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Classical adjoint functors

C, D — two categories

F : C → D — functor

G : D → C — functor

Definition. We say that (F ,G ) is an adjoint pair of functors provided
that, for each X ∈ C and Y ∈ D, there are isomorphisms
D(F X ,Y ) ∼= C(X ,G Y ) natural in X and Y .

Claim. (F ,G ) is an adjoint pair of functors iff there exist adjunction
morphisms ε : FG → IdD and η : IdC → GF such that

(ε ◦h idF ) ◦v (idF ◦h η) = idF (idG ◦h ε) ◦v (η ◦h idG ) = idG ,

that is, the compositions

F → FGF → F and G → GFG → G

are the identities.
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Adjoint objects of (strict) monoidal categories

C — (strict) monoidal category

F ,G — two objects in C

Definition. We say that (F ,G ) is an adjoint pair of objects provided
that there exist morphisms ε : FG → 1C and η : 1C → GF such that

(ε ◦h idF ) ◦v (idF ◦h η) = idF (idG ◦h ε) ◦v (η ◦h idG ) = idG .

Note. This extends to 2-categories in the obvious way.

Question. Is it possible to get rid of 1C ?
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Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Motivation: finitary 2-categories/bicategories

C — 2-category

Definition. C is called finitary over some field k provided that
I it has finitely many objects;
I each C(i, j) is equivalent to the category of projective modules over

a finite dimensional k-algebra;
I compositions are biadditive and k-bilinear.
I identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf
algebra over k of finite representation type.

Volodymyr Mazorchuk Adjunction in the absence of identity 5/18



Problematic example: projective bimodules

A — finite dimensional algebra (basic, connected, not semi-simple).

A-mod-A — the category of A-A-bimodules (or, rather, its strictification)

Note. A-mod-A is monoidal (= 2-category with one object)

Note. A-mod-A is finitary iff A⊗k A
op has finite representation type.

Observation. A-proj-A is closed under ⊗A and is always “finitary”, but it
is only a sub-2-semicategory as the identity AAA is not projective.

Definition. The 2-category CA of projective bimodules is defined as
add(AAA ⊕ A⊗k A).
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Fiat/fiab

C — finitary 2-category.

Definition. C is fiat, (a.k.a. rigid or with duals) provided that
I C has a weak involution ?;
I C has adjunction morphisms making each pair (F ,F ?) into a pair of

adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over k of finite
representation type.

Example. CA if A is self-injective and the top of each projective is
isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity AAA is crucial for adjunction morphism.

Question. Can we still get rid of it, preserving the structure?
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The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have
any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite
groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite
semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.
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Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different)
oplax identity.

Credit for the idea: Marco Mackaay.

Cheating? Not really, in representations, (op)lax identities are usually
not represented by the identity functors.

Lax identity. I together with I ◦h F lF−→ F and F ◦h I rF−→ F, for each F,
natural in F.

F

FI

G

G I
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Axioms
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New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of
a lax unit Ii and an oplax unit I ′i, for each object.

C — bilax unital 2-category.

F ∈ C(i, j) and G ∈ C(j, i)

Definition. (F ,G ) is a pair of adjoint 1-morphisms in C provided that
there exist ε : FG → Ij and η : I ′i → GF such that the compositions

F → FI ′i → FGF → IjF → F

and
G → I ′iG → GFG → GIj → G

are the identities.
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Diagrammatically

F

I’

G

F

I

=

F

F and G

I’

F

G

I

=

G

G (1)
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New setup: remarks

Note. The adjunction defined in the way is equivalent to the classical
adjunction.

Reason for that: Despite of the fact that the (op)lax units are not
usually represented by the identity functors, they are represented by
functors which have non-trivial natural transformations to (from) the
identity functors. These allow us to compare our adjunction to the
classical adjunction.
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Example

A — finite dimensional k-algebra, basic, connected, self-injective, weakly
symmetric

1 = e1 + e2 + · · ·+ en — primitive decomposition of 1 ∈ A

Definition. The bilax unital 2-category DA is defined to have:
I objects: 1, . . . , n, where k↔ ekAek -mod;
I 1-morphisms: functors isomorphic to tensoring with

X ∈ add(Aei ⊗k ejA);
I 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each Aei ⊗k eiA is a lax identity via the multiplication map
aei ⊗ eib 7→ aeib (a morphism from Aei ⊗k eiA to A).

Note: Using the weak involution on CA, each Aei ⊗k eiA is also an oplax
identity.
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Generalization: bilax 2-categories of J -cell, preliminaries

C — fiat

F ∼L G if and only if add(C ◦ F ) = add(C ◦ G )

∼R and ∼J are defined similarly

J — an equivalence class for ∼J (two-sided cell)

L ⊂ J — an equivalence class for ∼L (left cell)

Observation. [Mazorchuk-Miemietz] L contains a unique 1-morphism F
(called Duflo element) for which there is a homomorphism ξ : F → 1i

such that G (ξ) is right split, for every G ∈ L.
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Generalization: bilax 2-categories of J -cell, definition

Definition. The bilax unital 2-category DJ is defined to have:
I objects are in bijection with Duflo elements in J ;
I 1-morphisms from Duflo F to Duflo G : the additive closure of the

intersection of the left cell of F and the right cell of G ;
I 2-morphisms: induced from C modulo those which factor through

“higher” J -cells.
I composition is induced from C modulo “higher” J -cells.
I lax units: Duflo 1-morphisms.
I oplax units: coDuflo 1-morphisms (i.e. F ?, for F Duflo).
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Discussion

This allows us to define a setup in which we can talk about adjoint
1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in
particular, they are closed under composition).

The genuine identity is the coequalizer of II
lI
''

rI

77 I .

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories
generalize (sometimes in a “cleaner” form).

Very technical.

Many open questions.
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THANK YOU!!!
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