Homotopy Quantum Field Theories

Alexis Virelizier
(University of Lille)

Topological Quantum Field Theory Seminar Técnico Lisboa - September 11, 2020

Homotopy Quantum Field Theories

Alexis Virelizier
 (University of Lille)

Joint work with Vladimir Turaev
Topological Quantum Field Theory Seminar Técnico Lisboa - September 11, 2020

Homotopy Quantum Field Theories

Alexis Virelizier
(University of Lille)

Joint work with Vladimir Turaev
Topological Quantum Field Theory Seminar Técnico Lisboa - September 11, 2020

Dedicated to the memory of Vaughan Jones

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X

The category X - Cobn

- an object is a pair (Σ, f)
Σ closed oriented pointed ($n-1$)-manifold $f:\left(\Sigma, \Sigma_{0}\right) \rightarrow(X, *)$ pointed map
- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f) M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$ h an homotopy class $M \rightarrow X$ with $h_{i \Sigma_{i}}=f_{i}$

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category X - Cob $_{n}$

- an object is a pair (Σ, f)
> Σ closed oriented pointed $(n-1)$-manifold $f:\left(\Sigma, \Sigma_{\bullet}\right) \rightarrow(X, *)$ pointed map
 M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$ h an homotopy class $M \rightarrow X$ with $h_{\mid \Sigma_{i}}=f_{i}$

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category $X-\operatorname{Cob}_{n}$ is a symmetric monoidal category

- an object is a pair (Σ, f)
Σ closed oriented pointed ($n-1$)-manifold
$f:\left(\Sigma, \Sigma_{\mathbf{0}}\right) \rightarrow(X, *)$ pointed map
- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f) M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$ h an homotopy class $M \rightarrow X$ with $h_{\mid \Sigma_{i}}=f_{i}$

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category $X-\operatorname{Cob}_{n}$ is a symmetric monoidal category

- an object is a pair (Σ, f)
Σ closed oriented pointed ($n-1$)-manifold
$f:\left(\Sigma, \Sigma_{\mathbf{0}}\right) \rightarrow(X, *)$ pointed map
- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f)

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category $X-\operatorname{Cob}_{n}$ is a symmetric monoidal category

- an object is a pair (Σ, f)
Σ closed oriented pointed ($n-1$)-manifold
$f:\left(\Sigma, \Sigma_{\mathbf{0}}\right) \rightarrow(X, *)$ pointed map
- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f)
M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$
h an homotopy class $M \rightarrow X$ with $h_{\mid \Sigma_{i}}=f_{i}$
$(M, f) \sim\left(M^{\prime}, f^{\prime}\right)$ if \exists o.p. diffeo $\phi: M \rightarrow M^{\prime}$ such that $h^{\prime} \phi=h$
- $\circ=$ gluing

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category $X-\operatorname{Cob}_{n}$ is a sy

Σ closed oriented pointed ($n-1$)-manifold
$f:\left(\Sigma, \Sigma_{0}\right) \rightarrow(X, *)$ pointed map

- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f)
M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$
h an homotopy class $M \rightarrow X$ with $h_{\mid \Sigma_{i}}=f_{i}$
$(M, f) \sim\left(M^{\prime}, f^{\prime}\right)$ if \exists o.p. diffeo $\phi: M \rightarrow M^{\prime}$ such that $h^{\prime} \phi=h$
- $\circ=$ gluing $\quad \otimes=\amalg \quad \mathbb{1}=(\emptyset, \emptyset \rightarrow X)$

Homotopy quantum field theories (HQFTs)

Idea: TQFTs for manifolds endowed with maps to a fixed target topological space X (with base point *)

The category $X-\operatorname{Cob}_{n}$ is a symmetric monoidal category

- an object is a pair (Σ, f)
Σ closed oriented pointed ($n-1$)-manifold
$f:\left(\Sigma, \Sigma_{\mathbf{0}}\right) \rightarrow(X, *)$ pointed map
- a morphism $f:\left(\Sigma_{1}, f_{1}\right) \rightarrow\left(\Sigma_{2}, f_{2}\right)$ is equiv. class of (M, f)
M an oriented n-cobordism $\Sigma_{1} \rightarrow \Sigma_{2}$
h an homotopy class $M \rightarrow X$ with $h_{\mid \Sigma_{i}}=f_{i}$
$(M, f) \sim\left(M^{\prime}, f^{\prime}\right)$ if \exists o.p. diffeo $\phi: M \rightarrow M^{\prime}$ such that $h^{\prime} \phi=h$
- $\circ=$ gluing $\quad \otimes=\amalg \quad \mathbb{1}=(\emptyset, \emptyset \rightarrow X)$

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{\mathbb{k}}
$$

Data:

$$
\tau\left(\partial_{-} M, h_{-}\right) \rightarrow \tau\left(\partial_{+} M, h_{+}\right)
$$

- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathfrak{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomornhism $\tau(\emptyset) \sim \mathbb{k}$

Axioms: compatibilities with \circ, \amalg, and the symmetries

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{\mathbb{k}}
$$

Data:

- \mathbb{k}-vector spaces $\tau\left(\sigma \sum \stackrel{f}{\rightarrow} X\right)$
- \mathbb{k}-linear maps

- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomornhism $\tau(\emptyset) \simeq \mathbb{k}$

Axioms: compatibilities with \circ, \amalg, and the symmetries

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Data:

- \mathbb{k}-vector spaces $\tau\left(\sigma \sum \stackrel{f}{\rightarrow} X\right)$
- \mathbb{k}-linear maps $\tau(\overbrace{\partial_{-} M}^{\Theta_{\square}^{\partial_{+} M}} \xrightarrow{h} X): \tau\left(\partial_{-} M, h_{-}\right) \rightarrow \tau\left(\partial_{+} M, h_{+}\right)$
- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomorphism $\tau(\emptyset) \simeq \mathbb{K}$

Axioms: compatibilities with \circ, \amalg, and the symmetries

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Data:

- \mathbb{k}-vector spaces $\tau\left(ब \sum \stackrel{f}{\rightarrow} X\right)$
- \mathbb{k}-linear maps $\tau(\overbrace{\partial_{-} M}^{\overbrace{-}^{\partial_{+} M}} \xrightarrow{h} X): \tau\left(\partial_{-} M, h_{-}\right) \rightarrow \tau\left(\partial_{+} M, h_{+}\right)$
- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomorphism

Axioms: compatibilities with \circ, \amalg, and the symmetries

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Data:

- \mathbb{k}-vector spaces $\tau\left(ब \sum \stackrel{f}{\rightarrow} X\right)$
- \mathbb{k}-linear maps $\tau(\overbrace{\partial_{-} M}^{\Theta_{\square}} \xrightarrow{\partial_{+} M} X): \tau\left(\partial_{-} M, h_{-}\right) \rightarrow \tau\left(\partial_{+} M, h_{+}\right)$
- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomorphism $\tau(\emptyset) \simeq \mathbb{k}$

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Data:

- \mathbb{k}-vector spaces $\tau\left(\otimes \sum \stackrel{f}{\rightarrow} X\right)$
- \mathbb{k}-linear maps $\tau(\overbrace{\partial_{-} M}^{\Theta_{0}} \xrightarrow{\partial_{+} M} X): \tau\left(\partial_{-} M, h_{-}\right) \rightarrow \tau\left(\partial_{+} M, h_{+}\right)$
- isomorphisms $\tau\left((\Sigma, f) \amalg\left(\Sigma^{\prime}, f^{\prime}\right)\right) \simeq \tau(\Sigma, f) \otimes_{\mathbb{k}} \tau\left(\Sigma^{\prime}, f^{\prime}\right)$
- an isomorphism $\tau(\emptyset) \simeq \mathbb{k}$

Axioms: compatibilities with \circ, \amalg, and the symmetries

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Basic properties:

- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of

$$
\operatorname{MCG}(\Sigma, f)=\{\phi: \Sigma \rightarrow \Sigma \text { o.p. diffeo } \mid f \phi=f\}
$$

- X - Cob $_{n}$ only depends (up to equivalence) on the n-homotopy type of X

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Basic properties:

- $X=\{\mathrm{pt}\} \leadsto$ TQFT
- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $\operatorname{MCG}(\Sigma, f)=\{\phi: \Sigma \rightarrow \Sigma$ o.p. diffeo $\mid f \phi=f\}$
- X - Cob $_{n}$ only depends (up to equivalence) on the n-homotopy type of X

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Basic properties:

- $X=\{p t\} \leadsto$ TQFT
- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of $\operatorname{MCG}(\Sigma, f)=\{\phi: \Sigma \rightarrow \Sigma$ o.p. diffeo $\mid f \phi=f\}$ fisotopy
- X-Cob ${ }_{n}$ only depends (up to equivalence) on the n-homotopy type of X

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{\underline{k}}
$$

Basic properties:

- $X=\{p t\} \leadsto$ TQFT
- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of

- X-Cobn only depends (up to equivalence) on the n-homotopy type of X

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{\underline{k}}
$$

Basic properties:

- $X=\{p t\} \leadsto$ TQFT
- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of

$$
\operatorname{MCG}(\Sigma, f)=\{\phi: \Sigma \rightarrow \Sigma \text { o.p. diffeo } \mid f \phi=f\}_{/ \text {isotopy }}
$$

- X-Cob ${ }_{n}$ only depends (up to equivalence) on the n-homotopy type of X

Homotopy quantum field theories (HQFTs)

A n-dim HQFT with target X is a symmetric monoidal functor

$$
\tau: X-\operatorname{Cob}_{n} \rightarrow \text { Vect }_{k}
$$

Basic properties:

- $X=\{p t\} \leadsto$ TQFT
- M closed oriented n-manifold, $h \in[M, X]$
$\tau(M, h) \in \operatorname{End}_{\mathbb{k}}(\tau(\emptyset)) \simeq \mathbb{k}$ is a numerical invariant of h
- $\tau(\Sigma, f)$ is finite-dimensional and $\tau(\Sigma, f)^{*} \simeq \tau(-\Sigma, f)$
- τ induces finite-dimensional representation of

$$
\operatorname{MCG}(\Sigma, f)=\{\phi: \Sigma \rightarrow \Sigma \text { o.p. diffeo } \mid f \phi=f\}_{/ \text {isotopy }}
$$

- X - Cob_{n} only depends (up to equivalence) on the n-homotopy type of X

There are bijective correspondences between:

(1) 1-dimensional HQFTs with target X
(2) finite-dimensional representations of $\pi_{1}(X)$
(3) finite-dimensional flat vector bundles over X

Rk: HQFTs may be seen as higher-dimensional generalizations of finite-dimensional flat vector bundles

There are bijective correspondences between:

(1) 1-dimensional HQFTs with target X
(2) finite-dimensional representations of $\pi_{1}(X)$
(3) finite-dimensional flat vector bundles over X

Rk: HQFTs may be seen as higher-dimensional generalizations of finite-dimensional flat vector bundles

There are bijective correspondences between:

(1) 1-dimensional HQFTs with target X
(2) finite-dimensional representations of $\pi_{1}(X)$
(3) finite-dimensional flat vector bundles over X

Rk: HQFTs may be seen as higher-dimensional generalizations of finite-dimensional flat vector bundles

There are bijective correspondences between:
(1) 1-dimensional HQFTs with target X
(2) finite-dimensional representations of $\pi_{1}(X)$
(3) finite-dimensional flat vector bundles over X

Rk: HQFTs may be seen as higher-dimensional generalizations of finite-dimensional flat vector bundles

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{k}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{k}
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$

$$
\tau^{\theta}(\Sigma, f) \text { is one-dimensional }
$$

Rk: τ^{θ} can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{K}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\left.\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{k}\right]
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$

$$
\tau^{\theta}(\Sigma, f) \text { is one-dimensional }
$$

Rk: τ^{θ} can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{k}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M
- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$ $\tau^{\theta}(\Sigma, f)$ is one-dimensional
$\mathbf{R k}: \tau^{\theta}$ can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{R}^{*}\right) \rightsquigarrow n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{K}
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$ $\tau^{\theta}(\Sigma, f)$ is one-dimensional
$\mathbf{R k}: \tau^{\theta}$ can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{k}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{K}
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$
$\tau^{\theta}(\Sigma, f)$ is one-dimensional

Rk: τ^{θ} can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{k}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{K}
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$

$$
\tau^{\theta}(\Sigma, f) \text { is one-dimensional }
$$

Rk: τ^{θ} can be explicitly defined using singular chains representing the fundamental classes of Σ and M

Cohomological HQFTs

$\theta \in H^{n}\left(X, \mathbb{k}^{*}\right) \leadsto n$-dim HQFT τ^{θ} with target X
τ^{θ} is characterized by :

- M closed oriented n-manifold, $h \in[M, X]$

$$
\tau^{\theta}(M, h)=\left\langle h^{*}(\theta),[M]\right\rangle \in \mathbb{k}
$$

where $[M] \in H_{n}(M, \mathbb{Z})$ is the fundamental class of M

- Σ closed oriented ($n-1$)-manifold, $f: \Sigma \rightarrow X$

$$
\tau^{\theta}(\Sigma, f) \text { is one-dimensional }
$$

$\mathbf{R k}: \tau^{\theta}$ can be explicitly defined using singular chains representing the fundamental classes of Σ and M

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_{i}(X)=0$ for $i \geq 2$)
$\leadsto X$ is a $K(G, 1)$-space with $G=\pi_{1}(X)$
(Turaev, 2000)
2-dim HQFTs with target $X \Leftrightarrow$ G-graded Frobenius algebras
(Sozer, 2019)
Classification of : 2-dim extended HQFTs with target X

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_{i}(X)=0$ for $i \geq 2$)
$\leadsto \quad X$ is a $K(G, 1)$-space with $G=\pi_{1}(X)$

(Turaev, 2000)

2-dim HQFTs with target $X \Leftrightarrow$ G-graded Frobenius algebras

(Sozer, 2019)

Classification of 2-dim extended HQFTs with target X

The case of aspherical targets

From now, assume that X is aspherical (i.e., $\pi_{i}(X)=0$ for $i \geq 2$)
$\leadsto \quad X$ is a $K(G, 1)$-space with $G=\pi_{1}(X)$
(Turaev, 2000)
2-dim HQFTs with target $X \Leftrightarrow$ G-graded Frobenius algebras

(Sozer, 2019)
Classification of :-dim extended HQFTs with target X

The case of aspherical targets
From now, assume that X is aspherical (ie., $\pi_{i}(X)=0$ for $i \geq 2$) $\leadsto \quad X$ is a $K(G, 1)$-space with $G=\pi_{1}(X)$
(Turaev, 2000)
2-dim HQFTs with target $X \Leftrightarrow$ G-graded Frobenius algebras

(Sozer, 2019)
Classification of 2-dim extended HEFTs with target X

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\rightsquigarrow 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)

- Reshetikhin-Turaev (91)

- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\leadsto \mathrm{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. \& Balsam-Kirillov, 2010)
TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)

- Reshetikhin-Turaev (91)

- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\rightsquigarrow \mathrm{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. \& Balsam-Kirillov, 2010) TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs

3-dimensional TQFTs

 presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT- Turaev-Viro (92), Barret-Westburry (96) triangulation $+\quad C$ spherical fusion
- Reshetikhin-Turaev (91)

\mathcal{B} modular fusion
category

- Müger (03):

Theorem (Turaev-V. \& Balsam-Kirillov, 2010)

 TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs
3-dimensional TQFTs

 presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT- Turaev-Viro (92), Barret-Westburry (96) triangulation $-\begin{aligned} & C \text { spherical fusion } \\ & \text { category }\end{aligned} \leadsto \mathrm{TV}_{C}$
- Reshetikhin-Turaev (91)

- Müger (03): $\mathcal{Z}(C)$ modular fusion category

Theorem (Turaev-V. \& Balsam-Kirillov, 2010)

 TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs
3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)
triangulation $-\begin{aligned} & C \text { spherical fusion } \\ & \text { category }\end{aligned} \leadsto \mathrm{TV}_{C}$
- Reshetikhin-Turaev (91)
surgery $+\underset{\text { category }}{\text { cos }}$
- Müger (03): $\mathbb{Z}(C)$ modular fusion category

Theorem (Turaev-V. \& Balsam-Kirillov, 2010) TV C_{C} and RT-C) are isomornhic TOFTs

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)
triangulation $+\begin{aligned} & C \text { spherical fusion } \\ & \text { category }\end{aligned} \leadsto \mathrm{TV}_{C}$
- Reshetikhin-Turaev (91)
surgery $+\mathcal{B}$ catedular fusion $\leadsto \mathrm{RT}_{\mathcal{B}}$
- Müger (03): $\mathcal{Z}(C)$ modular fusion category

Theorem (Turaev-V. \& Balsam-Kirillov, 2010)
TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)
triangulation $+\begin{aligned} & C \text { spherical fusion } \\ & \text { category }\end{aligned} \leadsto \mathrm{TV}_{C}$
- Reshetikhin-Turaev (91)

- Müger (03): $\mathcal{Z}(C)$ modular fusion category
\square TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)
triangulation $+\begin{aligned} & C \text { spherical fusion } \\ & \text { category }\end{aligned} \leadsto \mathrm{TV}_{C}$
- Reshetikhin-Turaev (91)

- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\leadsto \mathrm{RT}_{\mathcal{Z}(C)}$
\square TV_{C} and $\mathrm{RT}_{\mathcal{T}(\mathrm{C})}$ are isomorphic TQFTs

3-dimensional TQFTs

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim TQFT

- Turaev-Viro (92), Barret-Westburry (96)

$$
\text { triangulation } \nrightarrow \begin{aligned}
& C \text { spherical fusion } \\
& \text { category }
\end{aligned} \leadsto \mathrm{TV}_{C}
$$

- Reshetikhin-Turaev (91)
surgery $+\mathcal{B}$ modular fusion $\leadsto \leadsto \mathrm{RT}_{\mathcal{B}}$
- Müger (03): $\mathcal{Z}(C)$ modular fusion category $\leadsto \mathrm{RT}_{\mathcal{Z}(C)}$

Theorem (Turaev-V. \& Balsam-Kirillov, 2010)
TV_{C} and $\mathrm{RT}_{\mathcal{Z}(C)}$ are isomorphic TQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$ 3-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

+ G-graded category $\rightsquigarrow \operatorname{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\rightsquigarrow \operatorname{HRT}_{Z_{\Theta}(C)}$

Theorem (Turaev-V., 2019)

HTV_{C} and $\mathrm{HRT}_{\text {工 }_{G}(C)}$ are isomorphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded

Theorem (Turaev-V., 2019) HTV_{C} and $\mathrm{HRT}_{Z_{G}(C)}$ are isomorphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $+\begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned}$
- Turaev-V. (2014)

- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded

Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{-(C)}}$ are iso morphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $+\begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \leadsto \operatorname{HTV}_{C}$
- Turaev-V. (2014)

- Gelaki-Naidu-Nikshych (2009):

Theorem (Turaev-V., 2019)

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $\nrightarrow \begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \rightsquigarrow \operatorname{HTV}_{C}$
- Turaev-V. (2014)

$\quad \mathcal{B}$ modular fusion
$+\quad \mathrm{G}$-graded category
- Gelaki-Naidu-Nikshych (2009):

Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $\nrightarrow \begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \rightsquigarrow \operatorname{HTV}_{C}$
- Turaev-V. (2014)

$+\quad \underset{G}{\mathcal{B} \text { modular fusion }} \leadsto \leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $\nrightarrow \begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \leadsto \operatorname{HTV}_{C}$
- Turaev-V. (2014)

$+\quad \underset{G}{\mathcal{B} \text { modular fusion }} \leadsto \leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $\nrightarrow \begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \rightsquigarrow \operatorname{HTV}_{C}$
- Turaev-V. (2014)

$+\underset{G \text {-graded category }}{\mathcal{B} \text { modular fusion } \rightsquigarrow \mathrm{HRT}_{\mathcal{B}}, ~}$
- Gelaki-Naidu-Nikshych (2009):
G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\rightsquigarrow \operatorname{HRT}_{\mathcal{Z}_{G}(C)}$
HTV_{C} and $\mathrm{HRT}_{Z_{G}(C)}$ are isomorphic HQFTs

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

\mathcal{B} modular fusion
+ G-graded category $\leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\leadsto \operatorname{HRT}_{\mathcal{Z}_{G}(C)}$
Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{G}$

$$
\begin{aligned}
& \triangleright X \in C_{g} \text { and } Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h} \\
& \triangleright X \in C_{g} \text { and } Y \in C_{h} \text { with } g \neq h \Rightarrow \operatorname{Hom}_{C}(X, Y)=0
\end{aligned}
$$

- C is semisimple
- each C_{G} has finitely many simple objects

Example: G-vect $\mathbb{k}_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2-sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$

$$
\begin{aligned}
& \triangleright X \in C_{g} \text { and } Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h} \\
& \triangleright X \in C_{g} \text { and } Y \in C_{h} \text { with } g \neq h \Rightarrow \operatorname{Hom}_{C}(X, Y)=0
\end{aligned}
$$

- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect $\mathbb{k}_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$

- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect ${ }_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect ${ }_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:

$$
\triangleright X \in C_{g} \text { and } Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}
$$

- C is semisimple
- each C_{a} has finitely many simple objects

Example: G-vect t_{k}^{θ} with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
$\triangleright X \in C_{g}$ and $Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}$
$\triangleright X \in C_{g}$ and $Y \in C_{h}$ with $g \neq h \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y)=0$
- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect t_{k}^{θ} with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
$\triangleright X \in C_{g}$ and $Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}$
$\triangleright X \in C_{g}$ and $Y \in C_{h}$ with $g \neq h \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y)=0$
- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect ${ }_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
$\triangleright X \in C_{g}$ and $Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}$
$\triangleright X \in C_{g}$ and $Y \in C_{h}$ with $g \neq h \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y)=0$
- C is semisimple
- each C_{g} has finitely many simple objects

Example: G-vect ${ }_{\mathbb{k}}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
$\triangleright X \in C_{g}$ and $Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}$
$\triangleright X \in C_{g}$ and $Y \in C_{h}$ with $g \neq h \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y)=0$
- C is semisimple
- each C_{g} has finitely many simple objects

$$
\leadsto 6 j \text {-symbols }\left|\begin{array}{ccc}
i & j & k \\
l & m & n
\end{array}\right|=F_{C}(\underset{\sim n}{m}
$$

Example: G-vect ${ }_{k}^{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

Spherical fusion graded categories

$\mathcal{C}=$ spherical fusion G-graded category:

- C is \mathbb{k}-linear monoidal
- each object X has a 2 -sided dual X^{*} (+ sphericity condition)
- C has a G-grading $C=\bigoplus_{g \in G} C_{g}$:
$\triangleright X \in C_{g}$ and $Y \in C_{h} \Rightarrow X \otimes Y \in C_{g h}$
$\triangleright X \in C_{g}$ and $Y \in C_{h}$ with $g \neq h \Rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y)=0$
- C is semisimple
- each C_{g} has finitely many simple objects

$$
\leadsto 6 j \text {-symbols }\left|\begin{array}{ccc}
i & j & k \\
l & m & n
\end{array}\right|=F_{C}(\underset{\sim n}{m}
$$

Example: G-vect ${\underset{k}{k}}_{\theta}$ with $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

State sum HQFT with target $X=K(G, 1)$

$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with $g($ vertices $)=* \in X$
e oriented edge $\rightsquigarrow g(e)$ loop in $X \rightsquigarrow[g(e)] \in \pi_{1}(X, *)=G$
$c=$ G-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c} \quad \operatorname{coef}(c) \quad \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$
e oriented edge $\leadsto g(e)$ loop in $X \leadsto \quad[g(e)] \in \pi_{1}(X, *)=C$
$c=$ G-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with $g($ vertices $)=* \in X$ e oriented edge $\leadsto s g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=$ G-coloring of the edges : $c_{\theta} \in C_{[q(e)]}$ simple object $4 \rightarrow$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with $g($ vertices $)=* \in X$
e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$

$c=$ G-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$
e oriented edge $\rightsquigarrow g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$

$\mathrm{C}=\mathrm{G}$-coloring of the edges : $\mathrm{c}_{\mathrm{e}} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge
c= G-coloring of the edges

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\rightsquigarrow g(e)$ loop in X $\rightsquigarrow[g(e)] \in \pi_{1}(X, *)=G$
$c=$ G-coloring of the edges

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=$ G-coloring of the edges : $C_{e} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=$ G-coloring of the edges

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object \Leftrightarrow

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\stackrel{m}{m} \overbrace{n}^{k} \leadsto|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTv}_{C}(M, h)=\sum \quad \operatorname{coef}(c) \quad \operatorname{ctr}_{(}\left(\otimes_{\Delta}|\Delta|\right)
$$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\overbrace{n}^{m} \overbrace{1}^{k} n \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum \quad \operatorname{coef}(c) \quad \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$ $c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\underbrace{m}_{n} \overbrace{1}^{k} m \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c} \quad \operatorname{coef}(c) \quad \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\overbrace{n}^{m} \overbrace{1}^{k} n \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c} \quad \operatorname{coef}(c) \quad \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Pachner moves

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\sim_{n}^{m} \overbrace{1}^{k} n \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(c_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Pachner moves

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\stackrel{m}{m} \overbrace{1}^{k} n \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
i & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(c_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Example: G-vect ${ }^{\theta}$ \& $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(c_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Example: G - vect t_{k}^{θ} on $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right)$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\sim_{n}^{m} \overbrace{1}^{k} n \rightarrow|\Delta|=\left|\begin{array}{lll}
i & j & k \\
1 & m & n
\end{array}\right| \quad 6 j \text {-symbol }
$$

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(c_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Example: G - vect $\underline{k}_{\underline{k}}$ in $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \cong H^{3}\left(X, \mathbb{k}^{*}\right)$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\operatorname{HTV}_{\mathcal{C}}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(c_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{K}
$$

Example: G - vect $\mathbb{k}_{\underline{k}}^{\theta}$ in $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \cong H^{3}\left(X, \mathbb{k}^{*}\right) \rightsquigarrow \tau^{\theta}$

State sum HQFT with target $X=K(G, 1)$

$\mathcal{C}=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Pick a triangulation of M and $g \in h$ with g (vertices) $=* \in X$ e oriented edge $\leadsto g(e)$ loop in $X \leadsto[g(e)] \in \pi_{1}(X, *)=G$
$c=\mathbf{G}$-coloring of the edges : $c_{e} \in C_{[g(e)]}$ simple object

$$
\operatorname{HTV}_{C}(M, h)=\sum_{c}\left(\prod_{e} \operatorname{dim}_{q}\left(C_{e}\right)\right) \operatorname{ctr}_{f}\left(\otimes_{\Delta}|\Delta|\right) \in \mathbb{k}
$$

Example: G - vect $\mathbb{k}_{\underline{k}}^{\theta}$ in $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \cong H^{3}\left(X, \mathbb{k}^{*}\right) \rightsquigarrow \tau^{\theta}$

$$
\operatorname{HTV}_{G-\operatorname{vect}_{k}^{\theta}} \cong \tau^{\theta}
$$

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category

Example: $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \rightsquigarrow$
G-vect ${ }^{\theta}$ spherical fusion category whose graduator is G

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion 「-graded category

Example: $\theta \in H^{3}\left(G, \mathbb{R}^{*}\right) \leadsto$
G- vect ${ }^{\theta}$ spherical fusion category
whose graduator is G

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion 「-graded category

G-vect ${ }^{\theta}$ spherical fusion category whose graduator is G

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
\mathcal{C} spherical fusion Γ-graded category

G-vect ${ }_{k}^{\theta}$ spherical fusion category whose graduator is G

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \mathrm{HTV}_{C}$

G-vect ${ }_{k}^{\theta}$ spherical fusion category whose graduator is G

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \mathrm{HTV}_{C}$

$$
\operatorname{TV}_{C}(\Sigma)=\bigoplus_{f \in[\Sigma, B \Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \quad \text { and } \quad \operatorname{TV}_{C}(M)=\sum_{h \in[M, B \Gamma]} \operatorname{HTV}_{C}(M, h)
$$

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \operatorname{HTV}_{C}$

$$
\operatorname{TV}_{C}(\Sigma)=\bigoplus_{f \in[\Sigma, B \Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \quad \text { and } \quad \operatorname{TV}_{C}(M)=\sum_{h \in[M, B \Gamma]} \operatorname{HTV}_{C}(M, h)
$$

Example: $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \leadsto$
G-vect ${ }_{\mathbb{k}}^{\theta}$ spherical fusion category whose graduator is G

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \mathrm{HTV}_{C}$

$$
\operatorname{TV}_{C}(\Sigma)=\bigoplus_{f \in[\Sigma, B \Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \quad \text { and } \quad \operatorname{TV}_{C}(M)=\sum_{h \in[M, B \Gamma]} \operatorname{HTV}_{C}(M, h)
$$

Example: $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \leadsto \mid \quad G$-vect $\mathbb{k}_{\mathbb{k}}^{\theta}$ spherical fusion category whose graduator is G

$$
\operatorname{TV}_{G-\operatorname{vect}_{\underline{K}}^{\theta}}(M)=\sum_{h \in[M, B G]} \operatorname{HTV}_{G-\operatorname{vect}_{\underline{E}}^{\theta}}(M, h)
$$

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \mathrm{HTV}_{C}$

$$
\operatorname{TV}_{C}(\Sigma)=\bigoplus_{f \in[\Sigma, B \Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \quad \text { and } \quad \operatorname{TV}_{C}(M)=\sum_{h \in[M, B \Gamma]} \operatorname{HTV}_{C}(M, h)
$$

Example: $\theta \in H^{3}\left(G, \mathbb{k}^{*}\right) \leadsto \mid \quad G$-vect $\mathbb{k}_{\mathbb{k}}^{\theta}$ spherical fusion category whose graduator is G

$$
\operatorname{TV}_{G-\operatorname{vec}_{\underline{k}}^{\theta}}(M)=\sum_{h \in[M, B G]} \operatorname{HTV}_{G-\operatorname{vect}_{\underline{k}}^{\theta}}(M, h)=\sum_{h \in[M, B G]} \tau^{\theta}(M, h)
$$

HQFT decomposition of Turaev-Viro TQFT

Let C spherical fusion category $\leadsto \mathrm{TV}_{C}$
$\Gamma=$ graduator of C (= largest group making C faithfully graded)
C spherical fusion Γ-graded category $\leadsto \mathrm{HTV}_{C}$

$$
\operatorname{TV}_{C}(\Sigma)=\bigoplus_{f \in[\Sigma, B \Gamma]} \operatorname{HTV}_{C}(\Sigma, f) \quad \text { and } \quad \operatorname{TV}_{C}(M)=\sum_{h \in[M, B \Gamma]} \operatorname{HTV}_{C}(M, h)
$$

 whose graduator is G

$$
\begin{aligned}
& \operatorname{TV}_{G-\operatorname{vect}_{\underline{E}}^{\theta}}(M)=\sum_{h \in[M, B G]} \operatorname{HTV}_{G-\operatorname{vect}_{\underline{-}}^{\theta}}(M, h)=\sum_{h \in[M, B G]} \tau^{\theta}(M, h) \\
& \leadsto \leadsto D_{G, \theta}(M)=\sum_{h: \pi_{1}(M) \rightarrow G}\left\langle h^{*}(\theta),[M]\right\rangle
\end{aligned}
$$

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)
triangulation $\nrightarrow \begin{aligned} & C \text { spherical fusion } \\ & G \text {-graded category }\end{aligned} \rightsquigarrow \operatorname{HTV}_{C}$
- Turaev-V. (2014)

$+\quad \underset{G}{\mathcal{B} \text { modular fusion }} \leadsto \leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghg }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,

$$
\tau_{X, Y}: X \otimes Y \rightarrow \varphi_{g}(Y) \otimes X
$$

- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3} $\left(L, f: \pi_{1}(L) \rightarrow G\right)$
whose longitudes are sent to 1 by f

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghq }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$, $\tau_{X, Y}: X \otimes Y \rightarrow \varphi_{g}(Y) \otimes X$
- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3} $\left(L, f: \pi_{1}(L) \rightarrow G\right)$
whose longitudes are sent to 1 by f
$x \in B_{g}$
$x \otimes Y \in B g h$
$y \in B_{h}$
$Y \otimes x \in B_{h g}$

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghg }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,

- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3} $\left(L, f: \pi_{1}(L) \rightarrow G\right)$
whose longitudes are sent to 1 by f

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghg }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,
- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3} $\left(L, f: \pi_{1}(L) \rightarrow G\right)$
whose longitudes are sent to 1 by f

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{g h g^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,

$$
\tau_{X, Y}: X \otimes Y \rightarrow \varphi_{g}(Y) \otimes X
$$

- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3}
whose longitudes are sent to 1 by f

$$
\begin{array}{ll}
x \otimes Y \in B_{g} h & \varphi_{g}(y) \in B_{g h g}-1 \\
& \varphi_{g}(y) \otimes x \in B_{g} h
\end{array}
$$

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghg }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,

$$
\tau_{X, Y}: X \otimes Y \rightarrow \varphi_{g}(Y) \otimes X
$$

- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Modular fusion graded categories

$\mathcal{B}=$ modular fusion G-graded category:

- $\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ is spherical fusion G-graded
- \mathcal{B} has an action $\varphi: \underline{G} \rightarrow \operatorname{Aut}_{\otimes}(\mathcal{B})$ such that $\varphi_{g}\left(\mathcal{B}_{h}\right) \subset \mathcal{B}_{\text {ghg }^{-1}}$
- \mathcal{B} has a G-braiding: for $X \in \mathcal{B}_{g}$ and $Y \in \mathcal{B}_{h}$,

$$
\tau_{X, Y}: X \otimes Y \rightarrow \varphi_{g}(Y) \otimes X
$$

- the S-matrix of fusion category \mathcal{B}_{1} is invertible

Invariant $I_{\mathcal{B}}$ of \mathcal{B}-colored framed oriented G-links in S^{3}

$$
\leadsto \quad\left(L, f: \pi_{1}(L) \rightarrow G\right)
$$

whose longitudes are sent to 1 by f

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a
diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

$$
\operatorname{HRT}_{\mathcal{B}}(M, h)=\sum_{\underline{v}, v_{i} \text { simple }}
$$

$$
\mathcal{I}_{\mathcal{B}}(L, f, \underline{V})
$$

Surgical HQFT with target $X=K(G, 1)$

$\mathcal{B}=\bigoplus_{g \in G} \mathcal{B}_{g}$ modular fusion G-graded category
M closed oriented 3-manifold, $h \in[M, X]$
Present M by surgery along a framed link $L=L_{1} \cup \cdots \cup L_{n}$
Let $f: \pi_{1}(L) \rightarrow G$ induced by $S^{3} \backslash L \hookrightarrow M$ and h
Let $g_{i} \in G$ be the color of a point in each component L_{i} of a diagram of L

$$
\begin{aligned}
& \text { Hecblerad } \\
& \text { baming }
\end{aligned}
$$

Any $\underline{V}=\left(V_{1}, \cdots, V_{n}\right) \in \mathcal{B}_{g_{1}} \times \cdots \times \mathcal{B}_{g_{n}}$ makes $(L, f) \mathcal{B}$-colored

$$
\operatorname{HRT}_{\mathcal{B}}(M, h)=\sum_{\underline{V}, V_{i} \text { simple }}\left(\prod_{i=1}^{n} \operatorname{dim}_{q}\left(V_{i}\right)\right) \mathcal{I}_{\mathcal{B}}(L, f, \underline{V})
$$

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

\mathcal{B} modular fusion
+ G-graded category $\leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\leadsto \operatorname{HRT}_{\mathcal{Z}_{G}(C)}$
Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$$
X \in C \text { such that } X \otimes Y=Y \otimes X \quad V Y \in \mathcal{D}
$$

- $(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id}_{X^{\prime}}\right)\left(\mathrm{id} X \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$\mathbb{Z}_{G}(C)$ is G-graded with $\left(\mathcal{Z}_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathcal{Z}_{G}(C) \mid X \in C_{g}\right\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)

$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$X \in C \quad$ such that $\quad X \otimes Y=Y \otimes X \quad \forall Y \in \mathcal{D}$

- $\left(X, \sigma^{\prime}\right) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id} X^{\prime}\right)\left(\mathrm{id} X \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$\mathbb{Z}_{G}(C)$ is G-graded with $\left(\mathbb{Z}_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathbb{Z}_{G}(C) \mid X \in C_{g}\right\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)

$Z_{G}(C)$ has a G-action and a G-braiding

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:
$X \in C \quad$ such that $\quad X \otimes Y=Y \otimes X \quad \forall Y \in \mathcal{D}$
- $(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id} X^{\prime}\right)\left(\mathrm{id} X \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$\mathbb{Z}_{G}(C)$ is G-graded with $\left(\mathbb{Z}_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathbb{Z}_{G}(C) \mid X \in C_{g}\right\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)
$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$$
X \in C \quad \text { with } \quad \sigma=\left\{\sigma_{Y}: X \otimes Y \stackrel{\cong}{\Longrightarrow} Y \otimes X\right\}_{Y \in \mathcal{D}}
$$

$\bullet(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id}_{x^{\prime}}\right)\left(\mathrm{id} x \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$Z_{G}(C)$ is G-graded with $\left(Z_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathcal{Z}_{G}(C) \mid X \in C_{g}\right\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)
$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$$
X \in C \quad \text { with } \quad \sigma=\left\{\sigma_{Y}: X \otimes Y \xrightarrow{\cong} Y \otimes X\right\}_{Y \in \mathcal{D}}
$$

- $(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id}_{X^{\prime}}\right)\left(\mathrm{id}_{X} \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$

Theorem (Gelaki-Naidu-Nikshych, 2009)
$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding
C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$$
X \in C \quad \text { with } \quad \sigma=\left\{\sigma_{Y}: X \otimes Y \xrightarrow{\cong} Y \otimes X\right\}_{Y \in \mathcal{D}}
$$

- $(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \operatorname{id}_{X^{\prime}}\right)\left(\mathrm{id}_{X} \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$\mathcal{Z}_{G}(C)$ is G-graded with $\left(\mathcal{Z}_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathcal{Z}_{G}(C) \mid X \in C_{g}\right\}$
Theorem (Gelaki-Naidu-Nikshych, 2009)
$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

The graded center

C monoidal category, \mathcal{D} monoidal subcategory of C
The center of C relative to \mathcal{D} is the monoidal category $\mathcal{Z}(C, \mathcal{D})$:

- objects of $\mathcal{Z}(C, \mathcal{D})$:

$$
X \in C \quad \text { with } \quad \sigma=\left\{\sigma_{Y}: X \otimes Y \xrightarrow{\cong} Y \otimes X\right\}_{Y \in \mathcal{D}}
$$

- $(X, \sigma) \otimes\left(X^{\prime}, \sigma^{\prime}\right)=\left(X \otimes X^{\prime},\left(\sigma \otimes \mathrm{id}_{X^{\prime}}\right)\left(\mathrm{id}_{X} \otimes \sigma^{\prime}\right)\right)$
$C=\bigoplus_{g \in G} C_{g}$ spherical fusion G-graded category
The G-center of C is $\mathcal{Z}_{G}(C)=\mathcal{Z}\left(C, C_{1}\right)$
$\mathcal{Z}_{G}(C)$ is G-graded with $\left(\mathcal{Z}_{G}(C)\right)_{g}=\left\{(X, \sigma) \in \mathcal{Z}_{G}(C) \mid X \in C_{g}\right\}$

Theorem (Gelaki-Naidu-Nikshych, 2009)

$\mathcal{Z}_{G}(C)$ has a G-action and a G-braiding

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

\mathcal{B} modular fusion
+ G-graded category $\leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\leadsto \operatorname{HRT}_{\mathcal{Z}_{G}(C)}$
Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs

Steps of the proof of $\mathrm{HTV}_{C} \simeq \mathrm{HRT}_{\mathcal{Z}_{\mathcal{G}}(C)}$

- Extend HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ to graph HQFTs
\triangleright provides basis of $\mathrm{TV}_{C}\left(S^{1} \times S^{1}, f_{\alpha}\right)$

$Z_{E}(\varphi) \cdot c \ln d$
(3) $\operatorname{HTV}_{C}(M, h)=\operatorname{HRT}_{\mathcal{Z}_{G}(C)}(M, h)$ for closed G-manifolds (M, h)
- via surgical TQFT techniques

Steps of the proof of $\mathrm{HTV}_{C} \simeq \mathrm{HRT}_{\mathcal{Z}_{G}(\mathcal{C})}$

(1) Extend HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ to graph HQFTs
\triangleright provides basis of $\mathrm{TV}_{\mathcal{C}}\left(S^{1} \times S^{1}, f_{\alpha}\right)$
(2) $\operatorname{HTV}_{C}(\Sigma, f) \cong \operatorname{HRT}_{\mathcal{Z}_{G}(C)}(\Sigma, f)$ for G-surfaces (Σ, f)
Δ via a description of $\mathcal{Z}_{G}(C)$ by graded Hopf monad
(3) $\operatorname{HTV}_{C}(M, h)=\operatorname{HRT}_{\mathcal{Z}_{G}(C)}(M, h)$ for closed G-manifolds (M, h)

- via surgical TQFT techniques

Steps of the proof of $\mathrm{HTV}_{C} \simeq \mathrm{HRT}_{\mathcal{Z}_{G}(\mathcal{C})}$

(1) Extend HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ to graph HQFTs
\triangleright provides basis of $\mathrm{TV}_{\mathcal{C}}\left(S^{1} \times S^{1}, f_{\alpha}\right)$
(2) $\operatorname{HTV}_{C}(\Sigma, f) \cong \operatorname{HRT}_{\mathcal{Z}_{G}(C)}(\Sigma, f)$ for G-surfaces (Σ, f)
Δ via a description of $\mathcal{Z}_{G}(C)$ by graded Hopf monad
(3) $\operatorname{HTV}_{C}(M, h)=\operatorname{HRT}_{\mathcal{Z}_{G}(C)}(M, h)$ for closed G-manifolds (M, h)
\triangleright via surgical TQFT techniques

3-dimensional HQFTs with target $X=K(G, 1)$

presentation of $M^{3}+$ algebraic data $\leadsto 3$-dim HQFT

- Turaev-V. (2012)

- Turaev-V. (2014)

\mathcal{B} modular fusion
+ G-graded category $\leadsto \mathrm{HRT}_{\mathcal{B}}$
- Gelaki-Naidu-Nikshych (2009):

G-center $\mathcal{Z}_{G}(C)$ modular fusion G-graded $\leadsto \operatorname{HRT}_{\mathcal{Z}_{G}(C)}$
Theorem (Turaev-V., 2019)
HTV_{C} and $\mathrm{HRT}_{\mathcal{Z}_{G}(C)}$ are isomorphic HQFTs
$2-\operatorname{dim}$
HQFIS
with taget X
are clanified
by Fothinis aly
gaded bey the 2 -grout of x

$$
\theta \in H^{3}\left(x, h^{x}\right) \mapsto \tau^{\theta}
$$

- Xnt anmial?

$$
\begin{aligned}
& \pi_{2}(x)=0 \Rightarrow H^{3}\left(x, A^{x}\right) \text { duybled in teon of } \\
& \text { Eilul ~ } \quad G=7 \pi_{1}(x) \\
& A=\pi_{3}(x) \quad a:\left(c^{3}\right) b^{*} \quad e: A \Rightarrow a_{2}^{*} \\
& \partial r=e^{k}
\end{aligned}
$$

