Homotopy Quantum Field Theories

Alexis Virelizier (University of Lille)

Topological Quantum Field Theory Seminar Técnico Lisboa - September 11, 2020

Homotopy Quantum Field Theories

Alexis Virelizier (University of Lille)

Joint work with Vladimir Turaev

Topological Quantum Field Theory Seminar Técnico Lisboa - September 11, 2020

Homotopy Quantum Field Theories

Alexis Virelizier (University of Lille)

Joint work with Vladimir Turaev

Topological Quantum Field Theory Seminar

Técnico Lisboa - September 11, 2020

Dedicated to the memory of Vaughan Jones

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category $X - \operatorname{Cob}_n$ is a symmetric

• an object is a pair (Σ, f) Σ closed oriented pointed (n - 1)-manifold $f: (\Sigma, \Sigma_{\bullet}) \rightarrow (X, *)$ pointed map

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i|} = f_i$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category X-Cob_n i

• an object is a pair (Σ, f) Σ closed oriented pointed (n - 1)-manifold $f: (\Sigma, \Sigma_{\bullet}) \to (X, *)$ pointed map

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i|} = f_i$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category *X*-Cob_n is a symmetric monoidal category

• an object is a pair (Σ, f)

 Σ closed oriented pointed (n - 1)-manifold $f: (\Sigma, \Sigma_{\bullet}) \rightarrow (X, *)$ pointed map

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i} = f_i$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category *X*-Cob_n is a symmetric monoidal category

• an object is a pair
$$(\Sigma, f)$$

 $\sum \text{ closed oriented pointed } (n-1)\text{-manifold}$ $f: (\Sigma, \Sigma_{\bullet}) \rightarrow (X, *) \text{ pointed map}$

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i} = f_i$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category X-Cob_n is a symmetric monoidal category

• an object is a pair
$$(\Sigma, f)$$

 $\sum \text{ closed oriented pointed } (n-1)\text{-manifold}$ $f: (\Sigma, \Sigma_{\bullet}) \rightarrow (X, *) \text{ pointed map}$

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i} = f_i$

 $(M, f) \sim (M', f')$ if \exists o.p. diffeo $\phi \colon M \to M'$ such that $h'\phi = h$

• $\circ =$ gluing $\otimes = \amalg$ $1 = (\emptyset, \emptyset \to X)$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category X-Cob_n is a symmetric monoidal category

• an object is a pair
$$(\Sigma, f)$$

 $\sum \text{ closed oriented pointed } (n-1)\text{-manifold}$ $f: (\Sigma, \Sigma_{\bullet}) \rightarrow (X, *) \text{ pointed map}$

• a morphism $f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$ is equiv. class of (M, f) M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$ h an homotopy class $M \to X$ with $h_{|\Sigma_i} = f_i$

 $(M, f) \sim (M', f')$ if \exists o.p. diffeo $\phi \colon M \to M'$ such that $h'\phi = h$

• $\circ =$ gluing $\otimes = \amalg$ $\mathbb{1} = (\emptyset, \emptyset \to X)$

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space *X* (with base point *)

The category *X*-Cob_n is a symmetric monoidal category

• an object is a pair
$$(\Sigma, f)$$

 $\sum_{i=1}^{n} \text{ closed oriented pointed } (n-1)\text{-manifold}$ $f: (\Sigma, \Sigma_{\bullet}) \to (X, *) \text{ pointed map}$

• a morphism
$$f: (\Sigma_1, f_1) \to (\Sigma_2, f_2)$$
 is equiv. class of (M, f)
 M an oriented *n*-cobordism $\Sigma_1 \to \Sigma_2$
 h an homotopy class $M \to X$ with $h_{|\Sigma_i|} = f_i$
 $(M, f) = (M', f'_i)$ if Σ_i are different. More that be the

 $(M, f) \sim (M', f')$ if \exists o.p. diffeo $\phi \colon M \to M'$ such that $h'\phi = h$

• $\circ =$ gluing $\otimes = \amalg$ $\mathbb{1} = (\emptyset, \emptyset \to X)$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

- k-vector spaces $\tau \left(\underbrace{\frown \Sigma \odot}_{f} \xrightarrow{f} X \right)$
- k-linear maps τ

$$\stackrel{\mathsf{M}}{\longrightarrow} \stackrel{\partial_{+}\mathsf{M}}{\longrightarrow} X : \tau(\partial_{-}M, h_{-}) \to \tau(\partial_{+}M, h_{+})$$

- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\Bbbk} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

k-vector spaces

$$\tau\left(\underbrace{\textcircled{}}_{\mathcal{F}}\underbrace{f}_{\mathcal{F}}X\right)$$

• k-linear maps τ

$$\left. \begin{array}{c} \overset{\partial_{+}M}{\longrightarrow} \\ \overset{h}{\longrightarrow} \\ \end{array} \right| : \tau(\partial_{-}M, h_{-}) \to \tau(\partial_{+}M, h_{-})$$

- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\Bbbk} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

- k-vector spaces $\tau \left(\underbrace{\frown \Sigma \ominus}_{f} \xrightarrow{f} X \right)$
- k-linear maps τ

$$\stackrel{\stackrel{\partial_+M}{\longrightarrow}}{\xrightarrow{h}} X : \tau(\partial_-M, h_-) \to \tau(\partial_+M, h_+)$$

- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\Bbbk} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

- k-vector spaces $\tau \left(\underbrace{\frown \Sigma \odot}_{f} \overset{f}{\to} X \right)$
- k-linear maps $\tau \left(\overbrace{\stackrel{M}{\longrightarrow}}^{\partial_+ M} \atop \stackrel{h}{\longrightarrow} X \right) : \tau(\partial_- M, h_-) \to \tau(\partial_+ M, h_+)$
- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

• k-vector spaces $\tau\left(\overbrace{\frown \Sigma \odot}^{f} \xrightarrow{f} X\right)$

• k-linear maps
$$\tau \left(\underbrace{\bigwedge_{h}}^{M} \underbrace{\bigwedge_{h}}^{h} X \right) : \tau(\partial_{-}M, h_{-}) \to \tau(\partial_{+}M, h_{+})$$

- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

Data:

- k-vector spaces $\tau \left(\underbrace{\frown \Sigma \odot}_{f} \xrightarrow{f} X \right)$
- k-linear maps $\tau \left(\overbrace{\stackrel{M}{\longrightarrow}}^{\mathcal{O}_{+}M} \underset{\partial_{-}M}{\stackrel{h}{\longrightarrow}} X \right) : \tau(\partial_{-}M, h_{-}) \to \tau(\partial_{+}M, h_{+})$
- isomorphisms $\tau((\Sigma, f) \amalg (\Sigma', f')) \simeq \tau(\Sigma, f) \otimes_{\mathbb{K}} \tau(\Sigma', f')$
- an isomorphism $\tau(\emptyset) \simeq \Bbbk$

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau \colon X \operatorname{-Cob}_n \to \operatorname{Vect}_k$

Basic properties:

● *X* = {pt} ~→ TQFT

- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{/isotopy}$
- *X*-Cob_n only depends (up to equivalence) on the *n*-homotopy type of *X*

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau \colon X \operatorname{-Cob}_n \to \operatorname{Vect}_k$

Basic properties:

● *X* = {pt} → TQFT

- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{\text{/isotopy}}$
- *X*-Cob_n only depends (up to equivalence) on the *n*-homotopy type of *X*

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau: X \operatorname{-Cob}_n \to \operatorname{Vect}_k$

- 𝑋 = {pt} → TQFT
- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{/isotopy}$
- *X*-Cob_n only depends (up to equivalence) on the *n*-homotopy type of *X*

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau \colon X \operatorname{-Cob}_n \to \operatorname{Vect}_k$

- *X* = {pt} → TQFT
- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{/isotopy}$
- *X*-Cob_n only depends (up to equivalence) on the *n*-homotopy type of *X*

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau \colon X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

- *X* = {pt} → TQFT
- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{/isotopy}$
- *X*-Cob_n only depends (up to equivalence) on the *n*-homotopy type of *X*

A *n*-dim HQFT with target X is a symmetric monoidal functor

 $\tau \colon X \operatorname{-Cob}_n \to \operatorname{Vect}_{\Bbbk}$

- *X* = {pt} → TQFT
- *M* closed oriented *n*-manifold, $h \in [M, X]$ $\tau(M, h) \in \operatorname{End}_{\Bbbk}(\tau(\emptyset)) \simeq \Bbbk$ is a numerical invariant of *h*
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^* \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $MCG(\Sigma, f) = \{\phi \colon \Sigma \to \Sigma \text{ o.p. diffeo } | f\phi = f \}_{/isotopy}$
- X-Cob_n only depends (up to equivalence) on the *n*-homotopy type of X

There are bijective correspondences between:

- 1-dimensional HQFTs with target X
 -) finite-dimensional representations of $\pi_1(X)$
- finite-dimensional flat vector bundles over X

There are bijective correspondences between:

- 1-dimensional HQFTs with target X
- 2 finite-dimensional representations of $\pi_1(X)$

finite-dimensional flat vector bundles over X

There are bijective correspondences between:

- 1-dimensional HQFTs with target X
- 2 finite-dimensional representations of $\pi_1(X)$
- finite-dimensional flat vector bundles over X

There are bijective correspondences between:

- 1-dimensional HQFTs with target X
- 2 finite-dimensional representations of $\pi_1(X)$
- Inite-dimensional flat vector bundles over X

 $\theta \in H^n(X, \mathbb{k}^*) \quad \rightsquigarrow \quad n \text{-dim HQFT } \tau^{\theta} \text{ with target } X$

$au^{ heta}$ is characterized by :

• *M* closed oriented *n*-manifold, $h \in [M, X]$

$$au^{ heta}(M,h) = \langle h^*(heta), [M]
angle \in \mathbb{k}$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

τ^{θ} is characterized by :

• *M* closed oriented *n*-manifold, $h \in [M, X]$

$$\tau^{\theta}(M,h) = \langle h^*(\theta), [M] \rangle \in \Bbbk$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

τ^{θ} is characterized by :

• *M* closed oriented *n*-manifold, $h \in [M, X]$

 $\tau^{\theta}(M,h) = \langle h^*(\theta), [M] \rangle \in \Bbbk$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

- τ^{θ} is characterized by :
 - *M* closed oriented *n*-manifold, $h \in [M, X]$

$$\tau^{ heta}(M,h) = \langle h^*(heta), [M]
angle \in \mathbb{k}$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

- τ^{θ} is characterized by :
 - *M* closed oriented *n*-manifold, $h \in [M, X]$

$$au^{ heta}(M,h) = \langle h^*(heta), [M]
angle \in \mathbb{k}$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

- τ^{θ} is characterized by :
 - *M* closed oriented *n*-manifold, $h \in [M, X]$

$$au^{ heta}(M,h) = \langle h^*(heta), [M]
angle \in \mathbb{k}$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

 $\theta \in H^n(X, \mathbb{k}^*) \iff n$ -dim HQFT τ^{θ} with target X

- τ^{θ} is characterized by :
 - *M* closed oriented *n*-manifold, $h \in [M, X]$

$$au^{ heta}(M,h) = \langle h^*(heta), [M]
angle \in \mathbb{k}$$

where $[M] \in H_n(M, \mathbb{Z})$ is the fundamental class of M

• Σ closed oriented (n-1)-manifold, $f: \Sigma \to X$

 $\tau^{\theta}(\Sigma, f)$ is one-dimensional

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_i(X) = 0$ for $i \ge 2$) $\rightsquigarrow X$ is a K(G, 1)-space with $G = \pi_1(X)$

(Turaev, 2000)

2-dim HQFTs with target $X \Leftrightarrow G$ -graded Frobenius algebras

(Sozer, 2019) Classification of 2-dim extended HQFTs with target *X*

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_i(X) = 0$ for $i \ge 2$) \rightsquigarrow X is a K(G, 1)-space with $G = \pi_1(X)$

(Turaev, 2000)

2-dim HQFTs with target $X \Leftrightarrow G$ -graded Frobenius algebras

(Sozer, 2019) Classification of 2-dim extended HQFTs with target X

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_i(X) = 0$ for $i \ge 2$) \rightsquigarrow X is a K(G, 1)-space with $G = \pi_1(X)$

(Turaev, 2000)

2-dim HQFTs with target $X \Leftrightarrow G$ -graded Frobenius algebras

(Sozer, 2019) Classification of 2-dim extended HQFTs with target
The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_i(X) = 0$ for $i \ge 2$) \rightsquigarrow X is a K(G, 1)-space with $G = \pi_1(X)$

(Turaev, 2000)

2-dim HQFTs with target $X \Leftrightarrow G$ -graded Frobenius algebras

(Sozer, 2019)

Classification of 2-dim extended HQFTs with target X

presentation of M^3 + algebraic data \longrightarrow 3-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)
 - triangulation + +
- + C spherical fusion \rightsquigarrow TV_C category
- Reshetikhin-Turaev (91)
 - surgery (A) + \mathcal{B} modular fusion $\rightsquigarrow \operatorname{RT}_{\mathcal{B}}$ category
- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

presentation of M^3 + algebraic data \rightsquigarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation

C spherical fusion \longrightarrow TV_C category

Reshetikhin-Turaev (91)

gery (A) + \mathcal{B} modular fusion $\longrightarrow RT_{\mathcal{B}}$ category

• Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. & Balsam-Kirillov, 2010) TV_C and RT_{Z(C)} are isomorphic TQFTs

presentation of M^3 + algebraic data \rightsquigarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation +

 $\begin{array}{ccc} {\mathcal{C}} \text{ spherical fusion} & \rightsquigarrow & TV_{\mathcal{C}} \\ \text{category} \end{array}$

• Reshetikhin-Turaev (91)

rgery (A) + \mathcal{B} modular fusion $\rightsquigarrow RT_{\mathcal{B}}$ category

• Müger (03): $\mathcal{Z}(C)$ modular fusion category \rightsquigarrow RT_{$\mathcal{Z}(C)$}

Theorem (Turaev-V. & Balsam-Kirillov, 2010) TV_C and RT_{Z(C)} are isomorphic TQFTs

presentation of M^3 + algebraic data \rightsquigarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation \leftarrow + C spherical fusion \rightsquigarrow TV_C category

- Reshetikhin-Turaev (91)
 - surgery \swarrow + \mathcal{B} modular fusion $\rightsquigarrow RT_{\mathcal{B}}$ category
- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

presentation of M^3 + algebraic data \rightsquigarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation \leftarrow + C spherical fusion \rightsquigarrow TV_C category

- Reshetikhin-Turaev (91)
 - surgery \swarrow + \mathcal{B} modular fusion $\rightsquigarrow \operatorname{RT}_{\mathcal{B}}$ category

• Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

presentation of M^3 + algebraic data \longrightarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation \leftarrow + C spherical fusion \rightsquigarrow TV_C category

- Reshetikhin-Turaev (91)
 - surgery \swarrow + \mathcal{B} modular fusion $\rightsquigarrow \operatorname{RT}_{\mathcal{B}}$ category
- Müger (03): Z(C) modular fusion category $\rightarrow RT_{Z(C)}$

presentation of M^3 + algebraic data \longrightarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation \leftarrow + C spherical fusion \rightsquigarrow TV_C category

- Reshetikhin-Turaev (91)
 - surgery \swarrow + \mathcal{B} modular fusion $\rightsquigarrow RT_{\mathcal{B}}$ category
- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. & Balsam-Kirillov, 2010) $TV_{\mathcal{C}}$ and $RT_{\mathcal{Z}(\mathcal{C})}$ are isomorphic TQFTs

presentation of M^3 + algebraic data \longrightarrow 3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation \leftarrow + C spherical fusion \rightsquigarrow TV_C category

- Reshetikhin-Turaev (91)
 - surgery \swarrow + \mathcal{B} modular fusion $\rightsquigarrow RT_{\mathcal{B}}$ category
- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \operatorname{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. & Balsam-Kirillov, 2010)

 $\mathrm{TV}_\mathcal{C}$ and $\mathrm{RT}_{\mathcal{Z}(\mathcal{C})}$ are isomorphic TQFTs

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

 $\triangleright X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow \operatorname{Hom}_C(X, Y) = 0$

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{k}}_{0} \underbrace{\downarrow$

C= spherical fusion G-graded category:

• C is k-linear monoidal

• each object X has a 2-sided dual X* (+ sphericity condition)

• *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▷ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow$ Hom_C(X, Y) = 0

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{m}}_{0}^{k} \underbrace{\downarrow$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object *X* has a 2-sided dual *X*^{*} (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

 $\triangleright X \in C_g \text{ and } Y \in C_h \text{ with } g \neq h \Rightarrow \text{ Hom}_C(X, Y) = 0$

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{m}}_{0}^{k} \underbrace{\downarrow$

C= spherical fusion G-graded category:

- C is \Bbbk -linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

 $\triangleright X \in C_g \text{ and } Y \in C_h \text{ with } g \neq h \Rightarrow \text{ Hom}_C(X, Y) = 0$

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{m}}_{0}^{k} \underbrace{\downarrow$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \ \Rightarrow \ X \otimes Y \in C_{gh}$

▷ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow$ Hom_C(X, Y) = 0

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{m} & i \\ \downarrow_{m} & i \\ 0 & n \\ 0 & n$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▶ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow \operatorname{Hom}_C(X, Y) = 0$

• C is semisimple

• each Cg has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow_{k}}_{0} \underbrace{\downarrow$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▷ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow$ Hom_C(X, Y) = 0

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow & k & j \\ \downarrow & m & n \\ \downarrow & n & n \end{vmatrix} = F_C \left(\underbrace{\downarrow & k & j \\ \downarrow & n & j \\ \downarrow & n & n \\$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▷ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow$ Hom_C(X, Y) = 0

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow$$
 6*j*-symbols $\begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\downarrow & k & j \\ k & k & j \\ k & n & n \end{vmatrix} \right)$

Example: G-vect^{θ} with $\theta \in H^3(G, \Bbbk^*)$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object X has a 2-sided dual X* (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▷ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow$ Hom_C(X, Y) = 0

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow \quad 6j\text{-symbols} \quad \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\begin{smallmatrix} i & k & j \\ k & j & j \\ m & k & l \\ 0 & n & 0 \\ 0 & n$$

C= spherical fusion G-graded category:

- C is k-linear monoidal
- each object *X* has a 2-sided dual *X*^{*} (+ sphericity condition)
- *C* has a *G*-grading $C = \bigoplus_{g \in G} C_g$:

 $\triangleright X \in C_g \text{ and } Y \in C_h \implies X \otimes Y \in C_{gh}$

▶ $X \in C_g$ and $Y \in C_h$ with $g \neq h \Rightarrow \operatorname{Hom}_C(X, Y) = 0$

• C is semisimple

• each C_g has finitely many simple objects

$$\rightsquigarrow \quad 6j\text{-symbols} \quad \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = F_C \left(\underbrace{\begin{smallmatrix} i & k & j \\ m & m & k \\ \vdots & n & \ddots \\ \vdots & n & \vdots \\ \vdots & n & i \\ \vdots & n & n \\ \vdots & n$$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{\mathcal{C}}(M,h) = \sum_{\boldsymbol{c}} \mathrm{coef}(\boldsymbol{c}) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

$\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$ spherical fusion *G*-graded category

M closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{\mathcal{C}}(M,h) = \sum_{\boldsymbol{c}} \mathrm{coef}(\boldsymbol{c}) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ $e \text{ oriented edge } \rightsquigarrow g(e) \text{ loop in } X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_{e} \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{\mathcal{C}}(M,h) = \sum_{\boldsymbol{c}} \mathrm{coef}(\boldsymbol{c}) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$

e oriented edge \rightsquigarrow g(e) loop in X \rightsquigarrow $[g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

$$\overset{g}{\longrightarrow} X$$

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e) \text{ loop in } X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$\stackrel{\mathrm{e}}{\longleftrightarrow} \stackrel{g}{\longrightarrow} X$$

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

$$\stackrel{\mathrm{e}}{\longleftrightarrow} \stackrel{g}{\longrightarrow} X$$

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$
$C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

 $c extsf{=} \mathbf{G extsf{-}coloring}$ of the edges : $c_e \in {\mathcal C}_{[g(e)]}$ simple object

$$\stackrel{\mathrm{e}}{\longleftrightarrow} \stackrel{g}{\longrightarrow} X$$

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= **G-coloring** of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\operatorname{HTV}_{C}(M,h) = \sum_{c} \operatorname{coef}(c) \operatorname{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

 $\mathrm{HTV}_{C}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} \quad 6j$$
-symbol

 $\operatorname{HTV}_{C}(M,h) = \sum_{c} \operatorname{coef}(c) \operatorname{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} \quad 6j$$
-symbol

$$\mathrm{HTV}_{\mathcal{C}}(M,h) = \sum_{c} \mathrm{coef}(c) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

$$|\Delta| = \begin{vmatrix} i & j & k \\ I & m & n \end{vmatrix} \quad 6j$$
-symbol

$$\operatorname{HTV}_{\mathcal{C}}(M,h) = \sum_{c} \operatorname{coef}(c) \operatorname{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of *M* and $g \in h$ with $g(\text{vertices}) = * \in X$ *e* oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

$$|\Delta| = \begin{vmatrix} i & j & k \\ I & m & n \end{vmatrix} \quad 6j$$
-symbol

$$HTV_{C}(M,h) = \sum_{c} \operatorname{coef}(c) \operatorname{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \Bbbk$$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = 6j$$
-symbol

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} \quad 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(c_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Pachner moves

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(c_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Example: G-vect^{θ}_{\Bbbk} \longleftrightarrow $\theta \in H^3(G, \Bbbk^*) \cong H^3(X, \Bbbk^*) \rightsquigarrow \tau^{\theta}$

 $\mathrm{HTV}_{\mathsf{G}\text{-}\operatorname{vect}^{\theta}_{\Bbbk}} \cong \tau^{\theta}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(c_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Example: G-vect $_{\Bbbk}^{\theta} \iff \theta \in H^{3}(G, \Bbbk^{*}) \cong H^{3}(X, \Bbbk^{*}) \rightsquigarrow \tau^{\theta}$

 $\mathrm{HTV}_{G\text{-}\operatorname{vect}^{\theta}_{\Bbbk}} \cong \tau^{\theta}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} = 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(c_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Example: $G \cdot \operatorname{vect}_{\Bbbk}^{\theta} \iff \theta \in H^3(G, \Bbbk^*) \cong H^3(X, \Bbbk^*) \rightsquigarrow \tau^{\theta}$

 $\mathrm{HTV}_{G\text{-}\operatorname{vect}^{\theta}_{\Bbbk}} \cong \tau^{\theta}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$\begin{bmatrix} i & m \\ m & j \end{bmatrix} \longrightarrow |\Delta| = \begin{vmatrix} i & j & k \\ l & m & n \end{vmatrix} \quad 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(C_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Example: $G \cdot \operatorname{vect}_{\Bbbk}^{\theta} \iff \theta \in H^3(G, \Bbbk^*) \cong H^3(X, \Bbbk^*) \iff \tau^{\theta}$

 $\mathrm{HTV}_{G\text{-}\mathrm{vect}^{\theta}_{\Bbbk}} \cong \tau^{\theta}$

 $C = \bigoplus_{g \in G} C_g$ spherical fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Pick a triangulation of M and $g \in h$ with $g(\text{vertices}) = * \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow [g(e)] \in \pi_1(X, *) = G$

c= G-coloring of the edges : $c_e \in C_{[g(e)]}$ simple object

$$|\Delta| = \begin{vmatrix} i & j & k \\ I & m & n \end{vmatrix} = \begin{vmatrix} i & j & k \\ I & m & n \end{vmatrix} = 6j$$
-symbol

$$\mathrm{HTV}_{C}(M,h) = \sum_{c} \left(\prod_{e} \dim_{q}(c_{e}) \right) \mathrm{ctr}_{f}(\otimes_{\Delta} |\Delta|) \in \mathbb{k}$$

Example: $G \cdot \operatorname{vect}_{\Bbbk}^{\theta} \iff \theta \in H^3(G, \Bbbk^*) \cong H^3(X, \Bbbk^*) \iff \tau^{\theta}$

 $\mathrm{HTV}_{G\text{-}\operatorname{vect}^{\theta}_{\Bbbk}} \cong \tau^{\theta}$

Let C spherical fusion category \rightarrow TV_C

 Γ =**graduator** of *C* (= largest group making *C* faithfully graded)

C spherical fusion Γ -graded category \rightsquigarrow HTV_C

$$\mathrm{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \mathrm{HTV}_{C}(\Sigma, f) \quad \text{and} \quad \mathrm{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \mathrm{HTV}_{C}(M, h)$$

Example: $\theta \in H^3(G, \Bbbk^*) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\Bbbk}^{\theta} & \text{spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$

$$\mathrm{TV}_{G^{-}\mathrm{vect}_{\Bbbk}^{\theta}}(M) = \sum_{h \in [M, BG]} \mathrm{HTV}_{G^{-}\mathrm{vect}_{\Bbbk}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$$

$$\mathsf{DW}_{G,\theta}(M) = \sum_{h: \ \pi_1(M) \to G} \langle h^*(\theta), [M] \rangle$$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =**graduator** of *C* (= largest group making *C* faithfully graded)

C spherical fusion Γ -graded category \rightsquigarrow HTV_C

$$TV_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} HTV_{C}(\Sigma, f) \text{ and } TV_{C}(M) = \sum_{h \in [M, B\Gamma]} HTV_{C}(M, h)$$

Example: $\theta \in H^3(G, \Bbbk^*) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\Bbbk}^{\theta} & \text{spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$

$$\mathrm{TV}_{G^{-}\mathrm{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \mathrm{HTV}_{G^{-}\mathrm{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$$

$$\mathsf{DW}_{G,\theta}(M) = \sum_{h: \ \pi_1(M) \to G} \langle h^*(\theta), [M] \rangle$$

Let C spherical fusion category \rightsquigarrow TV_C

Γ=**graduator** of C (= largest group making C faithfully graded)

C spherical fusion Γ -graded category \rightsquigarrow HTV_C

$$TV_{\mathcal{C}}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} HTV_{\mathcal{C}}(\Sigma, f) \text{ and } TV_{\mathcal{C}}(M) = \sum_{h \in [M, B\Gamma]} HTV_{\mathcal{C}}(M, h)$$

Example: $\theta \in H^3(G, \Bbbk^*) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\Bbbk}^{\theta} & \text{spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$

$$\mathrm{TV}_{G^{-}\mathrm{vect}_{\Bbbk}^{\theta}}(M) = \sum_{h \in [M, BG]} \mathrm{HTV}_{G^{-}\mathrm{vect}_{\Bbbk}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$$

$$\mathsf{DW}_{G,\theta}(M) = \sum_{h: \ \pi_1(M) \to G} \langle h^*(\theta), [M] \rangle$$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of C (= largest group making C faithfully graded)

$$TV_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} HTV_{C}(\Sigma, f) \text{ and } TV_{C}(M) = \sum_{h \in [M, B\Gamma]} HTV_{C}(M, h)$$

Example: $\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \left| \begin{array}{c} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \operatorname{whose graduator is } G \end{array} \right|$

$$TV_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} HTV_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$$

$$\longrightarrow DW_{G, \theta}(M) = \sum_{h : \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of C (= largest group making C faithfully graded)

$$TV_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} HTV_{C}(\Sigma, f) \text{ and } TV_{C}(M) = \sum_{h \in [M, B\Gamma]} HTV_{C}(M, h)$$

Example: $\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{bmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \operatorname{whose graduator is } G \end{bmatrix}$

$$TV_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} HTV_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$$

$$\Longrightarrow DW_{G,\theta}(M) = \sum_{h : \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of C (= largest group making C faithfully graded)

$$\mathrm{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \mathrm{HTV}_{C}(\Sigma, f) \text{ and } \mathrm{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \mathrm{HTV}_{C}(M, h)$$

Example:
$$\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} & \operatorname{spherical fusion category} \\ \operatorname{whose graduator is} G \end{vmatrix}$$

 $\operatorname{TV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \operatorname{HTV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$
 $\longrightarrow \qquad \operatorname{DW}_{G, \theta}(M) = \sum_{h \colon \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of C (= largest group making C faithfully graded)

C spherical fusion Γ -graded category \rightsquigarrow HTV_C

$$\operatorname{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \text{ and } \operatorname{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \operatorname{HTV}_{C}(M, h)$$

Example: $\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$ $\operatorname{TV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \operatorname{HTV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$

$$\mathrm{DW}_{G, heta}(M) = \sum_{h \colon \pi_1(M) o G} \langle h^*(heta), [M]
angle$$

Let C spherical fusion category \rightsquigarrow TV_C

Γ=**graduator** of C (= largest group making C faithfully graded)

C spherical fusion Γ -graded category \rightsquigarrow HTV_C

$$\mathrm{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \mathrm{HTV}_{C}(\Sigma, f) \text{ and } \mathrm{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \mathrm{HTV}_{C}(M, h)$$

Example: $\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \operatorname{whose graduator is } G \end{vmatrix}$ $\operatorname{TV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \operatorname{HTV}_{G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$ $\longrightarrow \qquad \operatorname{DW}_{G, \theta}(M) = \sum_{h : \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of C (= largest group making C faithfully graded)

$$\mathrm{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \mathrm{HTV}_{C}(\Sigma, f) \text{ and } \mathrm{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \mathrm{HTV}_{C}(M, h)$$

Example:
$$\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$$

 $\operatorname{TV}_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \operatorname{HTV}_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$
 $\longrightarrow \qquad \operatorname{DW}_{G, \theta}(M) = \sum_{h : \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$

Let C spherical fusion category \rightsquigarrow TV_C

 Γ =graduator of *C* (= largest group making *C* faithfully graded)

$$\mathrm{TV}_{C}(\Sigma) = \bigoplus_{f \in [\Sigma, B\Gamma]} \mathrm{HTV}_{C}(\Sigma, f) \text{ and } \mathrm{TV}_{C}(M) = \sum_{h \in [M, B\Gamma]} \mathrm{HTV}_{C}(M, h)$$

Example:
$$\theta \in H^{3}(G, \mathbb{k}^{*}) \iff \begin{vmatrix} G \cdot \operatorname{vect}_{\mathbb{k}}^{\theta} \text{ spherical fusion category} \\ \text{whose graduator is } G \end{vmatrix}$$

 $\operatorname{TV}_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M) = \sum_{h \in [M, BG]} \operatorname{HTV}_{G^{-}\operatorname{vect}_{\mathbb{k}}^{\theta}}(M, h) = \sum_{h \in [M, BG]} \tau^{\theta}(M, h)$
 $\Longrightarrow \qquad \operatorname{DW}_{G, \theta}(M) = \sum_{h : \pi_{1}(M) \to G} \langle h^{*}(\theta), [M] \rangle$

3-dimensional HQFTs with target X = K(G, 1)

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{q \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B} -colored framed oriented G-links in S^3 $(L, f : \pi_1(L) \to G)$ whose longitudes are sent to 1 by f

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B} -colored framed oriented *G*-links in S^3 $(L, f: \pi_1(L) \to G)$ whose longitudes are sent to 1 by *f*

 $x \in B_g$ $x \otimes Y \in B_g h$ $Y \in Bh$ $Y \otimes x \in Bhg$

Modular fusion graded categories

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B} -colored framed oriented G-links in S^3 $(L, f : \pi_1(L) \to G)$ whose longitudes are sent to 1 by f

Modular fusion graded categories

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

 $\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B} -colored framed oriented *G*-links in S^3 $(L, f: \pi_1(L) \to G)$ whose longitudes are sent to 1 by *f*

Modular fusion graded categories

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

```
Invariant I_{\mathcal{B}} of \mathcal{B}-colored framed oriented G-links in S^3
(L, f : \pi_1(L) \to G)
whose longitudes are sent to 1 by f
```

\mathcal{B} = modular fusion *G*-graded category:

- $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ is spherical fusion *G*-graded
- \mathcal{B} has an action $\varphi \colon \underline{G} \to \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_g(\mathcal{B}_h) \subset \mathcal{B}_{ghg^{-1}}$
- \mathcal{B} has a *G*-braiding: for $X \in \mathcal{B}_g$ and $Y \in \mathcal{B}_h$,

$$\tau_{X,Y}\colon X\otimes Y\to \varphi_g(Y)\otimes X$$

• the S-matrix of fusion category \mathcal{B}_1 is invertible

Surgical HQFT with target X = K(G, 1)

$\mathcal{B}=\bigoplus_{g\in G}\mathcal{B}_g$ modular fusion G-graded category

M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$

Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and h

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

Any $\underline{V} = (V_1, \cdots, V_n) \in \mathcal{B}_{g_1} \times \cdots \times \mathcal{B}_{g_n}$ makes (L, f) \mathcal{B} -colored

Surgical HQFT with target X = K(G, 1)

 $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ modular fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h* Let $g_i \in G$ be the color of a point in each component L_i of a diagram of *L*

Any $\underline{V} = (V_1, \cdots, V_n) \in \mathcal{B}_{g_1} \times \cdots \times \mathcal{B}_{g_n}$ makes (L, f) \mathcal{B} -colored

$$ext{HRT}_{\mathcal{B}}(M,h) = \sum_{\underline{V},\,V_l ext{ simple }} \left(\prod_{i=1}^n \dim_q(V_l)
ight) \mathcal{I}_{\mathcal{B}}(L,f,\underline{V})$$

Surgical HQFT with target X = K(G, 1)

 $\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ modular fusion G-graded category

M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$

Let $f \colon \pi_1(L) o G$ induced by $S^3 \setminus L \hookrightarrow M$ and h

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

Any $\underline{V} = (V_1, \cdots, V_n) \in \mathcal{B}_{g_1} \times \cdots \times \mathcal{B}_{g_n}$ makes (L, f) \mathcal{B} -colored

$$ext{HRT}_{\mathscr{B}}(M,h) = \sum_{\underline{V}, \, V_l \, ext{ simple }} \left(\prod_{l=1}^n \dim_q(V_l)
ight) \mathcal{I}_{\mathscr{B}}(L, f, \underline{V})$$
$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$ modular fusion *G*-graded category *M* closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$$
 modular fusion *G*-graded category
M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$ext{HRT}_{\mathscr{B}}(M,h) = \sum_{\underline{V}, \, V_l \, ext{simple}} \, \left(\prod_{i=1}^n \dim_q(V_l)
ight) \, \mathcal{I}_{\mathscr{B}}(L,f,\underline{V})$$

$$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$$
 modular fusion *G*-graded category
M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$$
 modular fusion *G*-graded category
M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$\operatorname{HRT}_{\mathcal{B}}(\boldsymbol{M},\boldsymbol{h}) = \sum_{\underline{V}, V_i \text{ simple }} \left(\prod_{i=1}^n \operatorname{dim}_q(V_i) \right) \mathcal{I}_{\mathcal{B}}(\boldsymbol{L},\boldsymbol{f},\underline{V})$$

$$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$$
 modular fusion *G*-graded category
M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$\operatorname{HRT}_{\operatorname{\mathcal{B}}}(\operatorname{\textit{M}},\operatorname{\textit{h}}) = \sum_{\operatorname{\underline{V}},\operatorname{\textit{V}}_i \text{ simple }} \left(\prod_{i=1}^n \operatorname{dim}_q(\operatorname{\textit{V}}_i) \right) \operatorname{\mathcal{I}}_{\operatorname{\mathcal{B}}}(\operatorname{\textit{L}},\operatorname{\textit{f}},\operatorname{\underline{\textit{V}}})$$

$$\mathcal{B} = \bigoplus_{g \in G} \mathcal{B}_g$$
 modular fusion *G*-graded category
M closed oriented 3-manifold, $h \in [M, X]$

Present *M* by surgery along a framed link $L = L_1 \cup \cdots \cup L_n$ Let $f: \pi_1(L) \to G$ induced by $S^3 \setminus L \hookrightarrow M$ and *h*

Let $g_i \in G$ be the color of a point in each component L_i of a diagram of L

$$\mathrm{HRT}_{\mathcal{B}}(M,h) = \sum_{\underline{V}, \, V_i \, \mathrm{simple}} \left(\prod_{i=1}^n \dim_q(V_i) \right) \mathcal{I}_{\mathcal{B}}(L,f,\underline{V})$$

3-dimensional HQFTs with target X = K(G, 1)

${\mathcal C}$ monoidal category, ${\mathcal D}$ monoidal subcategory of ${\mathcal C}$

The center of C relative to D is the monoidal category Z(C, D):
objects of Z(C, D):

 $X \in \mathcal{C}$ such that $X \otimes Y = Y \otimes X \quad \forall Y \in \mathcal{D}$

•
$$(X, \sigma) \otimes (X', \sigma') = (X \otimes X', (\sigma \otimes \mathrm{id}_{X'})(\mathrm{id}_X \otimes \sigma'))$$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is *G*-graded with $(\mathcal{Z}_G(C))_a = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $\mathcal{Z}_G(\mathcal{C})$ has a *G*-action and a *G*-braiding

C monoidal category, \mathcal{D} monoidal subcategory of C The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$: • objects of $\mathcal{Z}(C, \mathcal{D})$:

 $X \in C \quad \text{such that} \quad X \otimes Y = Y \otimes X \quad \forall Y \in \mathcal{D}$ $\bullet (X, \sigma) \otimes (X', \sigma') = (X \otimes X', (\sigma \otimes \operatorname{id}_{X'})(\operatorname{id}_X \otimes \sigma'))$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is *G*-graded with $(\mathcal{Z}_G(C))_a = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $\mathcal{Z}_G(C)$ has a *G*-action and a *G*-braiding

C monoidal category, \mathcal{D} monoidal subcategory of C

The center of *C* relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

• objects of $\mathcal{Z}(C, \mathcal{D})$:

 $X \in C$ such that $X \otimes Y = Y \otimes X$ $\forall Y \in \mathcal{D}$

• $(X, \sigma) \otimes (X', \sigma') = (X \otimes X', (\sigma \otimes \mathrm{id}_{X'})(\mathrm{id}_X \otimes \sigma'))$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is *G*-graded with $(\mathcal{Z}_G(C))_a = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $\mathcal{Z}_G(\mathcal{C})$ has a *G*-action and a *G*-braiding

 ${\mathcal C}$ monoidal category, ${\mathcal D}$ monoidal subcategory of ${\mathcal C}$

The center of *C* relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

• objects of $\mathcal{Z}(C, \mathcal{D})$:

$$X \in C \quad \text{with} \quad \sigma = \left\{ \sigma_{Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X \right\}_{Y \in \mathcal{D}}$$
$$(X, \sigma) \otimes (X', \sigma') = \left(X \otimes X', (\sigma \otimes \operatorname{id}_{X'})(\operatorname{id}_{X} \otimes \sigma') \right)$$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $Z_G(C) = Z(C, C_1)$ $Z_G(C)$ is *G*-graded with $(Z_G(C))_g = \{(X, \sigma) \in Z_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $Z_G(C)$ has a *G*-action and a *G*-braiding

 ${\mathcal C}$ monoidal category, ${\mathcal D}$ monoidal subcategory of ${\mathcal C}$

The center of *C* relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

• objects of $\mathcal{Z}(C, \mathcal{D})$:

$$X \in C \quad \text{with} \quad \sigma = \left\{ \sigma_{Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X \right\}_{Y \in \mathcal{D}}$$

• $(X, \sigma) \otimes (X', \sigma') = \left(X \otimes X', (\sigma \otimes \operatorname{id}_{X'})(\operatorname{id}_{X} \otimes \sigma') \right)$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is *G*-graded with $(\mathcal{Z}_G(C))_g = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $\mathcal{Z}_G(\mathcal{C})$ has a *G*-action and a *G*-braiding

 ${\mathcal C}$ monoidal category, ${\mathcal D}$ monoidal subcategory of ${\mathcal C}$

The center of *C* relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

• objects of $\mathcal{Z}(C, \mathcal{D})$:

$$X \in C \quad \text{with} \quad \sigma = \left\{ \sigma_{Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X \right\}_{Y \in \mathcal{D}}$$

• $(X, \sigma) \otimes (X', \sigma') = \left(X \otimes X', (\sigma \otimes \operatorname{id}_{X'})(\operatorname{id}_{X} \otimes \sigma') \right)$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The *G*-center of *C* is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is *G*-graded with $(\mathcal{Z}_G(C))_g = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009) $\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

 ${\mathcal C}$ monoidal category, ${\mathcal D}$ monoidal subcategory of ${\mathcal C}$

The center of *C* relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

• objects of $\mathcal{Z}(C, \mathcal{D})$:

$$X \in C \quad \text{with} \quad \sigma = \left\{ \sigma_{Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X \right\}_{Y \in \mathcal{D}}$$

• $(X, \sigma) \otimes (X', \sigma') = \left(X \otimes X', (\sigma \otimes \operatorname{id}_{X'})(\operatorname{id}_{X} \otimes \sigma') \right)$

 $C = \bigoplus_{g \in G} C_g \text{ spherical fusion } G \text{-graded category}$ The G-center of C is $\mathcal{Z}_G(C) = \mathcal{Z}(C, C_1)$ $\mathcal{Z}_G(C)$ is G-graded with $(\mathcal{Z}_G(C))_g = \{(X, \sigma) \in \mathcal{Z}_G(C) \mid X \in C_g\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)

 $\mathcal{Z}_G(C)$ has a G-action and a G-braiding

3-dimensional HQFTs with target X = K(G, 1)

Steps of the proof of $HTV_C \simeq HRT_{\mathcal{Z}_G(C)}$

via surgical TQFT techniques

Steps of the proof of $HTV_C \simeq HRT_{\mathcal{Z}_G(C)}$

▷ provides basis of $TV_C(S^1 \times S^1, f_\alpha)$

▶ via a description of $Z_G(C)$ by graded Hopf monad

If $\operatorname{HTV}_{\mathcal{C}}(M,h) = \operatorname{HRT}_{\mathcal{Z}_{G}(\mathcal{C})}(M,h)$ for closed *G*-manifolds (M,h)

via surgical TQFT techniques

Steps of the proof of $HTV_C \simeq HRT_{\mathcal{Z}_G(C)}$

3-dimensional HQFTs with target X = K(G, 1)

2- him HQFTS with target X are clamified lay Fulmins alg the 2-group of X graded key the 2-group of X $(H^{3}(x), \mathbb{R}^{*}) \cong H^{3}(\mathcal{C}, \mathbb{R}^{*})$ · X aylenial , TO= HTV F- und O [C=71(Y) . X mt chinal? $\pi_2(\chi) = 0$ Λ: (3)-) \$ e: A→ b* k: Ch) A 4 Gryle drepk