3d Mirror Symmetry 2 HOMFLI-PT Homolagy -1 N.Garmer, J. Hilburn, A. OSlomhov, L. Rozanshy

$$
\begin{aligned}
& \text { Nov 20, } 2020 \\
& \text { virtual-Lisbon }
\end{aligned}
$$

Review: HOMFLY-PT
st $a=q^{N}, u=q^{1 / 2}-q^{-1 / 2} \rightarrow$ WRT for S_{N}. fund.rep
Linh $K C S^{3} \quad \rightarrow \quad P_{K}\left(a^{1 / 2}, u\right) \in \mathbb{Z}\left[a^{ \pm 1 / 2}, u^{ \pm}\right] \quad$ HOMFLY-PT poly
$\left.\begin{array}{l}\text { we'll expand } \\ \text { in } q\end{array} P_{k}\left(a^{1 / 2}, u=q^{1 / 2}-q^{-1 / 2}\right) \in(a / q)^{\#} \mathbb{Z}(q)\right)[a]$
E.g. unhnot $P_{U}=\frac{a^{1 / 2}-a^{-1 / 2}}{q^{1 / 2}-q^{-1 / 2}}=(q / q)^{-1 / 2} \frac{1-a}{1-q} \leadsto(a / q)^{-1 / 2}(1-a)\left(1+q+q^{2}+q^{3}+\cdots\right)$

Calegaify the serites via $\quad t_{k}=\underset{k \cdot d, R \in Z}{\oplus} 1 t_{k}^{\text {h,d,R }}$
HOMFLY-PT homilogy
$\left(\begin{array}{ll}G S V & \text { predicied } \\ K R & \text { dfined }\end{array}\right)$
st. $P_{L}=(a / q)^{\#} \&(-1)^{R} q^{d}(-a)^{k} \operatorname{dim} 1 t_{k}^{k d . R}$

IGutior-Sehwarz-Vafal
M-theary construction / prediction:
SlN homology $\underset{d, R \in \mathbb{Z}}{\oplus} H_{(N)}^{d, R}$

$1 M 5$ on $N^{*} K \times \mathbb{C}_{x} \times \mathbb{R}_{t}$
$N M S^{1}$ on $S^{3} \times \mathbb{C}_{x} \times \mathbb{R}_{t}$
$1 \quad M 2$ on $S^{\prime} \times I \times \quad \mathbb{R}_{t}$
degenerate holomorpliz annulus connecting MS $2 \mathrm{MS}^{\prime}$

$\begin{aligned} & q \text {-degree } d \\ & \text { coh.degree } R \sim U(1)_{d}\end{aligned} \mathbb{C}_{x} \times \mathbb{C}_{y}$
following Witten, Gopahumar- Vafu, Ooguri-Vafe
Homfly homilogy $\underset{k \cdot d \cdot R \in R}{ } t^{h \cdot 1, R}(k)$

$$
O(-1) \oplus O(-1) \rightarrow \mathbb{P}^{1}
$$

$1 M 5$ on $\widetilde{N^{*} k} \times \mathbb{C}_{x} \times \mathbb{R}_{t}$
$1 \mathrm{M2}$ on D, \mathbb{R}_{t}
(k) M2 on $\mathbb{P}^{\prime} \times \mathbb{R}_{t}$
$\underset{d, R}{T}$. $t^{(\underline{R}, d, R} \sim$ BPS states of $M 2$
q-degree d $C_{x} \times C_{y}$
1
2

Tight braids
$z u \cdot w v=\mu \leadsto z u \cdot w v=0<\sim$ blow-up $z \rho=v \lambda$ $w \rho=n \lambda \quad(\rho: \lambda) \in \mathbb{P}^{3}$
How to transport $N^{2} K$ from $T^{b} S^{3}$ to $\mathcal{O}(-1) \oplus(X-1) \rightarrow \mathbb{P}^{1}$?
[Tanker. Diaconsin-Shende-Vafa,...?

- Lift $N^{\text {n }} \mathrm{K}$ off S^{3} (Lag. Botopy)
- find families of lagrangian on the two sides that match (smoothly) at singular conifold Implemented decades ago for the unknot \sim for ir [Aganagir. Vape] Lags on $O(-1) \oplus(O(-1)$.

We geveralized the unhurt construction to tight braid
braid (closure):
n strands

tight braid
\sim deformation
of n copies of unknot

$\alpha \ll 1$
tight braid
\sim deformations of n copies of unknot

$\rightarrow \quad N^{n} K$ deformation c $T^{+} S^{3}$ of n copies of N^{*} untenot
$\Rightarrow \widetilde{N^{*} K}$ def. of
c $O(-1)(O)(-1)$
n copies of toxic AV brave
For tight braids, end up with

Goal: extract a 3d QFT on $D \times \mathbb{R}_{t}$
Conifold \rightarrow field theory
captosing the physics (BPS states) of M2 branes

$$
G(-1) \oplus(x-1) \rightarrow \mathbb{P}^{\prime}
$$

IIA on $\mathbb{R}^{5} \times \mathbb{C}_{x} \times \mathbb{C}_{y} \times \mathbb{R}_{t}$

II A on $\left(O(-1) \times O(-1) \rightarrow \mathbb{P}^{1}\right) \times R^{3} \times \mathbb{R}_{t}$

3d mirrorsym \mathbb{R}_{t} l
$\partial D \times \mathbb{R}_{t}$
boundry conditrion $\lambda:(\theta)$
3d A-model

Sd TQRT
Ultimately, the 3d $(N=4)$ gauge theories, boundary conditions, 2 line operators can all be identified explicitly - in physical terms.
How to extract a (putative) mathematical definition of HOMFLY-PT homology?
Work in the framework of Bd TQFT.
Want: Hilbert space on a disc D, wi by and" bd at ∂D, "punctured" by l_{k} at O

$$
\simeq z\left(\text { URIS }^{b_{d}}\right)
$$

Attempt 1: $\simeq Z\left(\underline{l_{k}}\left(\underline{0) \mid) \mid)_{i}^{\prime}}\right)^{b_{\lambda}}\right)=\operatorname{Hom}_{z\left(s^{\prime}\right)}\left(\ell_{k}, b_{\lambda}\right)$

Note $Z\left(S^{\prime}\right)$ is a braided eategary

Dual physics pictive: Hill ($l_{h}={ }_{3}$

Let's try to apply this.

B Bd gauge theory has $G=G L_{n}$, "matter" $T^{2} V \quad V=g l_{n} \times \mathbb{C}^{n}$
"Hogs branch" is $T^{*} V / / G \simeq H_{i} b_{n} \mathbb{C}_{\uparrow}^{2}$ (resolved)

$$
Z\left(S^{\prime}\right)=D^{b} C_{o h}\left(H_{i} b_{n} \mathbb{C}^{2}\right) \quad \mathbb{C}_{x} \times \mathbb{C}_{y} \text { in M-thy! }
$$

[Rozanshy-Witten, Kapustin-Rozanshy-Saulinea]
$\ell_{k}=$ Wilson line in rep $\wedge^{n} \mathbb{C}^{n}$ of $G L_{n}$

$$
\leadsto \text { object } \quad \Lambda^{h} \text { Taut } \in \operatorname{Coh}\left(H_{i} b_{n} \mathbb{C}^{2}\right)
$$

$b_{\lambda}=a($ complex of $)$ sheaves on $H_{1} b_{n} \mathbb{C}^{2}$ determined by the braid HARD to construct directly
[Oblowhor-Rozanshy, Gorshy-Nesut-Rasmussun] did it!

Once one knows the sheaf b_{1}, expect

$$
\begin{aligned}
H_{k}^{k \cdots} & \sim \operatorname{Hom}^{\bullet}\left(N^{h} \text { Taut, } b_{\lambda}\right)
\end{aligned} \quad \text { in } D^{b} \operatorname{Coh}\left(H_{i} b_{n} \mathbb{C}^{2}\right)
$$

Example: unknot $n=1 \quad H_{i} / L,\left(\mathbb{C}^{2}\right)=\mathbb{C}_{x} \times \mathbb{C}_{y}$

$$
\Lambda^{k} \tau_{\text {ant }}= \begin{cases}\mathcal{O}_{\mathbb{C}_{x \times} \times \mathbb{C}_{y}} & h=0,1 \\ 0 & h \geq 2\end{cases}
$$

$$
\lambda(\theta)=\text { constant } \quad b_{\lambda}=O_{\mathbb{C}_{x}}
$$

$$
H_{\text {unknot }}^{k \cdot \cdot} \simeq \operatorname{Htam}^{\bullet}\left(0, O_{c_{x}}\right) \quad h=0,1
$$

$$
\simeq \mathbb{C}[x]
$$

character $\frac{1}{1-8}$
cf. $\quad P_{\text {unknot }}=() \frac{1-a}{1-q}$
[A] $3 d$ theory is also $G=G L_{n}, T^{*} V$ il $V=g l_{n} x \mathbb{C}^{n}$
Coulomb branch resolves to $H_{i} l_{n} \mathbb{C}^{2}$
e.3. by Braverman-Fintulbery-Nahujmar
$\left.Z\left(S^{\prime}\right) \simeq D-\bmod (V((z)) / G(6 z))\right)$
LTD-Garmer-Geracie-Hilburn, Wilburn - Yod I
objects are labelled by L / H
really: a quotient of this, corresponding to the resolution of the Coulomb branch [Webster]
when $\left.L \subset V\left(C_{z}\right)\right)$ subspace
It $c G(l z)$ subgroup that preserves L
(the corresponding D-module is $O_{L_{H}}$, pushed-forward to $V((z z)) / G((z))$)
physics: $\quad l_{k}$ has $\left.L=\left\{\left(\frac{z \mathbb{C} L z \|}{\mathbb{C} L z \|}\right)_{n-k}^{k} \times \mathbb{C}^{n} L z \|\right\} \quad c \quad g l_{n}((z)) \times \mathbb{C}^{n}(\mathbb{C} z)\right)$

$$
Z\left(S^{\prime}\right) \simeq D-\bmod (V((z)) / G((z)))
$$

objects are labelled by L / H
where $\left.L \subset V\left(C_{z}\right)\right)$ subspace
It $c G(L z)$ subgroup that preserves L
physics: l_{k} has $\left.L=\left\{\left(\frac{z \mathbb{C} L z \|}{\mathbb{C} L z \|}\right)_{n-k}^{k}\right\} \times \quad \mathbb{C}^{n} L z \| \quad c \quad g l_{n}((z)) \times \mathbb{C}^{n}((z))\right)$
$H=I a_{k}$: Inakorisulsp of $G L_{n}\|-z\|$
bd is a skyscraper D-module $\quad H=1$ that preserves L

$$
\left.\left.L=\left\{\gamma(z), 1^{n}\right\} \quad c \quad g \ln ((z)) \times \mathbb{C}^{n} \mathbb{C} z\right)\right)
$$

where $\gamma(z) \in \operatorname{gln}((z))$ is any (fixed) matrix whose eigenvalues $\left(\gamma_{1}\left(r e^{i \theta}\right), \ldots, \gamma_{n}\left(r e^{i \theta}\right)\right)$ converge for suff. small r, and agree with $\left(\lambda_{1}(\theta), \ldots, \lambda_{n}(\theta)\right)$.
Not clear it is always possible to find such a $\gamma(z)$,
It is possible for "algebiain links" Eng. $(2, p)$ torus link $\gamma(z)=\left(\begin{array}{ll}0 & 1 \\ z & 0\end{array}\right)$

$$
\gamma(z) \in \operatorname{gln}[z]
$$

Putting this together...
Conjecture

$$
\begin{aligned}
& t_{k}^{k \cdots} \simeq \operatorname{Hom}_{z\left(s_{1}\right)}\left(\ell_{k}, b_{1}\right) \\
& \left.=H_{0}^{B M}\left\{g \in G L_{n}((z)) \text { st. } g \cdot\left(\gamma(z), 1^{n}\right) \in\left(\frac{z \mathbb{C} L z \|}{\mathbb{C} \| L z)]}\right)_{n-k}^{k} \times \mathbb{C}^{n} \| z z\right]\right\} / \text { swak. }
\end{aligned}
$$

q-degree $d \sim$ stratification of $G L_{n}(C 77)$ by $\pi_{1}\left(G L_{n}\right)=\mathbb{Z}$

$$
\text { ie. }\left[G L_{n}((z))\right]_{d}=\left\{g(z) \text { st. } \operatorname{det} g(z) \in z^{d} \mathbb{C}[z \overline{1}]\right.
$$

Example Unknot $n=1 \quad G=G L_{1}=\mathbb{C}^{*} \quad V=\mathbb{C}_{(0)} \times \mathbb{C}_{(1)}$

$$
\begin{aligned}
l_{0} & =\mathbb{C}\|z\| \times \mathbb{C}\|z\| \quad C \mathbb{C}((z)) \times \mathbb{C}((z)) \quad I_{w} a_{0}=G L, L z\|=\mathbb{C}\| z \|^{\alpha} \\
\gamma(z) & =(1) \\
H_{\text {unhnot }}^{0 . \cdot} & =H \cdot\left\{g \in \mathbb{C}((z))^{*} \text { st. } g(1) g^{-1} \in \mathbb{C}\|z\| \text { and } g \cdot 1 \in \mathbb{C}\|z\|\right\} / \mathbb{C} \|\left(z \|^{*}\right. \\
& =H \cdot\{\mathbb{C}\|z\|(\text { nonzero })\} / \mathbb{C}\|z\|^{*} \\
& =H \cdot\left\{1, z, z^{2}, z^{3}, z^{4}, \ldots\right\} \quad \text { character }=\frac{1}{1-8} \\
& =\mathbb{C}_{0} \oplus \mathbb{C}_{1} \oplus \mathbb{C}_{2} \oplus \cdots . \quad
\end{aligned}
$$

Thun [Garner-teivinen]
For $\gamma(z) \in g \ln \lfloor z 1$, the moduli spaces that appear here are Hilbert schemes of spectral carves,

$$
\text { e.j. } k=0 \quad\left[\{g \in G \operatorname{Ln}((z)) s t \ldots\} / L_{\operatorname{Ln} \mid L z]}\right]_{d} \simeq H_{i} b_{d}(\operatorname{det}(\gamma(z)-w)=0) \text {. }
$$

Then our construction reproduces a proposed construetrin of HOMELY -PT honedayy by [Oblomizon-Rasmussen-Shende].

Summary

$$
\left\{\lambda_{i}(\theta)\right\}_{i=1}^{n}
$$

M-thery on $G(-1) \oplus\left(O(-1) \rightarrow \mathbb{P}^{\prime}\right.$ w/ M5 on tight-braid Lagrangian $\widehat{N^{*} k}$ $M 2$ on disc D $\partial D C \widehat{N}$
\leadsto two ad $N=4$ theories on $D \times \mathbb{R}_{t}$
B twist $\stackrel{\rightharpoonup}{3 \sqrt{M S}} \quad A$ twist
HOMFLY-PT homology $\simeq \operatorname{Hom}_{z(s)}\left(l_{k}, b_{d}\right)$
$B: Z\left(S^{\prime}\right)=D^{b} \operatorname{Coh}\left(H_{i} b_{n} \mathbb{C}^{2}\right)$ nice! but object bs is hard to describe
A: $\left.\left.Z\left(S^{\prime}\right) \simeq D \cdot \bmod \left(g \ln _{n}\left(L_{z}\right)\right) \times \mathbb{C}^{n}\left(L_{z}\right)\right) / G L_{n}((z))\right)$ eep! but object by is relatively simple, at least for algebraic lints - braid is manifest.

Can we do better?
Yes. in principle. For fixed $\lambda \in \mathbb{C}^{n}$,
(ese fixed $\theta=\theta_{0}$)

$b_{d\left(\theta_{0}\right)}$ defines an object of the 2-category $Z(p t)$

- End $z_{(p t)} b_{\lambda\left(\theta_{0}\right)}$ is a monoidal category
w/ a rep of the braid gp Bran
- The derived center $H^{\circ} Z(p t) \approx Z\left(S^{\prime}\right)$.

Thus, given a braid word $\beta \in B r_{n}$ representing $\lambda_{i}(\theta)$ for $\theta \in\left[\theta_{0}, \theta_{0}+2 \pi\right]$, get an object $\beta \in$ End $_{z(p t)} b_{d\left(\theta_{0}\right)}$
$\xrightarrow{\sim} \quad b_{\lambda} \in Z\left(s^{\prime}\right)$.
Tie. there should be a construction of ba from braid words.

LOblomhov-Rozanshy I implemented this in the 3d B-mode, generalizing constructions of (Hapustrin-Rozanely-Saulone]

$$
\begin{gathered}
\uparrow \\
B r_{n}
\end{gathered}
$$

used this to get the sheaf $b_{\lambda} \in D^{b} \operatorname{Con}\left(H_{i} b_{n} \mathbb{C}^{2}\right)$!
There should be a Bd mirror of this on the A side
\leadsto work in progress!
Thank you

