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A n-dim HQFT with target X is a symmetric monoidal functor
7: X-Cob, — Vecty J

Data:
f

@ k-vector spaces T( - X )

9, M
I x| w(0-M, ) = t(0-M, hy)

&

@ k-linearmaps 7
J_-M

@ isomorphisms T((Z, f) LI (¥, f’)) ~7(%, f) @ (X, f')

@ anisomorphism 7(0) ~k

Axioms: compatibilities with o, 11, and the symmetries
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A n-dim HQFT with target X is a symmetric monoidal functor |

7: X-Cob, — Vecty

Basic properties:
@ X ={pt} w» TQFT

@ M closed oriented n-manifold, h € [M, X]
7(M, h) € Endi(7(0)) ~ k is a numerical invariant of h

@ 7(X, f) is finite-dimensional and (%, f)* ~ v(-X, f)

@ 7 induces finite-dimensional representation of

MCG(Z, f) = {(]5 2> — ) o.p. diffeo ’ fo = f}/isotopy

@ X-Cob, only depends (up to equivalence) on the n-homotopy
type of X
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@ finite-dimensional representations of 71 (X)
© finite-dimensional flat vector bundles over X
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Rk: HQFTs may be seen as higher-dimensional generalizations of
finite-dimensional flat vector bundles
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Cohomological HQFTs

0 H'(X,k*) ~» n-dim HQFT 7% with target X

7% is characterized by :

@ M closed oriented n-manifold, h € [M, X]

(M, h) = ¢h*(6), [M]) € k |

where [M] € Hy(M, Z) is the fundamental class of M

@ Y closed oriented (n — 1)-manifold, f: ¥ — X

(%, f) is one-dimensional |

Rk: ¥ can be explicitly defined using singular chains representing
the fundamental classes of ~ and M
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The case of aspherical targets
From now, assume that X is aspherical (i.e., 7j(X) = 0 for i > 2)

~ XisaK(G,1)-space with G = m1(X)

(Turaev, 2000)
2-dim HQFTs with target X & G-graded Frobenius algebras
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(Sozer, 2019)
Classification of 2-dim extended HQFTs with target X

h
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3-dimensional TQFTs

presentation of M®> + algebraic data ~s  3-dim TQFT J

e Turaev-Viro (92), Barret-Westburry (96)

triangulation@ + Cspherical fusion ., TV,
category

¢ Reshetikhin-Turaev (91)

surgery @ + B modularfusion . RTg
o> category

e Miiger (03): Z(C) modular fusion category ~» RTz(q)

Theorem (Turaev-V. & Balsam-Kirillov, 2010)
TV¢ and RTz () are isomorphic TQFTs
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3-dimensional HQFTs with target X = K(G, 1)

presentation of M® +  algebraic data ~s  3-dim HQFT J

e Turaev-V. (2012)
i i C spherical fusion
triangulation @ *  G-graded category HTV¢
o Turaev-V. (2014)
$ modular fusion
surgery @, *  G-graded category > HRT3
¢ Gelaki-Naidu-Nikshych (2009):
G-center Zg(C) modular fusion G-graded ~ ~» HRTz,(c)

Theorem (Turaev-V., 2019)
HTVc and HRT 7 (¢) are isomorphic HQFTs
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State sum HQFT with target X = K(G, 1)

C= @gee Cg spherical fusion G-graded category
M closed oriented 3-manifold, h € [M, X]

Pick a triangulation of M and g € h with g(vertices) = % € X
e oriented edge ~» g(e)loopin X ~» [g(e)] e m1(X,*) =G

c= G-coloring of the edges : ce € C[y(e) Simple object

) k
> |

HTVc(M, h) = ' [1_[ dimq(ce)] ctri( ®@a |A]) €k

(o]

j

i k .
I m n‘ 6j-symbol

Example: G-vect! « 6¢€ H}Y(G,k") = H3(X,k*) > 7
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HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category ~» TV,
'=graduator of C (= largest group making C faithfully graded)
C spherical fusion I'-graded category ~» HTV,

TVe(X) = € HTVe(S,f) and TV(M) = ) HTVc(M, h)
fe[=,Br] he[M,Br]

G- vect! spherical fusion category

. 3 *
Example: 6 € H(G,k") ~ | whose graduator is G

TVG-vectﬁ(M) - Z HTVG-vectﬁ(M’ h) = Z TQ(M’ h)
he[M,BG] he[M,BG]

~  DWgy(M Z<h ). [MD)
h m1(M)—-G



3-dimensional HQFTs with target X = K(G, 1)

presentation of M®> + algebraic data ~>  3-dim HQFT J

e Turaev-V. (2012)

, . C spherical fusion
trlangulatlon@ *  G-graded category ™ HTV¢

o Turaev-V. (2014)

B modular fusion
surgery C/\_}r_},, *  G-graded category ™’ HRTs
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Modular fusion graded categories

$= modular fusion G-graded category:
e B= @gee By is spherical fusion G-graded
@ B has an action ¢: G — Autg(B) such that ¢4(Br) C B
@ B has a G-braiding: for X € By and Y € By,
TX,Y: X®Y — tpg(Y) ®X
@ the S-matrix of fusion category B4 is invertible

ghg

Invariant Ig of B-colored framed oriented G-links in S
(L,f: m(L) —» G)
whose longitudes are sent to 1 by f

A

=Tyy
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Surgical HQFT with target X = K(G, 1)

B = @Q€G B4 modular fusion G-graded category

M closed oriented 3-manifold, h € [M, X]

Present M by surgery along a framed link L = L{ U---U L,
Let f: m1(L) — Ginduced by S\ L < Mand h

Let gi € G be the color of a point in each component L; of a
diagram of L

wles | D

ooy %

Any V = (Vq,---,Vp) € By, X--- X By, makes (L, f) B-colored

HRTg(M,h) = (ﬁ dimq(v,-)] T5(L.1,V)

V,Visimple \i=1




3-dimensional HQFTs with target X = K(G, 1)

presentation of M® +  algebraic data ~s  3-dim HQFT J

e Turaev-V. (2012)
i i C spherical fusion
triangulation @ *  G-graded category HTV¢
o Turaev-V. (2014)
$ modular fusion
surgery @, *  G-graded category > HRT3
¢ Gelaki-Naidu-Nikshych (2009):
G-center Zg(C) modular fusion G-graded ~ ~» HRTz,(c)

Theorem (Turaev-V., 2019)
HTVc and HRT 7 (¢) are isomorphic HQFTs
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The graded center

C monoidal category, D monoidal subcategory of C
The center of C relative to D is the monoidal category Z(C, D):
@ objects of Z(C,D):

X eC with 0':{0'y: X®YiY®X}Y€D

o (X.0)®(X.0") =(X®X,(r®idx)(idx ® "))

C= @geG Cg spherical fusion G-graded category
The G-center of Cis Zg(C) = Z(C,C1)
Zs(C) is G-graded with (zG(c))g ={(X.0) € Za(C)| X € Cy)

Theorem (Gelaki-Naidu-Nikshych, 2009)

Zs(C) has a G-action and a G-braiding
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Steps of the proof of HTV¢ ~ HRTz,(¢)

"] Extend HTV¢ and HRT 7, (¢) to graph HQFTs

> provides basis of TV¢(S' x S, f,)

2] HTV (X, f) = HRTz,¢)(X, f) for G-surfaces (X, f)

> via a description of Z(C) by graded Hopf monad

3] HTV (M, h) = HRT 7, (¢)(M, h) for closed G-manifolds (M, h)

> via surgical TQFT techniques
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presentation of M® +  algebraic data ~s  3-dim HQFT J

e Turaev-V. (2012)
i i C spherical fusion
triangulation @ *  G-graded category HTV¢
o Turaev-V. (2014)
$ modular fusion
surgery @, *  G-graded category > HRT3
¢ Gelaki-Naidu-Nikshych (2009):
G-center Zg(C) modular fusion G-graded ~ ~» HRTz,(c)

Theorem (Turaev-V., 2019)
HTVc and HRT 7 (¢) are isomorphic HQFTs
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