Udjunction in the absence of identity

Volodymyr Mazorchuł

(Uppfala University)

Topological Quantum Sield Theory thematic feffionf 2020

Volodymyr Mazorchuk Adjunction in the absence of identity 1/18

< E >

Joint with

Hankyung Ko (Uppsala University)

Xiaoting Zhang (Uppsala University/Capital Normal University, Beijing)

Volodymyr Mazorchuk Adjunction in the absence of identity 2/18

< Ξ >

1

DQC

 \mathcal{C}, \mathcal{D} — two categories

 $F: \mathcal{C} \to \mathcal{D}$ — functor

 $G: \mathcal{D} \rightarrow \mathcal{C}$ — functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \operatorname{id}_F) \circ_v (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_v (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

□ > < @ > < \arrow \le > < \arrow \le > \le \circ \l

 $F: \mathcal{C} \to \mathcal{D}$ — functor

 $G: \mathcal{D} \rightarrow \mathcal{C}$ — functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \mathrm{id}_F) \circ_{\nu} (\mathrm{id}_F \circ_h \eta) = \mathrm{id}_F \qquad (\mathrm{id}_G \circ_h \varepsilon) \circ_{\nu} (\eta \circ_h \mathrm{id}_G) = \mathrm{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

□ > < @ > < \arrow \le > < \arrow \le > \le \circ \l

- $F: \mathcal{C} \to \mathcal{D}$ functor
- $G: \mathcal{D} \to \mathcal{C}$ functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \operatorname{id}_F) \circ_{\nu} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\nu} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

ロト 4 母 ト 4 王 ト 4 王 - うへの

- \mathcal{C} , \mathcal{D} two categories
- $F: \mathcal{C} \to \mathcal{D}$ functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \operatorname{id}_F) \circ_{v} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{v} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

ロケスロケスボケスボケード・シック

 $\mathcal{C}\text{, }\mathcal{D}$ — two categories

 $F: \mathcal{C} \to \mathcal{D}$ — functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \operatorname{id}_F) \circ_{\nu} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\nu} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

ロケスロケスボケスボットローシック

 $\mathcal{C}\text{, }\mathcal{D}$ — two categories

 $F: \mathcal{C} \to \mathcal{D}$ — functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in C$ and $Y \in D$, there are isomorphisms $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon : FG \to Id_{\mathcal{D}}$ and $\eta : Id_{\mathcal{C}} \to GF$ such that

 $(\varepsilon \circ_h \operatorname{id}_F) \circ_{\mathsf{v}} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\mathsf{v}} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G,$

that is, the compositions

 $F \rightarrow FGF \rightarrow F$ and $G \rightarrow GFG \rightarrow G$

are the identities.

Adjoint objects of (strict) monoidal categories

 \mathscr{C} — (strict) monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \mathrm{id}_F) \circ_{\nu} (\mathrm{id}_F \circ_h \eta) = \mathrm{id}_F \qquad (\mathrm{id}_G \circ_h \varepsilon) \circ_{\nu} (\eta \circ_h \mathrm{id}_G) = \mathrm{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $\mathbb{1}_{\mathscr{C}}$?

\mathscr{C} — (strict) monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \operatorname{id}_F) \circ_{\mathsf{v}} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\mathsf{v}} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $1_{\mathscr{C}}$?

Adjoint objects of (strict) monoidal categories

 \mathscr{C} — (strict) monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \operatorname{id}_F) \circ_{v} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{v} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $1_{\mathscr{C}}$?

 $\mathscr{C} - (strict)$ monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \operatorname{id}_F) \circ_{\mathsf{v}} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\mathsf{v}} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $\mathbb{1}_{\mathscr{C}}$?

 \mathscr{C} — (strict) monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \operatorname{id}_F) \circ_{\mathsf{v}} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\mathsf{v}} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $\mathbb{1}_{\mathscr{C}}$?

 \mathscr{C} — (strict) monoidal category

F, G — two objects in \mathscr{C}

Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon : FG \to \mathbb{1}_{\mathscr{C}}$ and $\eta : \mathbb{1}_{\mathscr{C}} \to GF$ such that

$$(\varepsilon \circ_h \operatorname{id}_F) \circ_{\mathsf{v}} (\operatorname{id}_F \circ_h \eta) = \operatorname{id}_F \qquad (\operatorname{id}_G \circ_h \varepsilon) \circ_{\mathsf{v}} (\eta \circ_h \operatorname{id}_G) = \operatorname{id}_G.$$

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of $\mathbb{1}_{\mathscr{C}}$?

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- compositions are biadditive and k-bilinear.
- ▶ identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field k provided that

- it has finitely many objects;
- each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- ▶ compositions are biadditive and k-bilinear.
- ▶ identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- compositions are biadditive and k-bilinear.
- ▶ identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- compositions are biadditive and k-bilinear.
- ▶ identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

it has finitely many objects;

- each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- compositions are biadditive and k-bilinear.
- identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- ► each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- compositions are biadditive and k-bilinear.
- identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf algebra over **k** of finite representation type.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- ► each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- ► compositions are biadditive and k-bilinear.
- identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- ► each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- ► compositions are biadditive and k-bilinear.
- identity 1-morphisms are indecomposable.

Definition. \mathscr{C} is called finitary over some field \Bbbk provided that

- it has finitely many objects;
- ► each C(i, j) is equivalent to the category of projective modules over a finite dimensional k-algebra;
- ► compositions are biadditive and k-bilinear.
- identity 1-morphisms are indecomposable.

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\mathbb{R}} A^{op}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{op}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{\text{op}}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. A-mod-A is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{\text{op}}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{\operatorname{op}}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

Definition. The 2-category \mathscr{C}_A of projective bimodules is defined as $\operatorname{add}(_{\mathcal{A}}A_{\mathcal{A}} \oplus \mathcal{A} \otimes_{\Bbbk} \mathcal{A})$.

4 E b

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{\operatorname{op}}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

Definition. The 2-category \mathscr{C}_A of projective bimodules is defined as $\operatorname{add}(_{\mathcal{A}}A_{\mathcal{A}} \oplus \mathcal{A} \otimes_{\Bbbk} \mathcal{A})$.

ヨトイヨト

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. *A*-mod-*A* is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff $A \otimes_{\Bbbk} A^{\operatorname{op}}$ has finite representation type.

Observation. A-proj-A is closed under \otimes_A and is always "finitary", but it is only a sub-2-semicategory as the identity ${}_AA_A$ is not projective.

Definition. The 2-category \mathscr{C}_A of projective bimodules is defined as $\operatorname{add}({}_{\mathcal{A}}A_{\mathcal{A}} \oplus A \otimes_{\Bbbk} A)$.

4 E b

𝒞 — finitary 2-category. 𝔅

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \blacktriangleright % has a weak involution \star ;
- S has adjunction morphisms making each pair (F, F^{*}) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over k of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

▶ 4 Ξ ▶

- < ∃ >

\mathscr{C} — finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \blacktriangleright % has a weak involution \star ;
- S has adjunction morphisms making each pair (F, F*) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over k of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

Image: A matrix and a matrix

- < ∃ >

\mathscr{C} — finitary 2-category.

Definition. & is fiat, (a.k.a. rigid or with duals) provided that

- ▶ *C* has a weak involution ***;
- ♥ C has adjunction morphisms making each pair (F, F^{*}) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over k of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

< ∃ >

San

 \mathscr{C} — finitary 2-category.

Definition. & is fiat, (a.k.a. rigid or with duals) provided that

- ► *C* has a weak involution ★;
- C has adjunction morphisms making each pair (F, F*) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

▶ < Ξ > < Ξ > ...

𝒞 — finitary 2-category.

Definition. & is fiat, (a.k.a. rigid or with duals) provided that

- ► C has a weak involution *;

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

𝒞 — finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- ► C has a weak involution *;

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

- < 프 → - 프
Fiat/fiab

𝒞 — finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- ► C has a weak involution *;

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

(七日)) (七日)) (日日)

Fiat/fiab

𝒞 — finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- ► C has a weak involution *;
- ➤ C has adjunction morphisms making each pair (F, F^{*}) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

(七日)) (七日)) (日日)

Fiat/fiab

 \mathscr{C} — finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- ► C has a weak involution *;
- ➤ C has adjunction morphisms making each pair (F, F^{*}) into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \Bbbk of finite representation type.

Example. \mathscr{C}_A if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${}_{A}A_{A}$ is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?

+ = + + = + = = =

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

- E - E

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

4 E b

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Dual for the oplax identity I'.

590

문▶ 문

Axioms

Dual for the oplax identity I'.

-

1

Axioms

Dual for the oplax identity I'.

900

ъ

Axioms

Dual for the oplax identity I'.

590

E

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of a lax unit l_i and an oplax unit l'_i , for each object.

 \mathscr{C} — bilax unital 2-category.

 $F \in \mathscr{C}(i,j)$ and $G \in \mathscr{C}(j,i)$

Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon : FG \to I_j$ and $\eta : I'_i \to GF$ such that the compositions

$$F \to F I'_{i} \to F G F \to I_{j} F \to F$$

and

$$G \rightarrow I'_{i}G \rightarrow GFG \rightarrow GI_{j} \rightarrow G$$

are the identities

 \mathscr{C} — bilax unital 2-category.

 $F \in \mathscr{C}(\mathtt{i}, \mathtt{j}) \text{ and } G \in \mathscr{C}(\mathtt{j}, \mathtt{i})$

Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon : FG \to I_j$ and $\eta : I'_i \to GF$ such that the compositions

$$F \to FI'_{i} \to FGF \to I_{j}F \to F$$

and

$$G \to I'_i G \to GFG \to GI_j \to G$$

are the identities

 \mathscr{C} — bilax unital 2-category.

 $F\in \mathscr{C}(\mathtt{i},\mathtt{j}) \text{ and } G\in \mathscr{C}(\mathtt{j},\mathtt{i})$

Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon : FG \to I_j$ and $\eta : I'_i \to GF$ such that the compositions

$$F \to F I'_{i} \to F G F \to I_{j} F \to F$$

and

$$G \to {I'_{\mathtt{i}}} G \to {\textit{GFG}} \to {\textit{GI}}_{\mathtt{j}} \to {\textit{G}}$$

are the identities.

 \mathscr{C} — bilax unital 2-category.

 $F \in \mathscr{C}(\mathtt{i}, \mathtt{j}) \text{ and } G \in \mathscr{C}(\mathtt{j}, \mathtt{i})$

Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon : FG \to I_j$ and $\eta : I'_i \to GF$ such that the compositions

$$F \to F I'_{i} \to F G F \to I_{j} F \to F$$

and

$$G \rightarrow l'_i G \rightarrow GFG \rightarrow Gl_j \rightarrow G$$

are the identities.

 \mathscr{C} — bilax unital 2-category.

 $F \in \mathscr{C}(\mathtt{i}, \mathtt{j}) ext{ and } G \in \mathscr{C}(\mathtt{j}, \mathtt{i})$

Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon : FG \to I_j$ and $\eta : I'_i \to GF$ such that the compositions

$$F \to FI'_{i} \to FGF \to I_{j}F \to F$$

and

$$G \to {\it I_i'G} \to {\it GFG} \to {\it GI_j} \to {\it G}$$

are the identities.

Diagrammatically

E

 $\mathcal{O} \land \mathcal{O}$

Diagrammatically

590

토 > 토

Note. The adjunction defined in the way is equivalent to the classical adjunction.

Reason for that: Despite of the fact that the (op)lax units are not usually represented by the identity functors, they are represented by functors which have non-trivial natural transformations to (from) the identity functors. These allow us to compare our adjunction to the classical adjunction.

Note. The adjunction defined in the way is equivalent to the classical adjunction.

Reason for that: Despite of the fact that the (op)lax units are not usually represented by the identity functors, they are represented by functors which have non-trivial natural transformations to (from) the identity functors. These allow us to compare our adjunction to the classical adjunction.

Note. The adjunction defined in the way is equivalent to the classical adjunction.

Reason for that: Despite of the fact that the (op)lax units are not usually represented by the identity functors, they are represented by functors which have non-trivial natural transformations to (from) the identity functors. These allow us to compare our adjunction to the classical adjunction.

A — finite dimensional \Bbbk -algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathcal{D}_A is defined to have:

- objects: 1,...,n, where $\mathbf{k} \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_{\Bbbk} e_i A$ is also an oplax identity.

A — finite dimensional \Bbbk -algebra, basic, connected, self-injective, weakly symmetric

$1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

$1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $\mathbf{k} \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: $1, \ldots, n$, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_{\Bbbk} e_i A$ is also an oplax identity.
A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_{\Bbbk} e_i A$ is also an oplax identity.

DQC

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- ▶ 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_k e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_k e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

DQC

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_{\Bbbk} e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_{\Bbbk} e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_k e_i A$ is also an oplax identity.

Dac

A — finite dimensional k-algebra, basic, connected, self-injective, weakly symmetric

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

Definition. The bilax unital 2-category \mathscr{D}_A is defined to have:

- objects: 1,...,n, where $k \leftrightarrow e_k A e_k$ -mod;
- ▶ 1-morphisms: functors isomorphic to tensoring with $X \in \text{add}(Ae_i \otimes_{\Bbbk} e_j A);$
- ► 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $Ae_i \otimes_{\Bbbk} e_i A$ is a lax identity via the multiplication map $ae_i \otimes e_i b \mapsto ae_i b$ (a morphism from $Ae_i \otimes_{\Bbbk} e_i A$ to A).

Note: Using the weak involution on \mathscr{C}_A , each $Ae_i \otimes_{\Bbbk} e_i A$ is also an oplax identity.

DQC

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

$F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

\sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

$\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

 $F \sim_L G$ if and only if $\operatorname{add}(\mathscr{C} \circ F) = \operatorname{add}(\mathscr{C} \circ G)$

 \sim_R and \sim_J are defined similarly

 \mathcal{J} — an equivalence class for \sim_J (two-sided cell)

 $\mathcal{L} \subset \mathcal{J}$ — an equivalence class for \sim_L (left cell)

Observation. [Mazorchuk-Miemietz] \mathcal{L} contains a unique 1-morphism F (called Duflo element) for which there is a homomorphism $\xi : F \to \mathbb{1}_i$ such that $G(\xi)$ is right split, for every $G \in \mathcal{L}$.

I = 1

- objects are in bijection with Duflo elements in \mathcal{J} ;
- I-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- \blacktriangleright composition is induced from ${\mathscr C}$ modulo "higher" ${\mathcal J}\text{-cells.}$
- ▶ lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. F^{*}, for F Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- 1-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- ▶ composition is induced from *C* modulo "higher" *J*-cells.
- ▶ lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F*^{*}, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- 1-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- ► 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- ▶ composition is induced from *C* modulo "higher" *J*-cells.
- ▶ lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F**, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- 1-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from C modulo those which factor through "higher" J-cells.
- \blacktriangleright composition is induced from ${\mathscr C}$ modulo "higher" ${\mathcal J}\text{-cells.}$
- ▶ lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F*^{*}, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- 1-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- ► 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- \blacktriangleright composition is induced from ${\mathscr C}$ modulo "higher" ${\mathcal J}\text{-cells.}$
- ▶ lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F**, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- I-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- ► 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- \blacktriangleright composition is induced from ${\mathscr C}$ modulo "higher" ${\mathcal J}\text{-cells.}$
- ► lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F*^{*}, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- I-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- ► 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- composition is induced from \mathscr{C} modulo "higher" \mathcal{J} -cells.
- ► lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F*^{*}, for *F* Duflo).

- objects are in bijection with Duflo elements in \mathcal{J} ;
- 1-morphisms from Duflo F to Duflo G: the additive closure of the intersection of the left cell of F and the right cell of G;
- ► 2-morphisms: induced from *C* modulo those which factor through "higher" *J*-cells.
- \blacktriangleright composition is induced from ${\mathscr C}$ modulo "higher" ${\mathcal J}\text{-cells.}$
- ► lax units: Duflo 1-morphisms.
- ▶ oplax units: coDuflo 1-morphisms (i.e. *F*^{*}, for *F* Duflo).

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of II

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

200

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of II

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

200

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of $\ \operatorname{II} igodot_{II}$

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of
$$II \underbrace{\stackrel{h_1}{\underset{r_1}{\longrightarrow}}}_{r_1} I$$
.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of
$$II \underbrace{\stackrel{h_1}{\underset{r_1}{\longrightarrow}}}_{r_1} I$$
.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

- E - E

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of
$$II \underbrace{\stackrel{l_1}{\underset{r_1}{\longrightarrow}}}_{r_1} I$$
.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

4 E b

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of
$$II \underbrace{\stackrel{l_1}{\underset{r_1}{\longrightarrow}}}_{r_1} I$$
.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of
$$II \underbrace{\stackrel{l_1}{\underset{r_1}{\longrightarrow}}}_{r_1} I$$
.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

THANK YOU!!!

Volodymyr Mazorchuk Adjunction in the absence of identity 18/18

▲ 三 ▶ 三 ∽ ९ ()

∃ ⊳