geq 1} \frac{1}{n} f_{r}\left(a^{n}, q^{n}\right) x^{r n}\right), \\
f_{r}(a, q)=\sum_{i, j} \frac{N_{r, i, j} a^{i} q^{j}}{q-q^{-1}}
\end{gathered}
$$

One can easily get: $\quad N_{r, i, j} \in \mathbb{Q}$
LMOV conjecture: $\quad N_{r, i, j} \in \mathbb{Z} \quad$!
$N_{r, i, j}$ are BPS numbers. They represent (super)-dimensions of certain homological groups. Physicaly, they "count" particles of certain type (therefore are integers).

Ingredient 2: Quivers (and their representations)

Quivers are oriented graphs, possibly with loops and multiple edges.
$Q_{0}=\{1, \ldots, m\}-$ set of vertices.
Q_{1} the set of edges $\{\alpha: i \rightarrow j\}$.

Ingredient 2: Quivers (and their representations)

Quivers are oriented graphs, possibly with loops and multiple edges.
$Q_{0}=\{1, \ldots, m\}-$ set of vertices.
Q_{1} the set of edges $\{\alpha: i \rightarrow j\}$.
Let $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right) \in \mathbb{N}^{m}$ be a dimension vector.
We are interested in moduli space of representations of Q with the dimension vector \mathbf{d} :

$$
M_{\mathbf{d}}=\left\{R(\alpha): \mathbb{C}^{d_{i}} \rightarrow \mathbb{C}^{d_{j}} \mid \text { for all } \alpha: i \rightarrow j \in Q_{1}\right\} / / G
$$

where $G=\prod_{i} G L\left(d_{i}, \mathbb{C}\right)$.

Quivers and motivic generating functions

C is a matrix of a quiver with m vertices.

$$
P_{C}\left(x_{1}, \ldots, x_{m}\right):=\sum_{d_{1}, \ldots, d_{m}} \frac{(-q)^{\sum_{i, j=1}^{m} c_{i, j} d_{i} d_{j}}}{\left(q^{2} ; q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}} .
$$

q -Pochhamer symbol $\quad\left(q^{2} ; q^{2}\right)_{n}:=\prod_{i=1}^{n}\left(1-q^{2 i}\right)$.

Quivers and motivic generating functions

C is a matrix of a quiver with m vertices.

$$
P_{C}\left(x_{1}, \ldots, x_{m}\right):=\sum_{d_{1}, \ldots, d_{m}} \frac{(-q)^{\sum_{i, j=1}^{m} c_{i, j} d_{i} d_{j}}}{\left(q^{2} ; q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}
$$

q-Pochhamer symbol $\quad\left(q^{2} ; q^{2}\right)_{n}:=\prod_{i=1}^{n}\left(1-q^{2 i}\right)$.
Motivic (quantum) Donaldson-Thomas invariants $\Omega_{d_{1}, \ldots, d_{m} ; j}$ of a symmetric quiver Q :

$$
P_{C}=\prod_{\left(d_{1}, \ldots, d_{m}\right) \neq 0} \prod_{j \in \mathbb{Z}} \prod_{k \geq 0}\left(1-\left(x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}\right) q^{j+2 k+1}\right)^{(-1)^{j+1} \Omega_{d_{1}, \ldots, d_{m} ; j}}
$$

Quivers and motivic generating functions

C is a matrix of a quiver with m vertices.

$$
P_{C}\left(x_{1}, \ldots, x_{m}\right):=\sum_{d_{1}, \ldots, d_{m}} \frac{(-q)^{\sum_{i, j=1}^{m} c_{i, j} d_{i} d_{j}}}{\left(q^{2} ; q^{2}\right)_{d_{1}} \cdots\left(q^{2} ; q^{2}\right)_{d_{m}}} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}
$$

q-Pochhamer symbol $\quad\left(q^{2} ; q^{2}\right)_{n}:=\prod_{i=1}^{n}\left(1-q^{2 i}\right)$.
Motivic (quantum) Donaldson-Thomas invariants $\Omega_{d_{1}, \ldots, d_{m} ; j}$ of a symmetric quiver Q :
$P_{C}=\prod_{\left(d_{1}, \ldots, d_{m}\right) \neq 0} \prod_{j \in \mathbb{Z}} \prod_{k \geq 0}\left(1-\left(x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}\right) q^{j+2 k+1}\right)^{(-1)^{j+1} \Omega_{d_{1}, \ldots, d_{m} ; j}}$.

Theorem (Kontsevich-Soibelman, Efimov)

$\Omega_{d_{1}, \ldots, d_{m} ; j}$ are nonnegative integers.

Knots-quivers correspondence

[P. Kucharski, M. Reineke, P. Sulkowski, M.S., Phys. Rev. D 2017] New relationship between HOMFLY-PT / BPS invariants of knots and motivic Donaldson-Thomas invariants for quivers

Figure: Trefoil knot and the corresponding quiver.

The generating series of HOMFLY-PT invariants of a knot matches the motivic generating series of a quiver, after setting $x_{i} \rightarrow x$.

Details of the correspondence

Knots	Quivers
Generators of HOMFLY homology	Number of vertices
Homological degrees, framing	Number of loops
Colored HOMFLY-PT	Motivic generating series
LMOV invariants	Motivic DT-invariants
Classical LMOV invariants	Numerical DT-invariants
Algebra of BPS states	Cohom. Hall Algebra

Application 1 - LMOV conjecture

BPS/LMOV invariants of knots are refined through motivic DT invariants of a corresponding quiver, and so

Theorem

For all knots for which there exists a corresponding quiver, the LMOV conjecture holds.

Open questions

- Find quivers for (large) classes of knots
- How to find a quiver for a given knot directly (geometrically, topologically...)? Other, better definition?
- The (non) uniqueness of a quiver:
- What is the smallest possible size of the quiver?
- Among the ones with the same size - discrete group action?
- What is so special for quivers that correspond to knots?
(Combinatorial identities for binomial coefficients, and extended integrality/divisibility hold precisely for them.)

Application 2 - Lattice paths counting

Figure: A lattice path under the line $y=\frac{1}{4} x$, and a shaded area between the path and the line.

$$
\begin{gathered}
y_{P}(x)=\sum_{k=0}^{\infty} \sum_{\pi \in k \text {-paths }} x^{k}=\sum_{k=0}^{\infty} c_{k}(1) x^{k} \\
y_{q P}(x)=\sum_{k=0}^{\infty} \sum_{\pi \in \text {-paths }} q^{\operatorname{area}(\pi)} x^{k}=\sum_{k=0}^{\infty} c_{k}(q) x^{k}
\end{gathered}
$$

Counting (rational) lattice paths

Surprisingly, colored HOMFLY-PT polynomials are closely related to the purely combinatorial problem of counting lattice paths under lines with rational slope.

Counting (rational) lattice paths

Surprisingly, colored HOMFLY-PT polynomials are closely related to the purely combinatorial problem of counting lattice paths under lines with rational slope.

Proposition (M. Panfil, P. Sulkowski, M.S., 2018)

Let r and s be mutually prime.
Let $K=T_{r, s}^{f=-r s}$ be the $r s$-framed (r, s)-torus knot.
Then the coefficients a_{n} of the series governing the growth of the generating series of colored HOMFLY-PT polynomial of K, are equal to the number of directed lattice path from $(0,0)$ to $(s n, r n)$ under the line $y=(r / s) x$.

Knots and quivers - results

Knots-quivers correspondence naturally suggests a particular refinement of the numbers a_{n}.

Knots and quivers - results

Knots-quivers correspondence naturally suggests a particular refinement of the numbers a_{n}.
For example, for $2 / 3$ slope, after computing the relevant invariants (for the bottom row) of the $T_{2,3}$ knot (trefoil), the corresponding quiver is:

$$
\left[\begin{array}{ll}
7 & 5 \\
5 & 5
\end{array}\right] .
$$

Knots and quivers - results

Knots-quivers correspondence naturally suggests a particular refinement of the numbers a_{n}.
For example, for $2 / 3$ slope, after computing the relevant invariants (for the bottom row) of the $T_{2,3}$ knot (trefoil), the corresponding quiver is:

$$
\begin{gathered}
{\left[\begin{array}{ll}
7 & 5 \\
5 & 5
\end{array}\right] .} \\
a_{n}^{(2 / 3)}= \\
=\sum_{i+j=n} \frac{1}{7 i+5 j+1}\binom{7 i+5 j+1}{i}\binom{5 i+5 j+1}{j} \\
= \\
\sum_{i=0}^{n} \frac{1}{5 n+i+1}\binom{5 n+2 i}{i}\binom{5 n+1}{n-i} .
\end{gathered}
$$

(rediscovered Duchon formula)

Consequence 1 - binomial identities

All this also rediscovers some binomial identities, like e.g.

$$
\binom{5 n}{2 n}=\sum_{i=0}^{n} \frac{5 n}{5 n+2 i}\binom{5 n+2 i}{i}\binom{5 n}{n-i}
$$

Comes from counting of paths under line with slope $2 / 3$.

Consequence 1 - binomial identities

All this also rediscovers some binomial identities, like e.g.

$$
\binom{5 n}{2 n}=\sum_{i=0}^{n} \frac{5 n}{5 n+2 i}\binom{5 n+2 i}{i}\binom{5 n}{n-i}
$$

Comes from counting of paths under line with slope $2 / 3$.

One can obtain such identities precisely for the quivers that correspond to (torus) knots.

Counting of weighted lattice paths

Proposition

The generating function $y_{q P}(x)$ of lattice paths under the line of the slope r / s, weighted by the area between this line and a given path, is equal to

$$
y_{q P}(x)=\sum_{k=0}^{\infty} \sum_{\pi \in k-p a t h s} q^{\operatorname{area}(\pi)} x^{k}=\left.\frac{P_{C}\left(q^{2} x_{1}, \ldots, q^{2} x_{m}\right)}{P_{C}\left(x_{1}, \ldots, x_{m}\right)}\right|_{x_{i}=x q^{-1}}
$$

For the line of the slope r / s, the quiver in question is defined by the matrix C that encodes extremal invariants of left-handed (r, s) torus knot in framing rs.

Paths under the line with slope $3 / 4$

$$
C^{(3,4)}=\left[\begin{array}{ccccc}
7 & 7 & 7 & 7 & 7 \\
7 & 9 & 8 & 9 & 9 \\
7 & 8 & 9 & 9 & 10 \\
7 & 9 & 9 & 11 & 11 \\
7 & 9 & 10 & 11 & 13
\end{array}\right]
$$

\sharp paths $=\sum_{1_{1}+\cdots+r_{5}=n} A_{(3,4)}\left(1_{1}, l_{2}, l_{3}, l_{4}, /_{5}\right) \times$

$$
\begin{aligned}
& \times \frac{1}{7 I_{1}+7 I_{2}+7 I_{3}+7 I_{4}+7 I_{5}+1}\binom{7 I_{1}+7 I_{2}+7 I_{3}+7 I_{4}+7 I_{5}+1}{I_{1}} \times \\
& \times \frac{1}{7 I_{1}+9 I_{2}+8 I_{3}+9 /_{4}+9 /_{5}+1}\binom{7 I_{1}+9 /_{2}+8 / 3+9 I_{4}+9 / 5+1}{I_{2}} \times \\
& \times \frac{1}{7 I_{1}+8 /_{2}+9 /_{3}+9 /_{4}+10 / 5+1}\binom{7 I_{1}+8 / 2+9 / 3+9 I_{4}+10 / 5+1}{/ 3} \times \\
& \times \frac{1}{7 I_{1}+9 I_{2}+9 / /_{3}+11 I_{4}+11 I_{5}+1}\binom{7 I_{1}+9 /_{2}+9 /_{3}+11 I_{4}+11 /_{5}+1}{\hline} \times \\
& \times \frac{1}{7 I_{1}+9 / /_{2}+10 / 3+11 /_{4}+13 / 5+1}\binom{7 / 1+9 / 2+10 / 3+11 /_{4}+13 / 5+1}{5} .
\end{aligned}
$$

$$
\begin{aligned}
& A_{(3,4)}\left(I_{1}, I_{2}, l_{3}, I_{4}, I_{5}\right)=1+28 I_{1}+294 I_{1}^{2}+1372 I_{1}^{3}+2401 I_{1}^{4}+33 I_{2}+693 I_{1} I_{2}+4851 I_{1}^{2} I_{2}+11319 I_{1}^{3} I_{2}+407 I_{2}^{2}+5698 I_{1} I_{2}^{2}+ \\
& +19943 I_{1}^{2} I_{2}^{2}+2223 I_{2}^{3}+15561 I_{1} I_{2}^{3}+4536 I_{2}^{4}+34 I_{3}+714 I_{1} I_{3}+4998 I_{1}^{2} I_{3}+11662 I_{1}^{3} I_{3}+838 I_{2} I_{3}+11732 I_{1} I_{2} I_{3}+ \\
& +41062 I_{1}^{2} I_{2} I_{3}+6860 I_{2}^{2} I_{3}+48020 I_{1} I_{2}^{2} I_{3}+18648 I_{2}^{3} I_{3}+431 I_{3}^{2}+6034 I_{1} I_{3}^{2}+21119 I_{1}^{2} I_{3}^{2}+7051 I_{2} I_{3}^{2}+49357 I_{1} I_{2} I_{3}^{2}+ \\
& +28728 I_{2}^{2} I_{3}^{2}+2414 I_{3}^{3}+16898 I_{1} I_{3}^{3}+19656 I_{2} I_{3}^{3}+5040 I_{3}^{4}+36 I_{4}+756 I_{1} I_{4}+5292 I_{1}^{2} I_{4}+12348 I_{1}^{3} I_{4}+887 I_{2} I_{4}+ \\
& +12418 I_{1} I_{2} I_{4}+43463 I_{1}^{2} I_{2} I_{4}+7258 I_{2}^{2} I_{4}+50806 I_{1} I_{2}^{2} I_{4}+19719 I_{2}^{3} I_{4}+21294 I_{3}^{3} I_{4}+482 I_{4}^{2}+6748 I_{1} I_{4}^{2}+23618 I_{1}^{2} I_{4}^{2}+ \\
& +912 I_{3} I_{4}+12768 I_{1} I_{3} I_{4}+44688 I_{1}^{2} I_{3} I_{4}+14914 I_{2} I_{3} I_{4}+104398 I_{1} I_{2} I_{3} I_{4}+60732 I_{2}^{2} I_{3} I_{4}+7656 I_{3}^{2} I_{4}+53592 I_{1} I_{3}^{2} I_{4}+62307 I_{2} I_{3}^{2} I_{4}+ \\
& +7879 I_{2} I_{4}^{2}+55153 I_{1} I_{2} I_{4}^{2}+32067 I_{2}^{2} I_{4}^{2}+8086 I_{3} I_{4}^{2}+56602 I_{1} I_{3} I_{4}^{2}+23688 I_{3} I_{4}^{3}+6237 I_{4}^{4}+65772 I_{2} I_{3} I_{4}^{2}+37 I_{5}+777 I_{1} I_{5}+ \\
& +33705 I_{3}^{2} I_{4}^{2}+2844 I_{4}^{3}+19908 I_{1} I_{4}^{3}+23121 I_{2} I_{4}^{3}+5439 I_{1}^{2} I_{5}+12691 I_{1}^{3} I_{5}+912 I_{2} I_{5}+12768 I_{1} I_{2} I_{5}+44688 I_{1}^{2} I_{2} I_{5}+ \\
& +7465 I_{2}^{2} I_{5}+52255 I_{1} I_{2}^{2} I_{5}+20286 I_{2}^{3} I_{5}+69524 I_{2} I_{3} I_{5}^{2}+35630 I_{3}^{2} I_{5}^{2}+9010 I_{4} I_{5}^{2}+63070 I_{1} I_{4} I_{5}^{2}+39501 I_{4}^{2} I_{5}^{2}+25074 I_{2} I_{5}^{3}+
\end{aligned}
$$

$$
\begin{aligned}
& +55139 I_{1} I_{3}^{2} I_{5}+64106 I_{2} I_{3}^{2} I_{5}+21910 I_{3}^{3} I_{5}+991 I_{4} I_{5}+13874 I_{1} I_{4} I_{5}+48559 I_{1}^{2} I_{4} I_{5}+16204 I_{2} I_{4} I_{5}+73269 I_{2} I_{4} I_{5}^{2}+75068 I_{3} I_{4} I_{5}^{2}+ \\
& +113428 I_{1} I_{2} I_{4} I_{5}+65961 I_{2}^{2} I_{4} I_{5}+16632 I_{3} I_{4} I_{5}+116424 I_{1} I_{3} I_{4} I_{5}+135296 I_{2} I_{3} I_{4} I_{5}+69335 I_{3}^{2} I_{4} I_{5}+25690 I_{3} I_{5}^{3}+ \\
& +8771 I_{4}^{2} I_{5}+61397 I_{1} I_{4}^{2} I_{5}+71316 I_{2} I_{4}^{2} I_{5}+73066 I_{3} I_{4}^{2} I_{5}+25641 I_{4}^{3} I_{5}+509 I_{5}^{2}+7126 I_{1} I_{5}^{2}+27027 I_{4} I_{5}^{3}+ \\
& +24941 I_{1}^{2} I_{5}^{2}+8325 I_{2} I_{5}^{2}+58275 I_{1} I_{2} I_{5}^{2}+33894 I_{2}^{2} I_{5}^{2}+8546 I_{3} I_{5}^{2}+59822 I_{1} I_{3} I_{5}^{2}+6930 I_{5}^{4} \text {. }
\end{aligned}
$$

Schröder paths

Figure: An example of a Schröder path of length 6.

Schröder paths and full colored HOMFLY-PT

Quiver corresponding to the full colored HOMFLY-PT invariants of knots in framing $f=1$

$$
C=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

This corresponds to counting paths under the diagonal line $y=x$.

Schröder paths and full colored HOMFLY-PT

Quiver corresponding to the full colored HOMFLY-PT invariants of knots in framing $f=1$

$$
C=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

This corresponds to counting paths under the diagonal line $y=x$. In this case we take specializations:

$$
x_{1} \longrightarrow x, \quad x_{2} \longrightarrow a x
$$

Schröder paths and full colored HOMFLY-PT

Quiver corresponding to the full colored HOMFLY-PT invariants of knots in framing $f=1$

$$
C=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

This corresponds to counting paths under the diagonal line $y=x$. In this case we take specializations:

$$
x_{1} \longrightarrow x, \quad x_{2} \longrightarrow a x
$$

Then from the quiver generating function of C we get

$$
y(x, a, q)=1+(q+a) x+\left(q^{2}+q^{4}+\left(2 q+q^{3}\right) a+a^{2}\right) x^{2}+\ldots
$$

with the height of a path measured by the power of x and the number of diagonal steps measured by the power of a.

Schröder paths and full colored HOMFLY-PT

Figure: All 6 Schröder paths of height 2 represented by the quadratic term $q^{2}+q^{4}+\left(2 q+q^{3}\right) a+a^{2}$ of the generating function.

Consequence 2 - Some divisibilities (integrality)

If p is prime, then:

$$
p \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right.
$$

Consequence 2 - Some divisibilities (integrality)

If p is prime, then:

$$
\begin{aligned}
& p \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{2} \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right.
\end{aligned}
$$

Consequence 2 - Some divisibilities (integrality)

If p is prime, then:

$$
\begin{aligned}
& p \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{2} \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{3} \left\lvert\, 2\left(\binom{3 p-1}{p-1}-1\right) .\right.
\end{aligned}
$$

Consequence 2 - Some divisibilities (integrality)

If p is prime, then:

$$
\begin{aligned}
& p \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{2} \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{3} \left\lvert\, 2\left(\binom{3 p-1}{p-1}-1\right) .\right.
\end{aligned}
$$

If $r \in \mathbb{N}$, then $\quad r^{2} \left\lvert\, \sum_{d \mid r} \mu\left(\frac{r}{d}\right)\binom{3 d-1}{d-1}\right.$.

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k}, & n=p_{1} p_{2} \cdots p_{k} \\
0, & p^{2} \mid n
\end{array}\right.
$$

Consequence 2 - Some divisibilities (integrality)

If p is prime, then:

$$
\begin{aligned}
& p \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{2} \left\lvert\,\binom{ 3 p-1}{p-1}-1 .\right. \\
& p^{3} \left\lvert\, 2\left(\binom{3 p-1}{p-1}-1\right) .\right.
\end{aligned}
$$

If $r \in \mathbb{N}$, then $\quad r^{2} \left\lvert\, \sum_{d \mid r} \mu\left(\frac{r}{d}\right)\binom{3 d-1}{d-1}\right.$.

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k}, & n=p_{1} p_{2} \cdots p_{k}, \\
0, & p^{2} \mid n
\end{array}\right.
$$

Corresponds to the fact that DT invariants are non-negative integers (in this case of the quiver of the framed unknot - one vertex, m-loop quiver)

Quivers for rational knots

[M.S., P. Wedrich, IMRN 2019].

$$
p / q=\left[a_{1}, \ldots, a_{r}\right]=a_{r}+\frac{1}{a_{r-1}+\frac{1}{a_{r-2}+\ldots}}
$$

Rational tangle encoded by $[2,3,1]$

Rational knots

Rational knots

Skein theory

Basic webs and twist rules

(1) TUP[j,k] $=\sum_{h=k}^{j}(-q)^{h-j} q^{k^{2}}\left[\begin{array}{l}h \\ k\end{array}\right]_{+} U P[j, h]$
(2) RUP[j,k] $=\sum_{h=0}^{k}(-q)^{h-j} a^{h-j} q^{-2 k h+k^{2}+j^{2}}\left[\begin{array}{c}j-h \\ k-h\end{array}\right]_{+} O P[j, h]$
($\operatorname{TOP}[j, k]=\sum_{h=k}^{j}(-q)^{h} a^{k} q^{k^{2}-2 j k}\left[\begin{array}{l}h \\ k\end{array}\right]_{+} R I[j, h]$

- $R O P[j, k]=\sum_{h=0}^{k}(-q)^{h-j} a^{k-j} q^{2 h(j-k)+(k-j)^{2}}\left[\begin{array}{c}j-h \\ k-h\end{array}\right]+U P[j, h]$
- $\operatorname{TRI}[j, k]=\sum_{h=k}^{j}(-q)^{h} a^{h} q^{k^{2}-2 j h}\left[\begin{array}{l}h \\ k\end{array}\right]_{+} O P[j, h]$
- RRI $[j, k]=\sum_{h=0}^{k}(-q)^{h} q^{h(2 j-2 k)+k^{2}-j^{2}\left[\begin{array}{c}j-h \\ k-h\end{array}\right]+R I[j, h], ~}$

Rational knots: Knots-quivers correspondence works!

Theorem

Let K be a rational knot and let Q_{K} be the corresponding quiver. Then, the vertices of Q_{K} are in bijection with generators of the reduced HOMFLY-PT homology of K, such that the (a, q, t)-trigrading of the $i^{\text {th }}$ generator is given by $\left(a_{i},-Q_{i, i}-q_{i},-Q_{i, i}\right)$ where $Q_{i, i}$ denotes the number of loops at the $i^{\text {th }}$ vertex of Q_{K}.

Rational knots: quiver size and continued fraction

$K_{p / q}$ rational knot can be presented as the closure of

$$
\begin{gathered}
T^{a_{r}} R^{a_{r-1}} T^{a_{r-2}} \cdots T^{a_{3}} R^{a_{2}} T^{a_{1}} K_{0} \\
p / q=a_{r}+\frac{T^{a_{1}} K_{0}}{a_{r-1}+\frac{1}{a_{r-2}+\frac{1}{\cdots+\frac{1}{a_{3}+\frac{1}{a_{2}+\frac{1}{a_{1}}}}}}}
\end{gathered}
$$

Rational knots: quiver size and continued fraction

$K_{p / q}$ rational knot can be presented as the closure of

$$
\begin{gathered}
T^{a_{r}} R^{a_{r-1}} T^{a_{r-2}} \cdots T^{a_{3}} R^{a_{2}} T^{a_{1}} K_{0} \\
R^{a_{2}} T^{a_{1}} K_{0} \\
p / q=a_{r}+\frac{1}{a_{r-1}+\frac{1}{a_{r-2}+\frac{1}{\cdots+\frac{1}{a_{3}+\frac{a_{1}}{a_{1} a_{2}+1}}}}}
\end{gathered}
$$

Rational knots: quiver size and continued fraction

$K_{p / q}$ rational knot can be presented as the closure of

$$
\begin{gathered}
T^{a_{r}} R^{a_{r-1}} T^{a_{r-2}} \cdots T^{a_{3}} R^{a_{2}} T^{a_{1}} K_{0} \\
p / q=a_{r}+\frac{T^{a_{3}} R^{a_{2}} T^{a_{1}} K_{0}}{a_{r-1}+\frac{1}{a_{r-2}+\frac{1}{\cdots+\frac{1}{a_{1} a_{2}+1}}}}
\end{gathered}
$$

Tangle-quivers correspondence

Extend the correspondence to 4-ended tangles:
Ask that knots-quivers correspondence hold for any link obtained by closing off the four ends of a tangle.

Tangle-quivers correspondence

Extend the correspondence to 4-ended tangles:
Ask that knots-quivers correspondence hold for any link obtained by closing off the four ends of a tangle.

The rational tangles satisfy tangle-quiver correspondence.

For p / q rational tangle we can write the generating series of the colored HOMFLY-PT invariants as a summation with $p+q$ variables (p "active", q"inactive").

Tangle addition

For rational tangles, we had Top and Right twists.
Tangle addition operation:

$$
+: \left.\left(\frac{\downarrow \tau_{1}}{\tau_{1}}, \frac{\downarrow}{\tau_{2}} 1\right) \rightarrow \stackrel{\tau_{1}}{T} \right\rvert\,
$$

For rational tangles, we had Top and Right twists.

Tangle addition operation:

Addition of rational tangles give algebraic tangles.
Closures of such tangles are called arborescent links, or algebraic links (in the sense of Conway).

Tangle addition

For rational tangles, we had Top and Right twists.

Tangle addition operation:

Addition of rational tangles give algebraic tangles.
Closures of such tangles are called arborescent links, or algebraic links (in the sense of Conway).

IN MEMORIAM: John H. Conway (1937-2020)

Tangle-quivers correspondence

4-ended tangle family QT_{4}

Theorem (M.S., P. Wedrich, 2020)

There exists a family QT_{4} of 4-ended framed oriented tangles with the following properties:

- QT_{4} contains the trivial 2-strand tangle.
- QT_{4} is closed under diffeomorphisms of $\left(B^{3}, \partial B^{3},\{4\right.$ pts $\left.\}\right)$.
- QT_{4} is closed under Conway's tangle addition, the binary operation of gluing two 4-ended tangles at pairs of boundary points as follows:

- The appropriate analogue of the knots-quivers correspondence holds for any link obtained by closing off a tangle in QT_{4}.

Tangle addition and quivers

We will consider six refined types of tangles $\tau \in \bullet \mathrm{T}_{4}$, which encode boundary types and connectivity between boundary points:

$$
\begin{aligned}
& U P_{p a r}: \stackrel{\uparrow}{\ddagger}, \quad O P_{u d}: \stackrel{\uparrow}{\ddagger}, \quad R l_{p a r}: \stackrel{\downarrow}{\downarrow}, \\
& U P_{c r}: \stackrel{\uparrow}{\uparrow}, \quad O P_{l r}: \stackrel{\uparrow}{\gtrless}, \quad R I_{c r}: \stackrel{\leftrightarrow}{\gtrless} \text {. }
\end{aligned}
$$

For example, an $U P_{p a r}$ tangle has one strand directed from the SW to the NW boundary point and the other strand directed from the $S E$ to the NE boundary point, and possibly additional closed components.

Tangle addition and quivers

Tangle addition: binary addition operation on 4-ended tangles, which is given by gluing along pairs of adjacent boundary points, provided the orientations are compatible there.

Main result is the following theorem:

Theorem

Let $\tau_{1}, \tau_{2} \in \mathrm{QT}_{4}$ with orientations such that $\tau_{1}+\tau_{2}$ is defined. Then $\tau_{1}+\tau_{2} \in \mathrm{QT}_{4}$.

Tangle addition and quivers

Due to different types of tangles and orientations, there are five cases to check. In each of them the gluing formula for the HOMFLY-PT skein generating functions is established.

Algebraic links

Conclusion: Algebraic links satisfy knots-quivers correspondence. This includes Montesinos links, pretzel knots, etc..

Algebraic links

Conclusion: Algebraic links satisfy knots-quivers correspondence. This includes Montesinos links, pretzel knots, etc..

What is the minimal size of the corresponding quiver?

Algebraic links

Conclusion: Algebraic links satisfy knots-quivers correspondence. This includes Montesinos links, pretzel knots, etc..

What is the minimal size of the corresponding quiver?
The size of the quiver produced by algorithm has an upper bound (for addition of two tangles the bound is bilinear in the sizes of the quivers of individual tangles), but in particular cases it seems that it can be lowered even further.

Thank you for your attention!

