Quantum Modularity and 3-Manifolds

Miranda C. N. Cheng University of Amsterdam

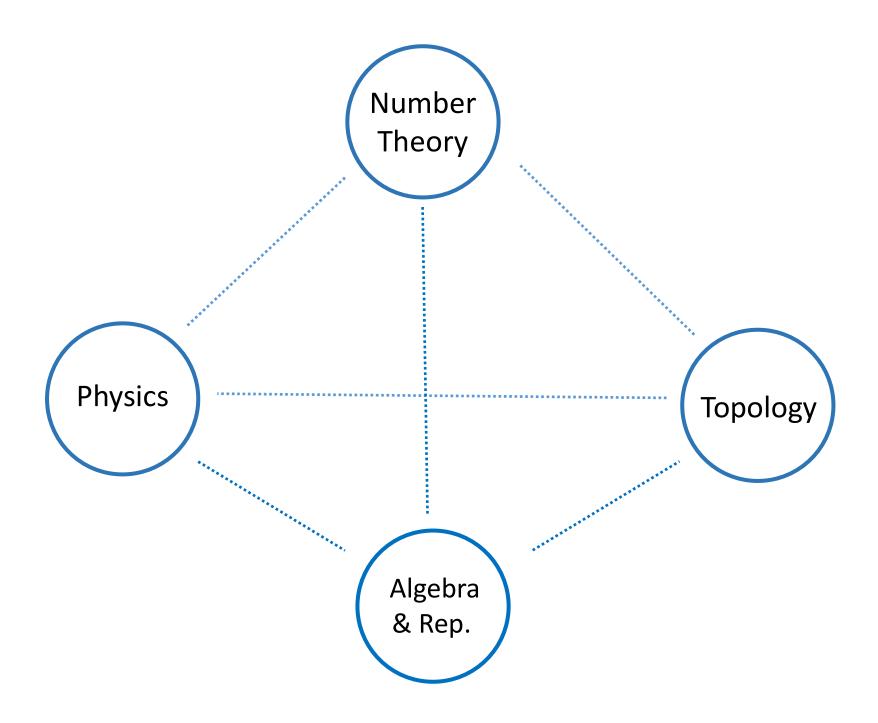
European Research Council Established by the European Commission

UNIVERSITEIT VAN AMSTERDAM

3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$

.....

Quantum Modular Form (QMF)



Main Motivations:

• QMF

natural structure beyond modular forms;

• $\widehat{Z}_a(M_3;\tau)$

q-invariants for (closed) 3-manifolds;

- $\widehat{Z}_a(M_3; \tau)$ =susy index 3*d* SQFT, 3*d*-3*d*, and *M*-theory.
- $\widehat{Z}_a(M_3;\tau) \sim \chi_R^{\mathcal{V}}(\tau)$

Novel types of vertex algebras and representations.

Based on:

- 3d Modularity, 1809.10148
- w. S. Chun, F. Ferrari, S. Gukov, S. Harrison.
- 3d Modularity and log VOA, 20XX.XXXXX
- w. S. Chun, B. Feigin, F. Ferrari, S. Gukov, S. Harrison.

• Three-Manifold Quantum Invariants and Mock Theta Functions, 1912.07997

- w. F. Ferrari, G. Sgroi.
- Three Manifolds and Indefinite Theta Functions, 20XX. w. G. Sgroi.

Outline:

- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- IV. Going Deeper
- V. Questions for Future

I. Background

3-Manifold Inv. $\widehat{Z}_a(M_3; q)$

Quantum Modular Form (QMF)

I.1 Quantum Modular Forms (QMF): the Upper-Half Plane \mathbb{H}

Symmetry:
$$\tau \mapsto \gamma \tau := \frac{a\tau + b}{c\tau + d}$$

 $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) \supset SL_2(\mathbb{Z})$

 \mathbb{H} has natural boundary $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$, the *cusps* of $SL_2(\mathbb{Z})$ which acts transitively.

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

Def (modular transf. of weight w): $f|_w\gamma(\tau) := f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau) = f(\tau) \ \forall \gamma \in G$

Many generalisations: *non-trivial G-characters, vector-valued, non-holomorphic etc.*

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

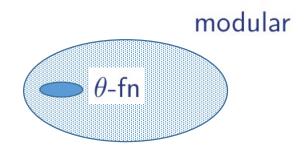
Def (modular transf. of weight w): $f|_w\gamma(\tau) := f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau) = f(\tau) \ \forall \gamma \in G$

Example: Lattice
$$\theta$$
-functions
• $\Lambda = \mathbb{Z}, \ \theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2/2}, \ \text{wt } 1/2$
• $\Lambda = \sqrt{2m}\mathbb{Z}, \ \Lambda^*/\Lambda \cong \mathbb{Z}/2m,$
 $\theta_{m,r}^0(\tau) = \sum_{k \equiv r \ (2m)} q^{\frac{k^2}{4m}}, \ \text{wt } 1/2$
 $\theta_{m,r}^1(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^2}{4m}}, \ \text{wt } 3/2$

Consider a holomorphic fn f on \mathbb{H} , G a discrete subgroup of $SL_2(\mathbb{Z})$.

Def (modular transf. of weight w): $f|_w\gamma(\tau) := f(\gamma\tau)(c\tau+d)^{-w}$ Def (modular form of weight w for G): $f|_w\gamma(\tau) = f(\tau) \ \forall \gamma \in G$

Example: Lattice
$$\theta$$
-functions
• $\Lambda = \mathbb{Z}, \ \theta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2/2}$, wt 1/2
• $\Lambda = \sqrt{2m}\mathbb{Z}, \ \Lambda^*/\Lambda \cong \mathbb{Z}/2m$,
 $\theta_{m,r}^0(\tau) = \sum_{k \equiv r \ (2m)} q^{\frac{k^2}{4m}}$, wt 1/2
 $\theta_{m,r}^1(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^2}{4m}}$, wt 3/2



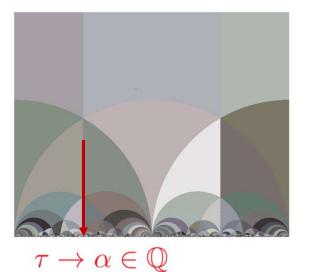
I.1 Quantum Modular Forms (QMF): Radial Limit

Consider a holomorphic fn f on \mathbb{H} .

Taking the radial limit:

$$f\left(\frac{p}{q}\right) := \lim_{t \to 0^+} f\left(\frac{p}{q} + it\right)$$

defines a function on \mathbb{Q} .



Remark: Later we will see:

q-series invariant $\rightarrow \rightarrow \rightarrow$ Chern-Simons (WRT) invariant

$$q \rightarrow e^{2\pi i \frac{1}{k}}$$
 root of unity $|q| < 1$

Consider a modular form f.

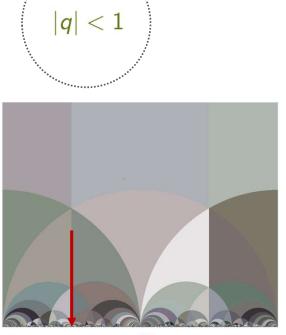
Taking the *radial limit*:

$$f\left(\frac{p}{q}\right) := \lim_{t \to 0^+} f\left(\frac{p}{q} + it\right)$$

defines a function on $\mathbb{Q},$ satisfying

$$f(x)-f|_w\gamma(x)=0$$

for all $x \in \mathbb{Q} \setminus \{\gamma^{-1}(\infty)\}$.



root of unity

 $\tau \to \alpha \in \mathbb{Q}$

I.1 Quantum Modular Forms (QMF): A First Definition

How to generalise
$$f(x) - f|_w \gamma(x) = 0$$
 ?

Here neither of the properties which are

required of classical modular forms—analyticity and Γ -covariance—are reasonable things to require: the former because $\mathbb{P}^1(\mathbb{Q})$, viewed as the set of cusps of the action on Γ on \mathfrak{H} , is naturally equipped only with the discrete topology, not with its induced topology as a subset of $\mathbb{P}^1(\mathbb{R})$, so that any requirement of continuity or analyticity is vacuous; and the latter because Γ acts on $\mathbb{P}^1(\mathbb{Q})$ transitively or with only finitely many orbits, so that any requirement of Γ -covariance of a function on this set would lead to a trivial definition. So we do not demand either continuity/analyticity or modularity, but require instead that the failure of one precisely offsets the failure of the other. In other words, our quantum modular form should be a function $f: \mathbb{Q} \to \mathbb{C}$ for which the function $h_{\gamma}: \mathbb{Q} \setminus {\gamma^{-1}(\infty)} \to \mathbb{C}$ defined by

(2)
$$h_{\gamma}(x) = f(x) - (f|_k \gamma)(x)$$

has some property of continuity or analyticity (now with respect to the real topology) for every element $\gamma \in \Gamma$. This is purposely a little vague, since examples coming from different sources have somewhat different properties, and we want to consider all of them as being quantum modular forms.

[Don Zagier 2010]

I.1 Quantum Modular Forms (QMF): Strong QMF

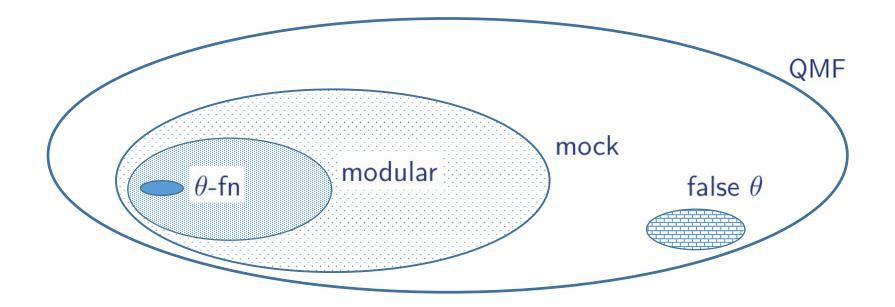
A <u>strong quantum modular form</u>—and most of our examples will belong to this category—is an object with a stronger (and more interesting) structure: it associates to each element of \mathbb{Q} a formal power series over \mathbb{C} , rather than just a complex number, with a correspondingly stronger requirement on its behavior under the action of Γ . To describe this, we write the power series in $\mathbb{C}[[\varepsilon]]$ associated to $x \in \mathbb{Q}$ as $f(x + i\varepsilon)$ rather than, say, $f_x(\varepsilon)$, so that f is now defined in the union of (disjoint!) formal infinitesimal neighborhoods of all points $x \in \mathbb{Q} \subset \mathbb{C}$. Since the function h_{γ} in (2) was required to be real-analytic on the complement of a finite subset S_{γ} of $\mathbb{P}^1(\mathbb{R})$, it extends holomorphically to a neighborhood of $\mathbb{P}^1(\mathbb{R}) \smallsetminus S_{\gamma}$ in $\mathbb{P}^1(\mathbb{C})$, and in particular has a power series expansion (convergent in some disk of positive radius) around each point $x \in \mathbb{Q}$. Our stronger requirement is now that the equation

(3)
$$f(z) - (f|_k \gamma)(z) = h_{\gamma}(z) \qquad (\gamma \in \Gamma, \quad z \to x \in \mathbb{Q})$$

holds as an identity between countable collections of formal power series.

the power series $f(0 + it) \sim \text{semi-classical } \frac{1}{k}$ -expansion of WRT \sim Ohtsuki series of 3-manifolds

I.1 Quantum Modular Forms (QMF): Examples



Examples: False Theta Functions, Mock Modular Forms,... Applications: Kashaev invariants, log CFT characters, $\hat{Z}_a(q)$, ...

I.1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a modular form g of weight w.

Def (Eichler integrals):*

$$\widetilde{g}(\tau) := \int_{\tau}^{i\infty} g(\tau')(\tau' - \tau)^{w-2} d\tau'$$
 (holomorphic)
 $g^*(\tau) := \int_{-\overline{\tau}}^{i\infty} g(\tau')(\tau' + \tau)^{w-2} d\tau'$ (non-holomorphic)

Rk: $\tilde{g} - \tilde{g}|_{2-w}\gamma$ and $g^* - g^*|_{2-w}\gamma$ are period integrals \rightarrow quantum modularity.

$$\begin{split} (\tilde{g}|_{2-w}\gamma)(\tau) &= (c\tau+d)^{-2+w} \int_{\tau}^{\gamma^{-1}\infty} g(\gamma\tau')(\gamma\tau'-\gamma\tau)^{w-2} d(\gamma\tau') \\ &= \int_{\tau}^{\gamma^{-1}\infty} g(\tau')(\tau'-\tau)^{w-2} d\tau' \\ \Rightarrow (\tilde{g}-\tilde{g}|_{2-w}\gamma)(\tau) &= \int_{\gamma^{-1}\infty}^{\infty} g(\tau')(\tau'-\tau)^{w-2} d\tau' \end{split}$$

* some irrelavant constant factors ignored.

I.1 Quantum Modular Forms (QMF) \supset False and Mock

Consider a modular form *g* of weight *w*. **Def (Eichler integrals):***

$$\begin{split} \widetilde{g}(au) &:= \int_{ au}^{i\infty} g(au') (au' - au)^{w-2} d au' & (ext{holomorphic}) \ g^*(au) &:= \int_{-ar{ au}}^{i\infty} g(au') (au' + au)^{w-2} d au' & (ext{non-holomorphic}) \end{split}$$

Example: False θ -function

$$\theta_{m,r}^{1}(\tau) = \sum_{k \equiv r \ (2m)} kq^{\frac{k^{2}}{4m}}, \text{ wt } 3/2$$
$$\widetilde{\theta_{m,r}^{1}}(\tau) = \sum_{\substack{k \in \mathbb{Z} \\ k \equiv r(2m)}} \operatorname{sgn}(k) q^{k^{2}/4m}$$
false

* some irrelavant constant factors ignored.

I.1 Quantum Modular Forms (QMF) \supset False and Mock Consider a holomorphic fn f on \mathbb{H} .

Def (mock modular forms, mmf) [Zwegers '02]: f is a **mmf** of weight w if there exists a modular form g = shad(f) (the **shadow**) of weight 2 - w such that $\hat{f} := f - g^*$ satisfies $\hat{f} = \hat{f}|_w \gamma \quad \forall \gamma \in G$.

Rk: $\hat{f} = \hat{f}|_w \gamma \Rightarrow f - f|_w \gamma = g^* - g^*|_w \gamma \rightarrow \text{quantum modularity.}$

I.1 Quantum Modular Forms (QMF) \supset False and Mock Consider a holomorphic fn f on \mathbb{H} .

Def (mock modular forms, mmf) [Zwegers '02]: f is a **mmf** of weight w if there exists a modular form g = shad(f) (the **shadow**) of weight 2 - w such that $\hat{f} := f - g^*$ satisfies $\hat{f} = \hat{f}|_w \gamma \quad \forall \gamma \in G$.

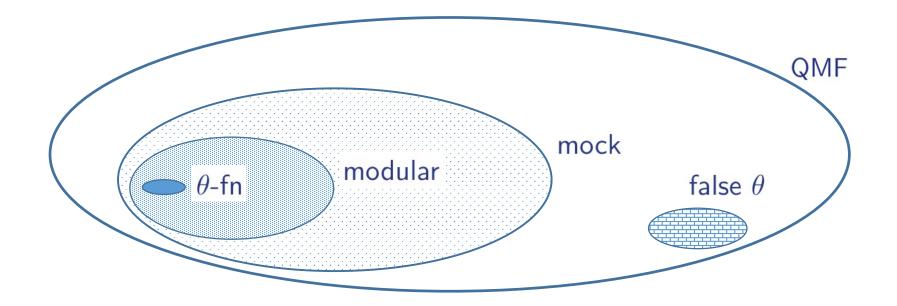
Example : modular forms

Example : Ramanujan's Mock θ Functions

$$F_{0}(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n} (1 - q^{n+k})} = 1 + q + q^{3} + q^{4} + O(q^{5})$$

shad(F_{0})(\tau) = $\sum_{\substack{i \in \mathbb{Z}/42\\i^{2} \equiv 1}} \left(\frac{i}{21}\right) \, \theta^{1}_{42,i}(\tau)$

I.1 Quantum Modular Forms (QMF): Examples



Questions?

I. Background

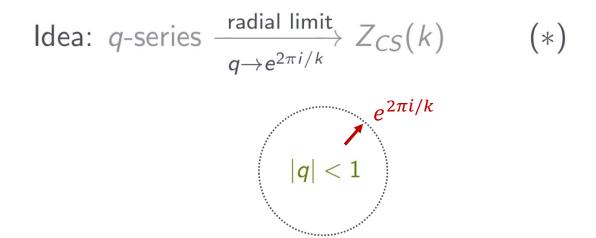
3-Manifold Inv. $\widehat{Z}_a(M_3; \tau)$ Quantum Modular Form (QMF)

main ref. [Gukov-Pei-Putrov-Vafa '17]

 $\widehat{Z}_{a}(M_{3};\tau)$ and Z_{CS}

 $Z_{\rm CS}(M_3; k)$; $k \in \mathbb{Z}$ is the (effective) level.

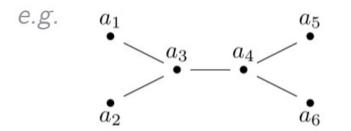
Question: Can we go from \mathbb{Z} to \mathbb{H} : a *q*-series inv. for 3-man. extending Z_{CS} ?



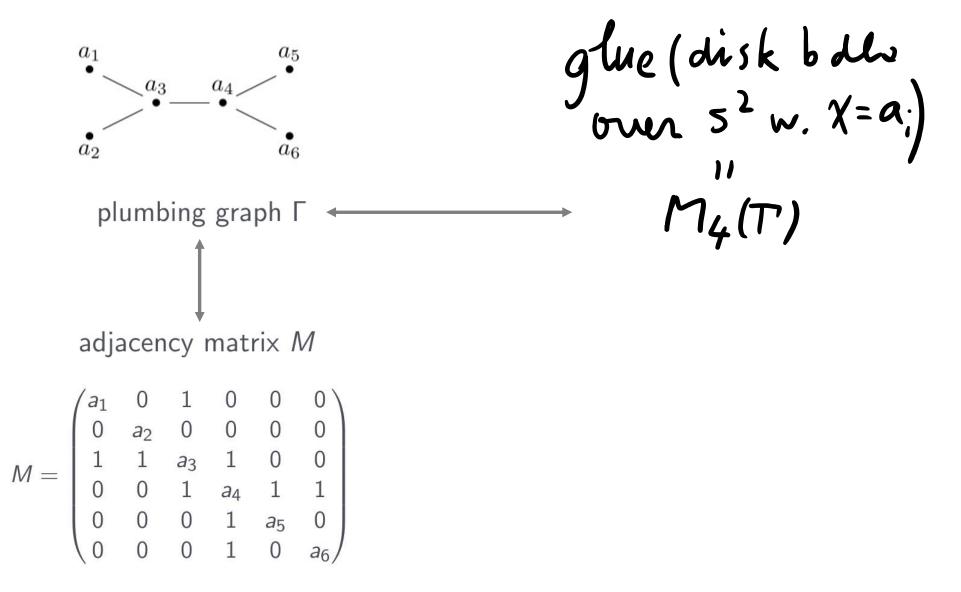
Remarks: 1. cf. previous work by Habiro. 2. (*) is not sufficient to fix the *q*-series.

 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .

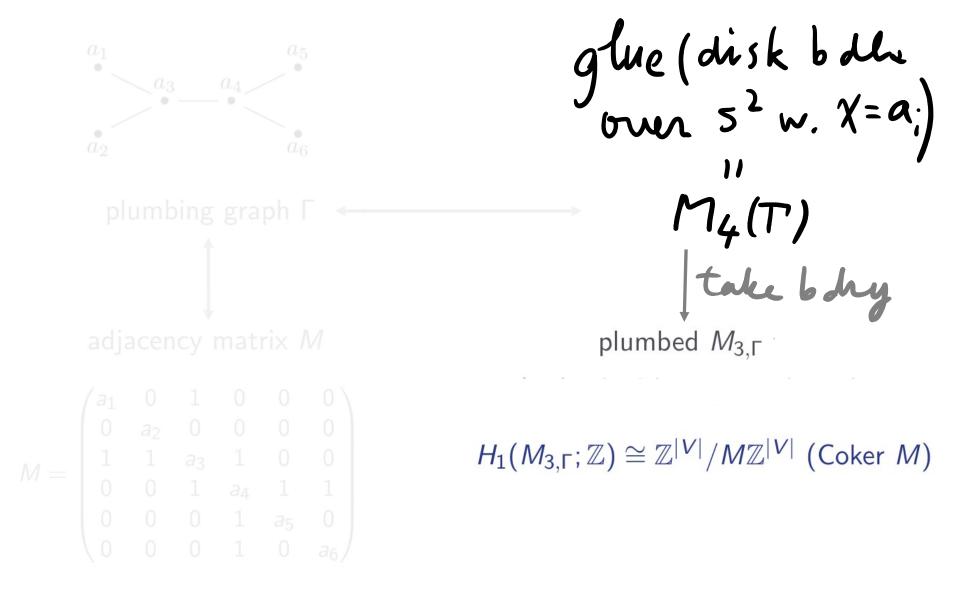
weighted graph $\Gamma := (V, E, a), a : V \to \mathbb{Z}.$



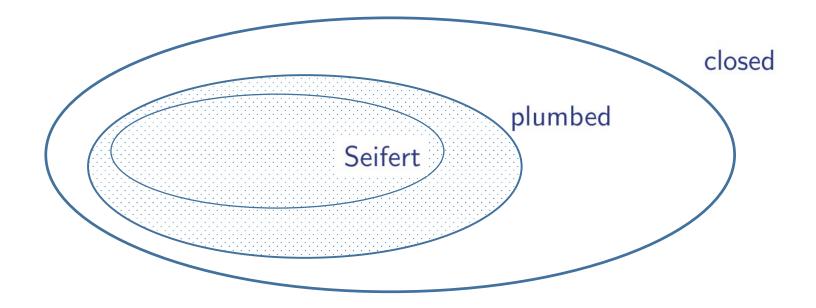
 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .



 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .



 M_3 : Plumbed 3-manifold, determined by its **plumbing graph** Γ .



Def: For a weighted graph Γ with a neg.-def. M, and for a given $a \in Cork(M)$, define the theta function

$$\Theta_a^M(\tau; \mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^T M^{-1}\ell} \mathbf{z}^\ell.$$

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}} \right)^{2 - \deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\sim [\mathbf{z}^0] \left(\prod_{v \in V} \left(z_v - \frac{1}{z_v} \right)^{2 - \deg(v)} \Theta^M_a(\tau; \mathbf{z}) \right)$$

Def: For a weighted graph Γ with a neg.-def. M, and for a given $a \in Cork(M)$, define the theta function

$$\widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}} \right)^{2 - \deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\sim [\mathbf{z}^0] \left(\prod_{v \in V} \left(z_v - \frac{1}{z_v} \right)^{2 - \deg(v)} \Theta^M_a(\tau; \mathbf{z})
ight)$$

Remarks:

1. a *set* of *q*-invariants;

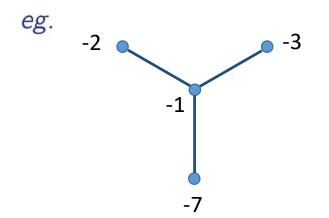
2. $a \in Cork(M) \cong H_1(M_3, \mathbb{Z}) \cong \{inequiv. SU(2) \text{ Ab. flat connections}\}^*;$

3. neg.-def. $M^{**} \Leftrightarrow$ pos.-def. lattice $\Leftrightarrow \Theta$ and hence \widehat{Z}_a converges when $\tau \in \mathbb{H}$;

4. $q^{c}\widehat{Z}_{a}(\tau) \in \mathbb{Z}[[q]]$ for a $c \in \mathbb{Q}$ dependening only on M_{3} .

 * up to Weyl group \mathbb{Z}_2 action

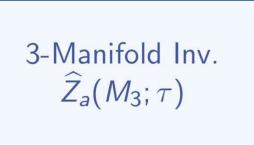
** this condition can be relaxed : M^{-1} only needs to be neg.-def. in the subspace spanned by the vertices with at least 3 edges



$$M_{3,\Gamma} = \Sigma(2,3,7) = \{x^2 + y^3 + z^7 = 0\} \cap S^5$$

$$q^{-\frac{83}{168}} \hat{Z}_0(\Sigma(2,3,7),\tau) = \sum_{\substack{i \in \mathbb{Z}/42\\i^2 \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \widetilde{\theta_{42,i}^1}(\tau) = \widetilde{shad}(F_0)(\tau)$$

Questions?



Quantum Modular Form (QMF)

Applications:

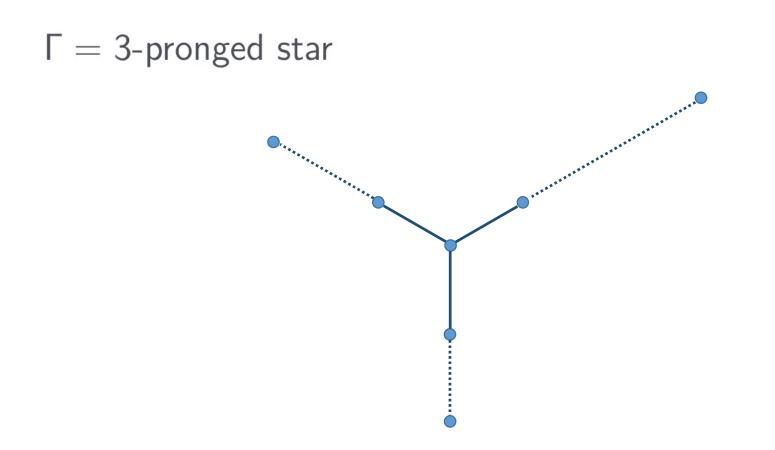
Quantum modularity

- helps to determine the q-invariants;
- leads to new ways of retrieving topological information;
- gives hints about the physical theories.

See also important previous and ongoing work on a related topic (Kashaev invariants of knots): **Zagier '10**, Garoufalidis-Zagier '13 and new, Dimofte-Garoufalidis '15, Hikami-Lovejoy '14,

- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- IV. Going Deeper
- V. Questions for Future

First we focus on the most tractable family of examples:



A False Theorem

Theorem : Negative three-stars are false.

[MC-Chun-Ferrari–Gukov-Harrison, Bringmann-Mahlburg-Milas '18]

For any three-pronged star weighted graph Γ of negative type, the functions $\widehat{Z}_a(M_{3,\Gamma}; \tau)$ are false theta functions. In particular, there exists an $m = m(\Gamma) \in \mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$\mathcal{Q}^{\mathsf{C}}_{\mathcal{T}}\widehat{Z}_{\mathsf{a}}(\tau)\in \operatorname{span}_{\mathbb{Z}}\left\{\widetilde{\theta^{1}_{m,r}},r\in\mathbb{Z}/2m\right\} \quad \forall \ \mathsf{a}.$$

Rk: See also earlier work by [Lawrence–Zagier '99] and Hikami in the context of CS inv.

$\widehat{Z}_a = \mathbf{QMF}$

$$\widehat{Z}_{a}(\tau) = \left(\widetilde{\theta_{m,r}^{1}} + \widetilde{\theta_{m,r'}^{1}} + \widetilde{\theta_{m,r''}^{1}} + \dots\right), \ r, r', \dots \in \mathbb{Z}/2m$$

Recall that the false theta functions like $\theta^1_{m,r}$ are quantum modular forms, which means

$$\left(\widehat{Z}_{a}-\widehat{Z}_{a}|_{1/2}\gamma\right)(\tau)$$
 (*)

when the radially limit is properly taken, has analytic properties.

$\widehat{Z}_a =$ Log Characters

Theorem : Negative three-stars are false.

[MC-Chun-Ferrari–Gukov-Harrison, Bringmann-Mahlburg-Milas '18]

For any three-pronged star weighted graph Γ of negative type, the functions $\widehat{Z}_a(M_{3,\Gamma}; \tau)$ are false theta functions. In particular, there exists an $m = m(\Gamma) \in \mathbb{Z}_{>0}$ such that (up to a finite polynomial)

$$\mathscr{G}^{\mathsf{C}} \widehat{Z}_{\mathsf{a}}(\tau) \in \operatorname{span}_{\mathbb{Z}} \left\{ \widetilde{\theta_{m,r}^{1}}, r \in \mathbb{Z}/2m \right\} \quad \forall \ \mathsf{a}.$$

 $\sim \log$ VOA character

Log VOAs:

- contain modules not decomposable into irreducibles;
- a nice playground to study the mathematical properties of non-rational vertex algebras.

A Simple Log VOA: the (1, m) Algebra

Given a positive integer *m*, let $\alpha_{\pm} = \pm \sqrt{2m^{\pm 1}}$, $\alpha_0 = \alpha_+ + \alpha_$ free boson : $\varphi(z)\varphi(w) \sim \log(z - w)$ stress energy tensor : $T = \frac{1}{2}(\partial \varphi)^2 + \frac{\alpha_0}{2}\partial^2 \varphi$, $c = 1 - 3\alpha_0^2$ screening charges : $Q_- = (e^{\alpha_-\varphi})_0$

> triplet (1, m) algebra: $\mathcal{W}(m) := \ker_{\mathcal{V}_L} Q_$ singlet (1, m) algebra: $\mathcal{M}(m) := \ker_H Q_-$

where \mathcal{V}_L = lattice VOA for $L = \sqrt{2m}\mathbb{Z}$, H = Heisenberg algebra.

 $\begin{array}{ccc} H \subset \mathcal{V} \\ \cup & \cup \end{array}$ $\mathcal{M}(m) \subset \mathcal{W}(m) \end{array}$

A Simple Log VOA: the (1, m) Algebra

The triplet (1, m) algebra $\mathcal{W}(m)$ has 2m irreducible modules. We are especially interested in m of them, with graded character

$$\chi_{s}^{\mathcal{W}(m)} = \frac{1}{\eta(\tau)} \sum_{n \in \mathbb{Z}} q^{\frac{(2mn+m-s)^{2}}{4m}} \frac{z^{2n+1} - z^{-2n-1}}{z - z^{-1}}, \ s = 1, \dots, m.$$
$$\frac{\widehat{Z}_{a}(M_{3,\Gamma};\tau)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}}\right)^{2-\deg(v)} \Theta_{a}^{M}(\tau;\mathbf{z})$$

$$\widehat{Z}_{a} \text{ and } \operatorname{Log } \operatorname{VOA } \operatorname{Characters}$$

$$\frac{\widehat{Z}_{a}(M_{3,\Gamma};\tau)}{\eta(\tau)} \sim \frac{1}{\eta(\tau)} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} (z_{v} - \frac{1}{z_{v}})^{2-\operatorname{deg}(v)} \Theta_{a}^{M}(\tau; \mathbf{z})$$

$$\lim_{v \in V} \operatorname{Integrate } \operatorname{over } \operatorname{all } \operatorname{but } \operatorname{the } \operatorname{central } \operatorname{node } z_{c}$$

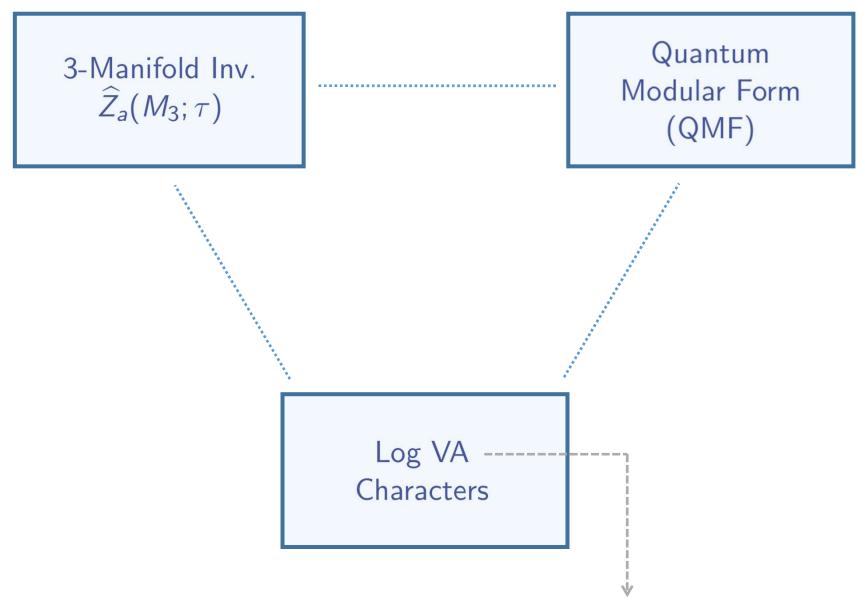
$$= [z_{c}^{0}] \left(\chi_{s}^{\mathcal{W}(m)} + \chi_{s'}^{\mathcal{W}(m)} + \chi_{s''}^{\mathcal{W}(m)} + \ldots \right) (\tau, z_{c})$$

$$\operatorname{triple} (1, m) \text{ alg. characters}$$

$$= \left(\chi_{s}^{\mathcal{M}(m)} + \chi_{s'}^{\mathcal{M}(m)} + \chi_{s''}^{\mathcal{M}(m)} + \ldots \right) (\tau)$$

$$\operatorname{single} (1, m) \text{ alg. characters}$$

$$= \frac{1}{\eta(\tau)} \left(\widehat{\theta_{m,m-s}^{1}} + \widehat{\theta_{m,m-s'}^{1}} + \widehat{\theta_{m,m-s''}^{1}} + \ldots \right) (\tau)$$

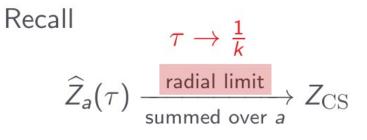


closely related to the algebra of bdry op.?

Questions?

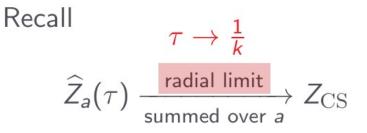
- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- IV. Going Deeper
- V. Questions for Future

A Puzzle



Upon flipping orientation, we have $Z_{\rm CS}(-M_3;k) = Z_{\rm CS}(M_3;-k)$

A Puzzle

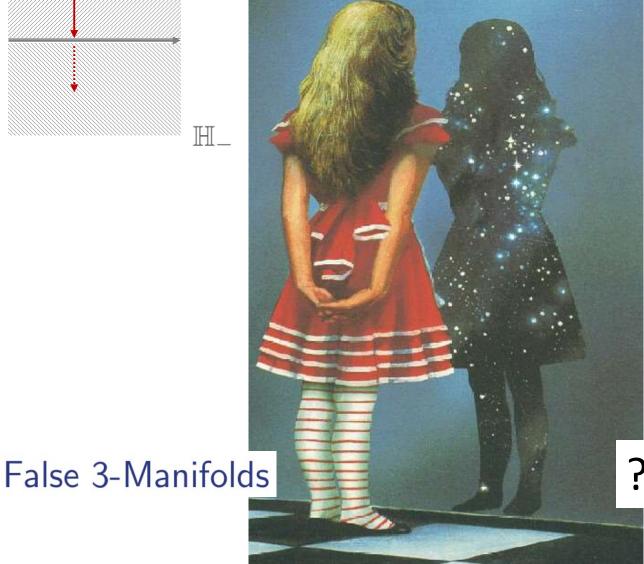


Upon flipping orientation, we have $Z_{CS}(-M_3;k) = Z_{CS}(M_3;-k)$

From $(k \leftrightarrow -k) \Leftrightarrow (\tau \leftrightarrow -\tau) \Leftrightarrow (q \leftrightarrow q^{-1})$, we expect $\widehat{Z}_a(-M_3;\tau) = \widehat{Z}_a(M_3;-\tau)$

But what's this? Can we define $\widehat{Z}_a(M_3; \tau)$ for both $(|q| < 1 \Leftrightarrow \tau \in \mathbb{H})$ and $(|q| > 1 \Leftrightarrow \tau \in \mathbb{H}_-)$?

Going to the Other Side



 \mathbb{H}

?????????

Troubles with Thetas

$$\begin{aligned} \widehat{Z}_{a}(M_{3,\Gamma};\tau) &:= (\pm) \ q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \ (z_{v} - \frac{1}{z_{v}})^{2-\deg(v)} \ \Theta_{a}^{M}(\tau;\mathbf{z}) \\ \Theta_{a}^{M}(\tau;\mathbf{z}) &:= \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^{T}M^{-1}\ell} \mathbf{z}^{\ell}. \end{aligned}$$

$$M_{3} \leftrightarrow -M_{3} \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow \text{flipping the lattice signature } M \leftrightarrow -M \\ \text{no longer convergent for } |q| < 1! \end{aligned}$$

The definition for $\widehat{Z}_a(\tau)$ no longer applies after $M_3 \rightarrow -M_3$.

$$\widetilde{shad}(F_{0})(\tau) = \sum_{\substack{i \in \mathbb{Z}/42 \\ i^{2} \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \widetilde{\theta_{42,i}^{1}}(\tau) = q^{-\frac{83}{168}} \widehat{Z}_{0}(\Sigma(2,3,7),\tau)$$

$$\xrightarrow{-2} -3$$
It admits an expression as *q*-hypergeometric series
$$= q^{\frac{1}{168}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n} (1-q^{n+k})} -7$$

$$\widetilde{shad}(F_{0})(\tau) = \sum_{\substack{i \in \mathbb{Z}/42\\i^{2} \equiv 1 \ (42)}} \left(\frac{i}{21}\right) \widetilde{\theta_{42,i}^{1}}(\tau) = q^{-\frac{83}{168}} \widehat{Z}_{0}(\Sigma(2,3,7),\tau)$$

It admits an expression as q-hypergeometric series

$$=q^{\frac{1}{168}}\sum_{n=0}^{\infty}\frac{(-1)^nq^{\frac{n(n+1)}{2}}}{\prod_{k=1}^n(1-q^{n+k})}$$

which moreover converges both inside and outside (but not on) the unit circle:

$$=q^{\frac{1}{168}}\sum_{n=0}^{\infty}\frac{q^{-n^2}}{\prod_{k=1}^{n}(1-q^{-(n+k)})}$$

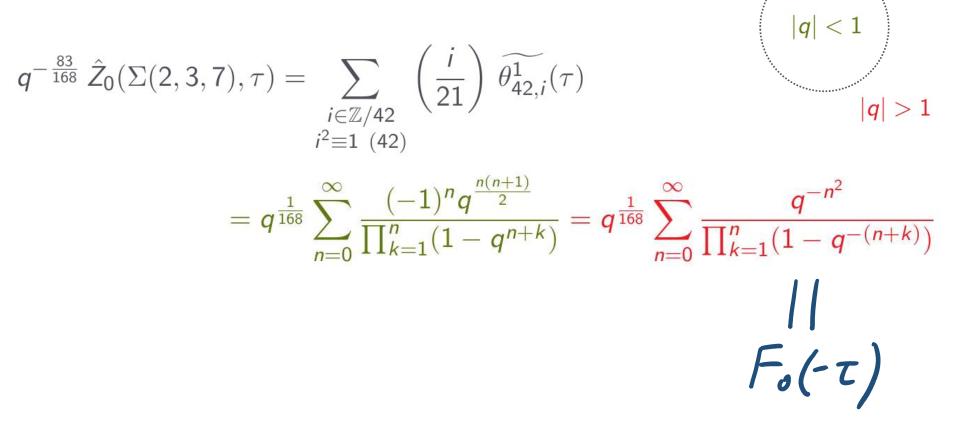
$$|q| < 1$$

$$|q| > 1$$

 Recall : Ramanujan's Mock θ Functions

$$F_{0}(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n} (1-q^{n+k})} = 1 + q + q^{3} + q^{4} + O(q^{5})$$

shad(F_{0})(\tau) = $\sum_{\substack{i \in \mathbb{Z}/42\\i^{2} \equiv 1}} \left(\frac{i}{21}\right) \, \theta^{1}_{42,i}(\tau)$



cf. Ramanujan's mock theta function

$$F_0(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{\prod_{k=1}^n (1-q^{n+k})} = 1 + q + q^3 + q^4 + O(q^5)$$

The q-hypergeometric series defines a function $F : \mathbb{H} \cup \mathbb{H}^- \to \mathbb{C}$, satisfying

$$F(\tau) = \begin{cases} \widetilde{\mathsf{shad}(F_0)}(\tau) & \text{when } \tau \in \mathbb{H} \\ F_0(-\tau) & \text{when } \tau \in \mathbb{H}^-. \end{cases}$$

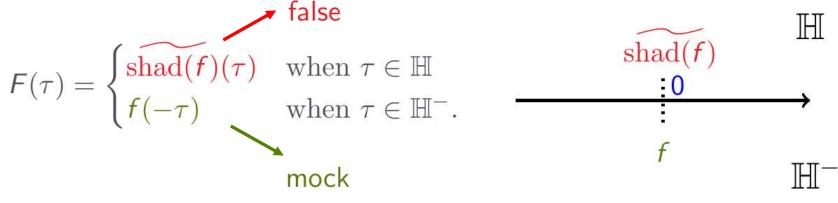
Moreover, it gives the same asymptotic expansion as $\tau \rightarrow \pm it$ \Rightarrow they lead to the same *quantum modular form*.

Conjecture:

$$\begin{split} \hat{Z}_0(-\Sigma(2,3,7),\tau) &= \hat{Z}_0(\Sigma(2,3,7),-\tau) \\ &= q^{-\frac{1}{2}}F_0(\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5)) \end{split}$$

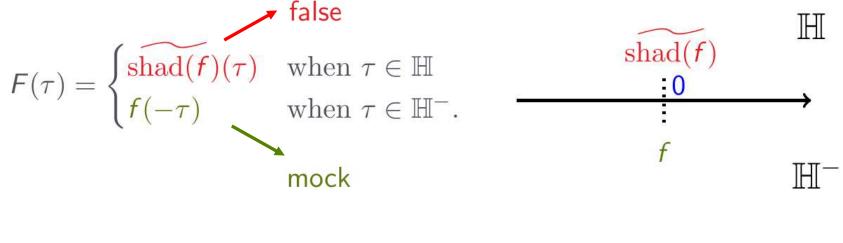
A Mock-False Conjecture

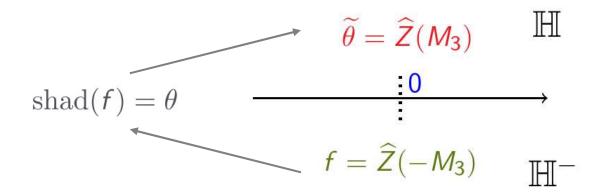
Theorem :^{*} [MC–Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $SL_2(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^- , satisfying



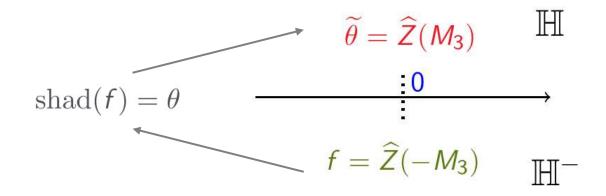
A Mock-False Conjecture

Theorem :^{*} [MC–Duncan '13, Rhoads '18] A Rademacher sum (a regularised sum over $SL_2(\mathbb{Z})$ images) defines a function F in \mathbb{H} and \mathbb{H}^- , satisfying





A Mock-False Conjecture



The False–Mock Conjecture: [CCFGH'18] If $q^{-c}\widehat{Z}_a(M_3;\tau) = \widetilde{\theta}(\tau)$ for some $c \in \mathbb{Q}$ is a false theta function, then

$$q^{c}\widehat{Z}_{a}(-M_{3};\tau)=f(\tau)$$

is a mock theta function with $\operatorname{shad}(f) = \theta$.

* at weight 1/2.

False–Mock Conjecture: A Test Case

Conjecture:

$$\begin{split} \hat{Z}_0(-\Sigma(2,3,7),\tau) &= \hat{Z}_0(\Sigma(2,3,7),-\tau) \\ &= q^{-\frac{1}{2}}F_0(\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5)) \end{split}$$

Independent verification: [Gukov-Manolescu '19] Using $-\Sigma(2,3,7) = S_{-1}^3$ (figure 8) and the surgery formula, one obtains

$$\widehat{Z}_0(-\Sigma(2,3,7),\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+q^5+2q^7+\dots)$$

Nice! But is there a way to obtain the mock answer from a more direct definition?

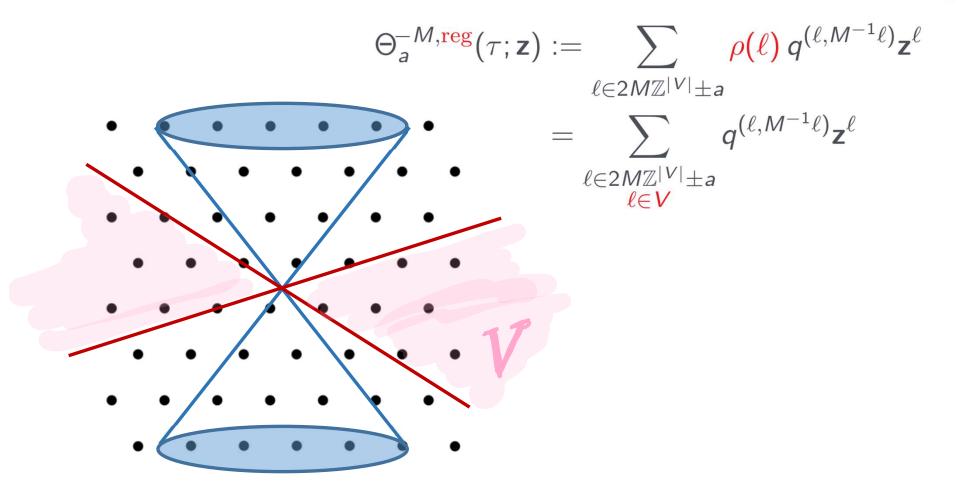
$$\begin{array}{l} \mathbf{Defining} \ \widehat{Z}_{a}(-M_{3}) \\ \widehat{Z}_{a}(M_{3,\Gamma};\tau) := (\pm) \ q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \ (z_{v} - \frac{1}{z_{v}})^{2-\deg(v)} \ \Theta_{a}^{M}(\tau;\mathbf{z}) \\ \Theta_{a}^{M}(\tau;\mathbf{z}) := \sum_{\ell \in 2M\mathbb{Z}^{|V|} \pm a} q^{-\ell^{T}M^{-1}\ell} \mathbf{z}^{\ell}. \\ M_{3} \leftrightarrow -M_{3} \Leftrightarrow q \leftrightarrow q^{-1} \Leftrightarrow \text{flipping the lattice signature } M \leftrightarrow -M \\ \mathbf{no \ longer \ convergent \ for \ } |q| < 1! \end{array}$$

 $\begin{array}{ll} \text{Regularised } \theta \text{-function:} & [\text{Zwegers '02}] \\ \\ \Theta_a^{-M, \text{reg}}(\tau; \mathbf{z}) := \sum_{\ell \in a + 2M\mathbb{Z}^{|V|}} \rho(\ell) \ q^{+(\ell, M^{-1}\ell)} \mathbf{z}^{\ell} \end{array}$

Indefinite Theta Functions

Regularised θ -function:

[Zwegers '02]



Defining $\widehat{Z}_a(-M_3)$

Regularised θ -function:

$$\Theta_a^{-M,\operatorname{reg}}(\tau;\mathbf{z}) := \sum_{\ell \in a+2M\mathbb{Z}^{|V|}} \rho(\ell) q^{+(\ell,M^{-1}\ell)} \mathbf{z}^{\ell}$$

$$\widehat{Z}_{a}(-M_{3,\Gamma};q) := (\pm) q^{\Delta} \oint \prod_{v \in V} \frac{dz_{v}}{2\pi i z_{v}} \left(z_{v} - \frac{1}{z_{v}} \right)^{2 - \deg(v)} \Theta_{a}^{-M,\operatorname{reg}}(\tau;\mathbf{z})$$

[MC-Sgroi, to appear] [MC-Ferrari-Sgroi '19]

Using the above definition:

$$\widehat{Z}_0(-\Sigma(2,3,7),\tau) = q^{-\frac{1}{2}}F_0(\tau) = q^{-\frac{1}{2}}(1+q+q^3+q^4+O(q^5))$$

What we have seen:

- Explicit examples of QMF play the role of 3-manifold inv.;
- Modularity considerations lead to new examples of *q*-series inv. ;
- What is the physical meaning of the regularisation?

Questions?

- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- **IV. Going Deeper**
- V. Questions for Future

The (1, m) Algebra for Lie Algebra \mathfrak{g}

Given a positive integer *m*, let $\alpha_{\pm} = \pm \sqrt{2m^{\pm 1}}$, $\alpha_0 = \alpha_+ + \alpha_$ free boson : $\varphi(z)\varphi(w) \sim \log(z - w)$ stress energy tensor : $T = \frac{1}{2}(\partial \varphi)^2 + \frac{\alpha_0}{2}\partial^2 \varphi$, $c = 1 - 3\alpha_0^2$ screening charges : $Q_- = (e^{\alpha_-\varphi})_0$

> triplet (1, m) algebra: $\mathcal{W}(m) := \ker_{\mathcal{V}_L} Q_$ singlet (1, m) algebra: $\mathcal{M}(m) := \ker_H Q_-$

where \mathcal{V}_L = lattice VOA for $L = \sqrt{2m}\mathbb{Z}$, H = Heisenberg algebra.

sorresponding to $\mathfrak{g} = A_1$

The (1, m) Algebra for Lie Algebra \mathfrak{g}

Given a positive integer *m*, let $\alpha_{\pm} = \pm \sqrt{2m^{\pm 1}}$, $\alpha_0 = \alpha_+ + \alpha_$ free boson : $\varphi(z)\varphi(w) \sim \log(z-w)$ stress energy tensor : $T = \frac{1}{2}(\partial \varphi)^2 + \frac{\alpha_0}{2}\partial^2 \varphi$, $c = 1 - 3\alpha_0^2$ screening charges : $Q_{-} = (e^{\alpha - \varphi})_{0}$ triplet (1, m) algebra: $\mathcal{W}(m) := \ker_{\mathcal{V}} Q_{-}$ singlet (1, m) algebra: $\mathcal{M}(m) := \ker_H Q_$ where \mathcal{V}_L = lattice VOA for $L = \sqrt{2m\mathbb{Z}}$, H = Heisenberg algebra. $\mathfrak{g} = A_1$

More generally, we have

 $r = \operatorname{rank}(\mathfrak{g})$ bosons, and $L = \sqrt{m} \Lambda_{\operatorname{root}}$.

$\widehat{Z}_{a}^{G}(\tau)$ and g-Log VOA Characters

From the M-theory origin of \widehat{Z}_a , it is clear that there is a higher rank generalisation $\widehat{Z}_a^G(\tau)$.

Integrate over all but the central node \vec{z}_c

$$\frac{\widehat{Z}^{G}_{a}(M_{3,\Gamma};\tau)}{\eta^{r}(\tau)} = [(\vec{z}_{c})^{0}] (\text{triplet } \mathfrak{g}\text{-Log VOA characters})$$
$$= \text{singlet } \mathfrak{g}\text{-Log VOA characters}$$

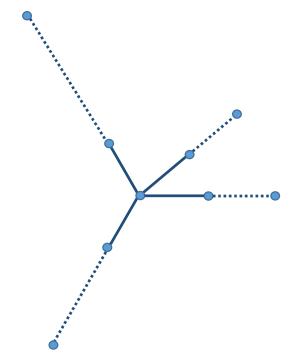
[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.]

Another generalisation: (p, p') Log VOA

When $p \neq 1$, the corresponding minimal model is non-trivial.

(p, p') min. model \sim the cohomology of screening op. (p, p') log model \sim the kernel of screening op.

They correspond to 4-pronged stars in the \hat{Z}_a -VOA correspondence.



[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.]

More General Quantum Modularity

Def (Depth 1 **QMF)**: $f : \mathbb{Q} \to \mathbb{C}$ s.t. $h_{\gamma} := f - f|_{w}\gamma$ have some properties of analyticity $\forall \gamma \in G$. **Def (Depth** *N* **QMF)**: a function $f \in \mathbb{Q}$ such that $h_{\gamma} := f - f|_{w}\gamma$ is a sum of QMFs of depth less than *N* (multiplied by some real-analytic functions) $\forall \gamma \in G$.

Ĉ^{A₂}(τ) is a QMF of *depth 2* when *M*₃ is given by a 3-pronged star.

 *Ĉ*_a(τ) is a sum of QMFs of *different weights* when *M*₃ is given by a 4-pronged star.

[MC-Chun-Feigin-Ferrari-Gukov-Harrison, t.a.] and see earlier work by Bringmann, Milas, Kaszian ('17-'18).

Questions?

- I. Background
- II. A (True) False Theorem
- III. A Mock–False Conjecture
- IV. Going Deeper
- V. Questions for Future

Future Questions

just the beginning ...

- a mathematical definition for more families of 3-manifolds;
- boudary algebra of $\mathcal{T}[M_3]$;
- mock and false are exceptionally simple, more involved quantum modularity for general M_3 ;
- what does quantum modularity say about physics/topology?