Crossed modules, homotopy 2-types,
knotted surfaces and welded knots

Topological Quantum Field Theory Club (IST, Lisbon)

30th October 2020

Joao Faria Martins (University of Leeds)

LEVERHULME ﬂ
TRUST UNIVERSITY OF LEED

Partially funded by the Leverhulme Trust research project grant:
RPG-2018-029: “Emergent Physics From Lattice Models of Higher Gauge Theory”



Other Refs. on homotopy 2-types of 2knot complements



Other Refs. on homotopy 2-types of 2knot complements

» S. J. Lomonaco: The homotopy groups of knots. |: How to
compute the algebraic 2-type. Pac. J. Math. 95, 349-390
(1981).



Other Refs. on homotopy 2-types of 2knot complements

» S. J. Lomonaco: The homotopy groups of knots. |: How to
compute the algebraic 2-type. Pac. J. Math. 95, 349-390
(1981).

» A. I Suciu: Infinitely many ribbon knots with the same
fundamental group. Math. Proc. Camb. Philos. Soc. 98,
481-492 (1985).



Other Refs. on homotopy 2-types of 2knot complements

» S. J. Lomonaco: The homotopy groups of knots. |: How to
compute the algebraic 2-type. Pac. J. Math. 95, 349-390
(1981).

» A. I Suciu: Infinitely many ribbon knots with the same
fundamental group. Math. Proc. Camb. Philos. Soc. 98,
481-492 (1985).

» S. P. Plotnick and A. I. Suciu: k-invariants of knotted
2-spheres. Comment. Math. Helv. 60, 54-84 (1985).



Other Refs. on homotopy 2-types of 2knot complements

» S. J. Lomonaco: The homotopy groups of knots. |: How to
compute the algebraic 2-type. Pac. J. Math. 95, 349-390
(1981).

» A. I Suciu: Infinitely many ribbon knots with the same
fundamental group. Math. Proc. Camb. Philos. Soc. 98,
481-492 (1985).

» S. P. Plotnick and A. I. Suciu: k-invariants of knotted
2-spheres. Comment. Math. Helv. 60, 54-84 (1985).



Main refs. for this talk:



Main refs. for this talk:

» JFM.: The Fundamental Crossed Module of the Complement
of a Knotted Surface. Transactions of the American
Mathematical Society. 361 (2009), 4593-4630.



Main refs. for this talk:

» JFM.: The Fundamental Crossed Module of the Complement
of a Knotted Surface. Transactions of the American
Mathematical Society. 361 (2009), 4593-4630.

» JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via
Crossed Module Invariants of Knotted Surfaces, Compositio
Mathematica. Volume 144, Issue 04, July 2008.



Main refs. for this talk:

» JFM.: The Fundamental Crossed Module of the Complement
of a Knotted Surface. Transactions of the American
Mathematical Society. 361 (2009), 4593-4630.

» JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via
Crossed Module Invariants of Knotted Surfaces, Compositio
Mathematica. Volume 144, Issue 04, July 2008.

» Bullivant A, Martin P, and JFM: Representations of the Loop
Braid Group and Aharonov-Bohm like effects in discrete
(3+1)-dimensional higher gauge theory. Advances in
Theoretical and Mathematical Physics Volume 23 (2019).



Main refs. for this talk:

» JFM.: The Fundamental Crossed Module of the Complement
of a Knotted Surface. Transactions of the American
Mathematical Society. 361 (2009), 4593-4630.

» JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via
Crossed Module Invariants of Knotted Surfaces, Compositio
Mathematica. Volume 144, Issue 04, July 2008.

» Bullivant A, Martin P, and JFM: Representations of the Loop
Braid Group and Aharonov-Bohm like effects in discrete
(3+1)-dimensional higher gauge theory. Advances in
Theoretical and Mathematical Physics Volume 23 (2019).

» Damiani C, JFM, Martin P: On a canonical lift of Artin's
representation to loop braid groups. arXiv:1912.11898



Some references on combinatorial homotopy



Some references on combinatorial homotopy

» R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
topology. Filtered spaces, crossed complexes, cubical
homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)



Some references on combinatorial homotopy

» R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
topology. Filtered spaces, crossed complexes, cubical
homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)

> H. J. Baues: Combinatorial homotopy and 4-dimensional
complexes. Berlin etc.: Walter de Gruyter (1991)



Some references on combinatorial homotopy

» R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
topology. Filtered spaces, crossed complexes, cubical
homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)

> H. J. Baues: Combinatorial homotopy and 4-dimensional
complexes. Berlin etc.: Walter de Gruyter (1991)

» H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge
University Press (1989)



Some references on combinatorial homotopy

» R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
topology. Filtered spaces, crossed complexes, cubical
homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)

> H. J. Baues: Combinatorial homotopy and 4-dimensional
complexes. Berlin etc.: Walter de Gruyter (1991)

» H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge
University Press (1989)

» J. H. C. Whitehead: Combinatorial homotopy. I. and Il. Bull.
Am. Math. Soc. 55. (1949)



Some references on combinatorial homotopy

» R. Brown, P. Higgins, R Sivera: Nonabelian algebraic
topology. Filtered spaces, crossed complexes, cubical
homotopy groupoids. With contributions by Christopher D.
Wensley and Sergei V. Soloviev. Zurich: European
Mathematical Society (EMS) (2011)

> H. J. Baues: Combinatorial homotopy and 4-dimensional
complexes. Berlin etc.: Walter de Gruyter (1991)

» H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge
University Press (1989)

» J. H. C. Whitehead: Combinatorial homotopy. I. and Il. Bull.
Am. Math. Soc. 55. (1949)

» J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V:
2-Groups. Theory Appl. Categ. 12, 423-491 (2004).



Knot complements are aspherical!



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem:



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
» Asphericity means that:



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical
if L C S3is a non-splittable link.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical
if L c S3is a non-splittable link. E.g.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type)



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:
1. X is homeomorphic to a CW-complex, with x being a O-cell.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:

1. X is homeomorphic to a CW-complex, with x being a 0-cell.
(Frequenly omitted in model categories literature.)



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:
1. X is homeomorphic to a CW-complex, with x being a 0-cell.

(Frequenly omitted in model categories literature.)
2. mi(X)=0,if i > n.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:
1. X is homeomorphic to a CW-complex, with x being a 0-cell.

(Frequenly omitted in model categories literature.)
2. mi(X)=0,if i > n.

Let {n-types} be the category with objects the n-types.



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:
1. X is homeomorphic to a CW-complex, with x being a 0-cell.
(Frequenly omitted in model categories literature.)
2. mi(X)=0,if i > n.
Let {n-types} be the category with objects the n-types.
Given two n-types X and Y,



Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

» Papakyriakopoulos theorem: $3\ K is an aspherical space.
> Asphericity means that: 7;(S3\ K) =0, if i > 2.

» More generally S\ L is aspherical L=
if L c S3is a non-splittable link. E.g.

Definition: (n-type) Let n € Z{.
An n-type is a path-connected pointed space X = (X, *) such that:
1. X is homeomorphic to a CW-complex, with x being a 0-cell.
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Given two n-types X and Y,
morphisms X — Y are pointed homotopy classes of pointed maps.
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Whitehead theorem: If Y is obtained from X by attaching 2-cells,
then My (Y, X) is free on the attaching maps {2 — cells} LN m1(X).
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Let ¥ C S* = R*U {oo} be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the t-variable is a Morse function in .
To simplify, suppose critical points appear in increasing order.

Let ¥, = ¥ N (R3 x {t}), called the “still of & at t".
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Handle decomposition (fat CW-decomposition) of M = S*\ &

é\ 3-handles

S » 2-handles

Let M() be union of handles of index < i.
» A minimal point in ¥ yields a 1-handle of S*\ X.
(Hence a free generator of the group m1(M(1).)
» A saddle point in ¥ yields a 2-handle of S*\ ¥.
(Hence a free crossed module generator of My(M®), M(1))
» A maximal point in ¥ yields a 3-handle of $*\ ¥.
(Hence a 2-relation needs to be imposed on My(M®3) M1) in
order to get to My(M, M(1).)
A presentation for My(M, M(1)) can be derived from a ‘movie’ of X.
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Locally, an (oriented) saddle point looks like:

) (=

When passing saddle point, add a ‘band’, kept throughout movie:
This band will later bookkeep where the saddle point was made,
and the attaching region of corresponding 2-handle of M.

\ r/Attachmg
e region
for
/‘ \Z\handle
Each band gives free crossed module generator e € mo(M®, M(1).

X Y X Y
> < — e a(e) = Xil Y
X Y

Bands are to be kept and evolve throughout the rest of the movie.
Each arc of a band in a projection gives element of 7r2(l\/l(2), M(l)).
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Maximal points

Locally, an oriented maximal point looks like: @ —

Some bands will possibly be present.
Before maximal point, configuration looks like:

In this case the 2-relations are as below:

8(e)8(1‘)X8(e)_1
2-relation:

X 'oe ef (X lpel)=1
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X,Y em(MY); e fem(M3® M)
XYXx—1

O Cul®
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Hence

e—1
fi—1

g—1
Ma(M, MDY = 1 <{e, f.g b} ST Fx, v | = X0 f>

m1(M) = ({X, Y}|[X, Y] =1), free abelian group on X and Y.

(M) =Z[X, X" Y, Y {e f,g}) < f=X.f>.
Quotient of the free module over the algebra of Laurent

polynomials in X and Y, on the generators e, f, g,
by the relation f = X.f.

If G = (E — G,p) is finite and 9(E) = {15} then:

lg(M) = #{(X,Y,f) € Gx G x E | XY = YX,f = X f}(#E).
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Another example ¥’ = Spun Hopf Link, a knotted T2 LI T?2

Final stage:

de)=1
a(f) = 1
d(g) = YXY~1x-1
a(h) = Xyx—1y-1

(Yoe)e ! (Xpfl)f=1
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Hence

e—1
fi—>1
g—[Y.X]

(Ype)e™?!
Ma(M, M) = 14 <{e, g by " mxOY) | ey f>

=1

m1(M) = ({X, Y}|[X, Y] = 1), free abelian group on X and Y.

B Z[X, XL Y, Y~ {e, f, m}
< (Ype)—e—(Xpf) +f=0>

w2 (M)

If G = (E — G,p) is finite and J(E) = {1} then:



Y’ = Spun Hopf Link. M = S§*\ ¥

Hence

e—1

f=>1
i"—){; é]] (Ype)e™?!

—
‘F(Xa Y) (Xpf~1) f>

=1

My(M, M) = <{e f.g, h}

m1(M) = ({X, Y}|[X, Y] = 1), free abelian group on X and Y.

Z[X, XL Y, Y~ {e, f, m}

™M) = e e (Xof) £ Ff=0>"

If G = (E — G,p) is finite and J(E) = {1} then:

g(M) = #{(X, Y. e,1) € G2 x B | () X (00 1ro} -



Y’ = Spun Hopf Link. M = S§*\ ¥
Hence

e—1
fi—>1
g—[Y.X]

Ma(M, MDY =1 <{e, f.g.h " Fx, v

(Ype)e™?!
(Xpf—1) f>
=1

m1(M) = ({X, Y}|[X, Y] = 1), free abelian group on X and Y.

B Z[X, XL Y, Y~ {e, f, m}
< (Ype)—e—(Xpf) +f=0>

ma( M)
If G = (E — G,b) is finite and 9(E) = {1¢} then:
Ig(M) = # {(X, Y,e f)e G>x E? | oo XY=YX, }

—e—(X>f) +F=0

Ig can distinguish ¥’ from ¥ = knotted T2 LI T2 above.
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More results on Ig(S*\ X)

Let G = (0: E — G) be a finite crossed module.

Recall Ig(M) = — Lo # hom(Ma(M, M*),G)

#Eb
» The invariant of knotted surfaces:
Y Ig(S*\ X)

is able to separate between pairs of knotted surfaces with
different knot groups. (Varying G.)
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are virtual knot diagrams
like:
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» Recall Shin Satoh's “tube-map”
Tube: {Welded links} — {Knotted Tori in S*}

S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot
Theory Ramifications 9 (2000), 531-542.
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» Recall Shin Satoh’s “tube-map”
Tube: {Welded links} — {Knotted Tori in S*}
Theorem: Suppose G = (A — G,p) is finite and 0(A) = {1s}.
The welded knot invariant
K Ig(S*\ Tube(K))

is computed from a biquandle with underlying set G x A:

(z,a) (w, b)
\
\

(w,a+b—wlna) (w™lzw, w1l a)

So A is an abelian G-module, z,w € G, a,b € A.

Proof essentially in:

JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed
Module Invariants of Knotted Surfaces, Comp. Math. 2008
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The biquandle below (A an abelian G-module):

(z,a) (w, b)

sy

(w,a+b—wlna) (wtzw, wt

> a)
has since been revisited in:

» Bullivant A, Martin P, and JFM: Representations of the Loop
Braid Group and Aharonov-Bohm like effects in discrete
(3+1)-dimensional higher gauge theory. ATMP 2019.

Inclusion of peripheral system information interpreted in terms of
Aharonov-Bohm like effects for loop-particles moving in topological
(3+1)-dimensional Higher Gauge Theory.

» Damiani C, JFM , Martin P: On a canonical lift of Artin’s

representation to loop braid groups. arXiv:1912.11898.

A higher order version of Artin representation defined.



THANKS!



