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Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target
topological space X (with base point ∗)

The category X - Cobn is a symmetric monoidal category

an object is a pair (Σ, f)∣∣∣∣∣∣ Σ closed oriented pointed (n − 1)-manifold
f : (Σ,Σ•)→ (X , ∗) pointed map

a morphism f : (Σ1, f1)→ (Σ2, f2) is equiv. class of (M, f)∣∣∣∣∣∣ M an oriented n-cobordism Σ1 → Σ2

h an homotopy class M → X with h|Σi = fi

(M, f) ∼ (M′, f ′) if ∃ o.p. diffeo φ : M → M′ such that h′φ = h

◦ = gluing ⊗ = q 1 = (∅, ∅ → X)
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Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

τ : X - Cobn → Vectk

Data:

k-vector spaces τ
(

∑
f−→ X

)

k-linear maps τ

 M

∂−M

∂+M

h−→ X

 : τ(∂−M, h−)→ τ(∂+M, h+)

isomorphisms τ
(
(Σ, f) q (Σ′, f ′)

)
' τ(Σ, f) ⊗k τ(Σ′, f ′)

an isomorphism τ(∅) ' k

Axioms: compatibilities with ◦, q, and the symmetries
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Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

τ : X - Cobn → Vectk

Basic properties:

X = {pt}  TQFT

M closed oriented n-manifold, h ∈ [M,X ]
τ(M, h) ∈ Endk(τ(∅)) ' k is a numerical invariant of h

τ(Σ, f) is finite-dimensional and τ(Σ, f)∗ ' τ(−Σ, f)

τ induces finite-dimensional representation of
MCG(Σ, f) =

{
φ : Σ→ Σ o.p. diffeo

∣∣∣ fφ = f
}
/isotopy

X - Cobn only depends (up to equivalence) on the n-homotopy
type of X
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HQFTs of dimension 1

There are bijective correspondences between:
1 1-dimensional HQFTs with target X
2 finite-dimensional representations of π1(X)

3 finite-dimensional flat vector bundles over X

Rk: HQFTs may be seen as higher-dimensional generalizations of
finite-dimensional flat vector bundles
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Cohomological HQFTs

θ ∈ Hn(X , k∗)  n-dim HQFT τθ with target X

τθ is characterized by :

M closed oriented n-manifold, h ∈ [M,X ]

τθ(M, h) = 〈h∗(θ), [M]〉 ∈ k

where [M] ∈ Hn(M,Z) is the fundamental class of M

Σ closed oriented (n − 1)-manifold, f : Σ→ X

τθ(Σ, f) is one-dimensional

Rk: τθ can be explicitly defined using singular chains representing
the fundamental classes of Σ and M
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The case of aspherical targets

From now, assume that X is aspherical (i.e., πi(X) = 0 for i ≥ 2)

 X is a K(G, 1)-space with G = π1(X)

(Turaev, 2000)

2-dim HQFTs with target X ⇔ G-graded Frobenius algebras

(Sozer, 2019)

Classification of 2-dim extended HQFTs with target X
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3-dimensional TQFTs

presentation of M3 + algebraic data  3-dim TQFT

• Turaev-Viro (92), Barret-Westburry (96)

triangulation + C spherical fusion
category

 TVC

• Reshetikhin-Turaev (91)

surgery + B modular fusion
category

 RTB

• Müger (03): Z(C) modular fusion category  RTZ(C)

Theorem (Turaev-V. & Balsam-Kirillov, 2010)

TVC and RTZ(C) are isomorphic TQFTs
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3-dimensional HQFTs with target X = K(G, 1)

presentation of M3 + algebraic data  3-dim HQFT

• Turaev-V. (2012)

triangulation +
C spherical fusion

G-graded category  HTVC

• Turaev-V. (2014)

surgery +
B modular fusion

G-graded category  HRTB

• Gelaki-Naidu-Nikshych (2009):
G-center ZG(C) modular fusion G-graded  HRTZG(C)

Theorem (Turaev-V., 2019)

HTVC and HRTZG(C) are isomorphic HQFTs
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State sum HQFT with target X = K(G, 1)

C =
⊕

g∈G Cg spherical fusion G-graded category

M closed oriented 3-manifold, h ∈ [M,X ]

Pick a triangulation of M and g ∈ h with g(vertices) = ∗ ∈ X

e oriented edge  g(e) loop in X  [g(e)] ∈ π1(X , ∗) = G

c= G-coloring of the edges : ce ∈ C[g(e)] simple object

HTVC(M, h) =
∑

c

∏
e

coef(c) ctrf ( ⊗∆ |∆|) ∈ k

Pachner moves
Example: G- vectθ

k
f θ ∈ H3(G, k∗) � H3(X , k∗)  τθ

HTVG- vectθ
k
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HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category  TVC
Γ=graduator of C (= largest group making C faithfully graded)

C spherical fusion Γ-graded category  HTVC

TVC(Σ) =
⊕

f∈[Σ,BΓ]

HTVC(Σ, f) and TVC(M) =
∑

h∈[M,BΓ]

HTVC(M, h)

Example: θ ∈ H3(G, k∗)  
∣∣∣∣∣∣ G- vectθ

k
spherical fusion category

whose graduator is G

TVG- vectθ
k
(M) =

∑
h∈[M,BG]

HTVG- vectθ
k
(M, h) =

∑
h∈[M,BG]

τθ(M, h)

 DWG,θ(M) =
∑

h : π1(M)→G

〈h∗(θ), [M]〉
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3-dimensional HQFTs with target X = K(G, 1)

presentation of M3 + algebraic data  3-dim HQFT

• Turaev-V. (2012)

triangulation +
C spherical fusion

G-graded category  HTVC

• Turaev-V. (2014)

surgery +
B modular fusion

G-graded category  HRTB

• Gelaki-Naidu-Nikshych (2009):
G-center ZG(C) modular fusion G-graded  HRTZG(C)

Theorem (Turaev-V., 2019)

HTVC and HRTZG(C) are isomorphic HQFTs



Modular fusion graded categories

B= modular fusion G-graded category:

B =
⊕

g∈G Bg is spherical fusion G-graded

B has an action ϕ : G → Aut⊗(B) such that ϕg(Bh) ⊂ Bghg−1

B has a G-braiding: for X ∈ Bg and Y ∈ Bh ,

τX ,Y : X ⊗ Y → ϕg(Y) ⊗ X

the S-matrix of fusion category B1 is invertible

 
Invariant IB of B-colored framed oriented G-links in S3

(L , f : π1(L)→ G)

whose longitudes are sent to 1 by f
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Surgical HQFT with target X = K(G, 1)

B =
⊕

g∈G Bg modular fusion G-graded category

M closed oriented 3-manifold, h ∈ [M,X ]

Present M by surgery along a framed link L = L1 ∪ · · · ∪ Ln

Let f : π1(L)→ G induced by S3 \ L ↪→ M and h

Let gi ∈ G be the color of a point in each component Li of a
diagram of L

L1

Ln

Any V = (V1, · · · ,Vn) ∈ Bg1 × · · · × Bgn makes (L , f) B-colored

HRTB(M, h) =
∑

V ,Vi simple

 n∏
i=1

dimq(Vi)

 IB(L , f ,V)
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HTVC and HRTZG(C) are isomorphic HQFTs



The graded center

C monoidal category, D monoidal subcategory of C
The center of C relative to D is the monoidal category Z(C,D):

objects of Z(C,D):

X ∈ C such that X ⊗ Y = Y ⊗ X ∀Y ∈ D
(X , σ) ⊗ (X ′, σ′) =

(
X ⊗ X ′, (σ ⊗ idX ′)(idX ⊗ σ′)

)
C =

⊕
g∈G Cg spherical fusion G-graded category

The G-center of C is ZG(C) = Z(C,C1)

ZG(C) is G-graded with
(
ZG(C)

)
g

=
{
(X , σ) ∈ ZG(C)

∣∣∣ X ∈ Cg

}
Theorem (Gelaki-Naidu-Nikshych, 2009)

ZG(C) has a G-action and a G-braiding
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3-dimensional HQFTs with target X = K(G, 1)

presentation of M3 + algebraic data  3-dim HQFT

• Turaev-V. (2012)

triangulation +
C spherical fusion

G-graded category  HTVC

• Turaev-V. (2014)

surgery +
B modular fusion

G-graded category  HRTB

• Gelaki-Naidu-Nikshych (2009):
G-center ZG(C) modular fusion G-graded  HRTZG(C)

Theorem (Turaev-V., 2019)

HTVC and HRTZG(C) are isomorphic HQFTs



Steps of the proof of HTVC ' HRTZG(C)

1 Extend HTVC and HRTZG(C) to graph HQFTs

. provides basis of TVC(S1 × S1, fα)

2 HTVC(Σ, f) � HRTZG(C)(Σ, f) for G-surfaces (Σ, f)

. via a description of ZG(C) by graded Hopf monad

3 HTVC(M, h) = HRTZG(C)(M, h) for closed G-manifolds (M, h)

. via surgical TQFT techniques
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