2rounction in the abfence identity

Volodymyr $\mathfrak{M a j o r d}$)ue

($\mathfrak{H p p} \mathfrak{c a l a} \mathfrak{U n i p e r f i t y) ~}$

Topological ©uantum field ©beory thenatic feffion 2020

Coauthors

Joint with

Hankyung Ko (Uppsala University)

Xiaoting Zhang (Uppsala University/Capital Normal University, Beijing)

Classical adjoint functors

Classical adjoint functors

\mathcal{C}, \mathcal{D} - two categories

Classical adjoint functors

\mathcal{C}, \mathcal{D} - two categories
$F: \mathcal{C} \rightarrow \mathcal{D}$ - functor

Classical adjoint functors

\mathcal{C}, \mathcal{D} - two categories
$F: \mathcal{C} \rightarrow \mathcal{D}$ - functor
$G: \mathcal{D} \rightarrow \mathcal{C}$ - functor

Classical adjoint functors

\mathcal{C}, \mathcal{D} - two categories
$F: \mathcal{C} \rightarrow \mathcal{D}$ - functor
$G: \mathcal{D} \rightarrow \mathcal{C}$ - functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, there are isomorphisms $\mathcal{D}(F X, Y) \cong \mathcal{C}(X, G Y)$ natural in X and Y.
that is, the compositions

Classical adjoint functors

\mathcal{C}, \mathcal{D} - two categories
$F: \mathcal{C} \rightarrow \mathcal{D}$ - functor
$G: \mathcal{D} \rightarrow \mathcal{C}$ - functor

Definition. We say that (F, G) is an adjoint pair of functors provided that, for each $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, there are isomorphisms $\mathcal{D}(F X, Y) \cong \mathcal{C}(X, G Y)$ natural in X and Y.

Claim. (F, G) is an adjoint pair of functors iff there exist adjunction morphisms $\varepsilon: F G \rightarrow \operatorname{Id}_{\mathcal{D}}$ and $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow G F$ such that

$$
\left(\varepsilon \circ_{h} \mathrm{id}_{F}\right) \circ_{v}\left(\mathrm{id}_{F} \circ_{h} \eta\right)=\operatorname{id}_{F} \quad\left(\mathrm{id}_{G} \circ_{h} \varepsilon\right) \circ_{V}\left(\eta \circ_{h} \operatorname{id}_{G}\right)=\operatorname{id}_{G}
$$

that is, the compositions

$$
F \rightarrow F G F \rightarrow F \quad \text { and } \quad G \rightarrow G F G \rightarrow G
$$

are the identities.

Adjoint objects of (strict) monoidal categories

Adjoint objects of (strict) monoidal categories

\mathscr{C} - (strict) monoidal category

Adjoint objects of (strict) monoidal categories

\mathscr{C} - (strict) monoidal category
F, G - two objects in \mathscr{C}

Adjoint objects of (strict) monoidal categories

\mathscr{C} - (strict) monoidal category
$F, G-$ two objects in \mathscr{C}
Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon: F G \rightarrow \mathbb{1}_{\mathscr{C}}$ and $\eta: \mathbb{1}_{\mathscr{C}} \rightarrow G F$ such that

$$
\left(\varepsilon \circ_{h} \operatorname{id}_{F}\right) \circ_{V}\left(\operatorname{id}_{F} \circ_{h} \eta\right)=\operatorname{id}_{F} \quad\left(\operatorname{id}_{G} \circ_{h} \varepsilon\right) \circ_{V}\left(\eta \circ_{h} \operatorname{id}_{G}\right)=\operatorname{id}_{G} .
$$

Adjoint objects of (strict) monoidal categories

\mathscr{C} - (strict) monoidal category
$F, G-$ two objects in \mathscr{C}
Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon: F G \rightarrow \mathbb{1}_{\mathscr{C}}$ and $\eta: \mathbb{1}_{\mathscr{C}} \rightarrow G F$ such that

$$
\left(\varepsilon \circ_{h} \operatorname{id}_{F}\right) \circ_{V}\left(\operatorname{id}_{F} \circ_{h} \eta\right)=\operatorname{id}_{F} \quad\left(\operatorname{id}_{G} \circ_{h} \varepsilon\right) \circ_{V}\left(\eta \circ_{h} \operatorname{id}_{G}\right)=\operatorname{id}_{G} .
$$

Note. This extends to 2 -categories in the obvious way.
Question. Is it possible to get rid of

Adjoint objects of (strict) monoidal categories

\mathscr{C} - (strict) monoidal category
F, G - two objects in \mathscr{C}
Definition. We say that (F, G) is an adjoint pair of objects provided that there exist morphisms $\varepsilon: F G \rightarrow \mathbb{1}_{\mathscr{C}}$ and $\eta: \mathbb{1}_{\mathscr{C}} \rightarrow G F$ such that

$$
\left(\varepsilon \circ_{h} \operatorname{id}_{F}\right) \circ_{V}\left(\operatorname{id}_{F} \circ_{h} \eta\right)=\operatorname{id}_{F} \quad\left(\operatorname{id}_{G} \circ_{h} \varepsilon\right) \circ_{V}\left(\eta \circ_{h} \operatorname{id}_{G}\right)=\operatorname{id}_{G} .
$$

Note. This extends to 2-categories in the obvious way.
Question. Is it possible to get rid of $\mathbb{1}_{\mathscr{C}}$?

Motivation: finitary 2-categories/bicategories

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

- it has finitely many objects;

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

- it has finitely many objects;
- each $\mathscr{C}(i, j)$ is equivalent to the category of projective modules over a finite dimensional \mathbb{k}-algebra;

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

- it has finitely many objects;
- each $\mathscr{C}(i, j)$ is equivalent to the category of projective modules over a finite dimensional \mathbb{k}-algebra;
- compositions are biadditive and \mathbb{k}-bilinear.

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

- it has finitely many objects;
- each $\mathscr{C}(i, j)$ is equivalent to the category of projective modules over a finite dimensional \mathbb{k}-algebra;
- compositions are biadditive and \mathbb{k}-bilinear.
- identity 1-morphisms are indecomposable.

Example.

Motivation: finitary 2-categories/bicategories

\mathscr{C} - 2-category
Definition. \mathscr{C} is called finitary over some field \mathbb{k} provided that

- it has finitely many objects;
- each $\mathscr{C}(i, j)$ is equivalent to the category of projective modules over a finite dimensional \mathbb{k}-algebra;
- compositions are biadditive and \mathbb{k}-bilinear.
- identity 1-morphisms are indecomposable.

Example. Finite dimensional modules over a finite dimensional Hopf algebra over \mathbb{k} of finite representation type.

Problematic example: projective bimodules

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).
A-mod- A - the category of A - A-bimodules (or, rather, its strictification)

Note. A-mod- A is monoidal (=2-category with one object)

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).
A-mod- A - the category of A - A-bimodules (or, rather, its strictification)
Note. A-mod- A is monoidal (=2-category with one object)

Observation.

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).
A-mod- A - the category of $A-A$-bimodules (or, rather, its strictification)
Note. A-mod- A is monoidal (=2-category with one object)
Note. A-mod- A is finitary iff $A \otimes_{\mathfrak{k}} A^{\mathrm{op}}$ has finite representation type.
Observation.

Definition.

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).
A-mod- A - the category of A - A-bimodules (or, rather, its strictification)
Note. A-mod- A is monoidal (=2-category with one object)
Note. A-mod- A is finitary iff $A \otimes_{\mathfrak{k}} A^{\mathrm{op}}$ has finite representation type.

Observation. A-proj- A is closed under \otimes_{A} and is always "finitary", but it is only a sub-2-semicategory as the identity ${ }_{A} A_{A}$ is not projective.

Problematic example: projective bimodules

A - finite dimensional algebra (basic, connected, not semi-simple).
A-mod- A - the category of A - A-bimodules (or, rather, its strictification)
Note. A-mod- A is monoidal (=2-category with one object)
Note. A-mod- A is finitary iff $A \otimes_{\mathfrak{k}} A^{\mathrm{op}}$ has finite representation type.

Observation. A-proj- A is closed under \otimes_{A} and is always "finitary", but it is only a sub-2-semicategory as the identity ${ }_{A} A_{A}$ is not projective.

Definition. The 2-category \mathscr{C}_{A} of projective bimodules is defined as $\operatorname{add}\left({ }_{A} A_{A} \oplus A \otimes_{\mathbb{k}} A\right)$.

Fiat/fiab

Fiat/fiab

\mathscr{C} - finitary 2-category.

Fiat/fiab

\mathscr{C} - finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

Fiat/fiab

\mathscr{C} - finitary 2-category.

Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;

Fiat/fiab

\mathscr{C} - finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;
- \mathscr{C} has adjunction morphisms making each pair $\left(F, F^{\star}\right)$ into a pair of adjoint 1-morphisms.

Fiat/fiab

\mathscr{C} - finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;
- \mathscr{C} has adjunction morphisms making each pair $\left(F, F^{\star}\right)$ into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \mathbb{k} of finite representation type.

Note. The identity ${ }_{A} A_{A}$ is crucial for adjunction morphism.

Fiat/fiab

\mathscr{C} — finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;
- \mathscr{C} has adjunction morphisms making each pair $\left(F, F^{\star}\right)$ into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \mathbb{k} of finite representation type.

Example. \mathscr{C}_{A} if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note.

Question.

Fiat/fiab

\mathscr{C} - finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;
- \mathscr{C} has adjunction morphisms making each pair $\left(F, F^{\star}\right)$ into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \mathbb{k} of finite representation type.

Example. \mathscr{C}_{A} if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${ }_{A} A_{A}$ is crucial for adjunction morphism.

Fiat/fiab

\mathscr{C} - finitary 2-category.
Definition. \mathscr{C} is fiat, (a.k.a. rigid or with duals) provided that

- \mathscr{C} has a weak involution \star;
- \mathscr{C} has adjunction morphisms making each pair $\left(F, F^{\star}\right)$ into a pair of adjoint 1-morphisms.

Example. Modules over a finite dimensional Hopf algebra over \mathbb{k} of finite representation type.

Example. \mathscr{C}_{A} if A is self-injective and the top of each projective is isomorphic to its socle (i.e. A is weakly symmetric).

Note. The identity ${ }_{A} A_{A}$ is crucial for adjunction morphism.
Question. Can we still get rid of it, preserving the structure?

The significance of the identity: semigroup detour

The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly

The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.
Answer for monoids. Simple finite monoids are exactly

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.

Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion.

The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.
Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion.

The significance of the identity: semigroup detour

Definition. A semigroup/monoid S is called simple if it does not have any non-trivial quotients.

Problem. Classify all simple finite semigroups/monoids.
Answer for monoids. Simple finite monoids are exactly simple finite groups and the boolean monoid.

Observation related to semigroups. There are plenty of simple finite semigroups which are not monoids (they are classified).

Conclusion. Existence of the identity is a very serious restriction.

Idea for the solution

Credit for the idea: Marco Mackaay.

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.
Cheating?

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.
Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.
Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Lax identity. I together with $\mathrm{I} \circ_{h} \mathrm{~F} \xrightarrow{\mathrm{I}_{\mathrm{F}}} \mathrm{F}$ and $\mathrm{F} \circ_{h} \mathrm{I} \xrightarrow{r_{\mathrm{F}}} \mathrm{F}$, for each F , natural in F .

Idea for the solution

Idea. Substitute the identity by a lax identity and (possibly different) oplax identity.

Credit for the idea: Marco Mackaay.
Cheating? Not really, in representations, (op)lax identities are usually not represented by the identity functors.

Lax identity. I together with $\mathrm{I} \circ_{h} \mathrm{~F} \xrightarrow{\mathrm{I}_{\mathrm{F}}} \mathrm{F}$ and $\mathrm{F} \circ_{h} \mathrm{I} \xrightarrow{r_{\mathrm{F}}} \mathrm{F}$, for each F , natural in F .

Axioms

Axioms

Axioms

Axioms

Dual for the oplax identity I^{\prime}.

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of a lax unit I_{i} and an oplax unit I_{i}^{\prime}, for each object.

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of a lax unit I_{i} and an oplax unit I_{i}^{\prime}, for each object.
\mathscr{C} - bilax unital 2-category.

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of a lax unit I_{i} and an oplax unit I_{i}^{\prime}, for each object.
\mathscr{C} - bilax unital 2-category.
$F \in \mathscr{C}(\mathrm{i}, \mathrm{j})$ and $G \in \mathscr{C}(\mathrm{j}, \mathrm{i})$

New setup: definitions

Definition. A bilax unital 2-category is a 2-semicategory with a choice of a lax unit I_{i} and an oplax unit I_{i}^{\prime}, for each object.
\mathscr{C} - bilax unital 2-category.
$F \in \mathscr{C}(\mathrm{i}, \mathrm{j})$ and $G \in \mathscr{C}(\mathrm{j}, \mathrm{i})$
Definition. (F, G) is a pair of adjoint 1-morphisms in \mathscr{C} provided that there exist $\varepsilon: F G \rightarrow I_{\mathrm{j}}$ and $\eta: l_{\mathrm{i}}^{\prime} \rightarrow G F$ such that the compositions

$$
F \rightarrow F I_{\mathrm{i}}^{\prime} \rightarrow F G F \rightarrow I_{\mathrm{j}} F \rightarrow F
$$

and

$$
G \rightarrow I_{i}^{\prime} G \rightarrow G F G \rightarrow G I_{j} \rightarrow G
$$

are the identities.

Diagrammatically

Diagrammatically

New setup: remarks

Note. The adjunction defined in the way is equivalent to the classical adjunction.

Reason for that: Despite of the fact that the (op)lax units are not usually represented by the identity functors, they are represented by functors which have non-trivial natural transformations to (from) the dentity functors. These allow us to compare our adjunction to the

New setup: remarks

Note. The adjunction defined in the way is equivalent to the classical adjunction.

New setup: remarks

Note. The adjunction defined in the way is equivalent to the classical adjunction.

Reason for that: Despite of the fact that the (op)lax units are not usually represented by the identity functors, they are represented by functors which have non-trivial natural transformations to (from) the identity functors. These allow us to compare our adjunction to the classical adjunction.

Example

primitive decomposition of $1 \in A$

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;
- 1-morphisms: functors isomorphic to tensoring with $X \in \operatorname{add}\left(A e_{i} \otimes_{k} e_{j} A\right) ;$

Observe: No genuine identities!!!!

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;
- 1-morphisms: functors isomorphic to tensoring with $X \in \operatorname{add}\left(A e_{i} \otimes_{k} e_{j} A\right)$;
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!
Note: Each $A e_{i} \otimes_{\mathbb{k}} e_{i} A$ is a lax identity via the multiplication map

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;
- 1-morphisms: functors isomorphic to tensoring with $X \in \operatorname{add}\left(A e_{i} \otimes_{\mathbb{k}} e_{j} A\right)$;
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!
Note: Each $A e_{i} \otimes_{\mathbb{k}} e_{i} A$ is a lax identity via the multiplication map

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;
- 1-morphisms: functors isomorphic to tensoring with $X \in \operatorname{add}\left(A e_{i} \otimes_{\mathbb{k}} e_{j} A\right)$;
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $A e_{i} \otimes_{k} e_{i} A$ is a lax identity via the multiplication map $a e_{i} \otimes e_{i} b \mapsto a e_{i} b$ (a morphism from $A e_{i} \otimes_{\mathbf{k}} e_{i} A$ to A).

Example

A - finite dimensional \mathbb{k}-algebra, basic, connected, self-injective, weakly symmetric
$1=e_{1}+e_{2}+\cdots+e_{n}$ - primitive decomposition of $1 \in A$
Definition. The bilax unital 2-category \mathscr{D}_{A} is defined to have:

- objects: $1, \ldots, \mathrm{n}$, where $\mathrm{k} \leftrightarrow e_{k} A e_{k}$-mod;
- 1-morphisms: functors isomorphic to tensoring with $X \in \operatorname{add}\left(A e_{i} \otimes_{\mathbb{k}} e_{j} A\right)$;
- 2-morphisms: natural transformations of functors.

Observe: No genuine identities!!!!

Note: Each $A e_{i} \otimes_{k} e_{i} A$ is a lax identity via the multiplication map $a e_{i} \otimes e_{i} b \mapsto a e_{i} b$ (a morphism from $A e_{i} \otimes_{k} e_{i} A$ to A).

Note: Using the weak involution on \mathscr{C}_{A}, each $A e_{i} \otimes_{k} e_{i} A$ is also an oplax identity.

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} —fiat

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} - fiat
$F \sim_{L} G$ if and only if $\operatorname{add}(\mathscr{C} \circ F)=\operatorname{add}(\mathscr{C} \circ G)$

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} - fiat
$F \sim_{L} G$ if and only if $\operatorname{add}(\mathscr{C} \circ F)=\operatorname{add}(\mathscr{C} \circ G)$
\sim_{R} and \sim_{J} are defined similarly

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} - fiat
$F \sim_{L} G$ if and only if $\operatorname{add}(\mathscr{C} \circ F)=\operatorname{add}(\mathscr{C} \circ G)$
\sim_{R} and \sim_{J} are defined similarly
\mathcal{J} - an equivalence class for \sim_{J} (two-sided cell)

Observation.

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} - fiat
$F \sim_{L} G$ if and only if $\operatorname{add}(\mathscr{C} \circ F)=\operatorname{add}(\mathscr{C} \circ G)$
\sim_{R} and \sim_{J} are defined similarly
\mathcal{J} - an equivalence class for \sim_{\jmath} (two-sided cell)
$\mathcal{L} \subset \mathcal{J}$ - an equivalence class for \sim_{L} (left cell)
Observation.
(called Duflo e
such that $G(\xi)$

Generalization: bilax 2-categories of \mathcal{J}-cell, preliminaries

\mathscr{C} - fiat
$F \sim_{L} G$ if and only if $\operatorname{add}(\mathscr{C} \circ F)=\operatorname{add}(\mathscr{C} \circ G)$
\sim_{R} and \sim_{J} are defined similarly
\mathcal{J} - an equivalence class for \sim_{\jmath} (two-sided cell)
$\mathcal{L} \subset \mathcal{J}$ - an equivalence class for \sim_{L} (left cell)
Observation. [Mazorchuk-Miemietz] \mathcal{L} contains a unique 1-morphism F (called Duflo element) for which there is a homomorphism $\xi: F \rightarrow \mathbb{1}_{i}$ such that $G(\xi)$ is right split, for every $G \in \mathcal{L}$.

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category $\mathscr{D}_{\boldsymbol{J}}$ is defined to have:

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category \mathscr{D}_{J} is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category \mathscr{D}_{J} is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};
- 1-morphisms from Duflo F to Duflo G : the additive closure of the intersection of the left cell of F and the right cell of G;

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category $\mathscr{D}_{\boldsymbol{J}}$ is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};
- 1-morphisms from Duflo F to Duflo G : the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from \mathscr{C} modulo those which factor through "higher" \mathcal{J}-cells.

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category $\mathscr{D} J$ is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};
- 1-morphisms from Duflo F to Duflo G : the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from \mathscr{C} modulo those which factor through "higher" \mathcal{J}-cells.
- composition is induced from \mathscr{C} modulo "higher" \mathcal{J}-cells.

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category $\mathscr{D} J$ is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};
- 1-morphisms from Duflo F to Duflo G : the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from \mathscr{C} modulo those which factor through "higher" \mathcal{J}-cells.
- composition is induced from \mathscr{C} modulo "higher" \mathcal{J}-cells.
- lax units: Duflo 1-morphisms.

Generalization: bilax 2-categories of \mathcal{J}-cell, definition

Definition. The bilax unital 2-category $\mathscr{D} J$ is defined to have:

- objects are in bijection with Duflo elements in \mathcal{J};
- 1-morphisms from Duflo F to Duflo G : the additive closure of the intersection of the left cell of F and the right cell of G;
- 2-morphisms: induced from \mathscr{C} modulo those which factor through "higher" \mathcal{J}-cells.
- composition is induced from \mathscr{C} modulo "higher" \mathcal{J}-cells.
- lax units: Duflo 1-morphisms.
- oplax units: coDuflo 1-morphisms (i.e. F^{\star}, for F Duflo).

Discussion

This allows us to define a setup in which we can talk about adjoint
1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

Discussion

This allows us to define a setup in which we can talk about adjoint 1 -morphisms without having genuine identities.

Discussion

This allows us to define a setup in which we can talk about adjoint 1 -morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

Good case: Unitors split (true in our main examples)

Discussion

This allows us to define a setup in which we can talk about adjoint 1 -morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

Good case: Unitors split (true in our main examples)

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form)

Discussion

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

Good case: Unitors split (true in our main examples).
\qquad generalize (sometimes in a "cleaner" form)

Discussion

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of $\mathrm{II} \xrightarrow[r_{\mathrm{I}}]{\xrightarrow{l_{\mathrm{I}}}} \mathrm{I}$.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Discussion

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of $\mathrm{II} \xrightarrow[r_{\mathrm{I}}]{\xrightarrow{l_{\mathrm{I}}}} \mathrm{I}$.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Discussion

This allows us to define a setup in which we can talk about adjoint 1-morphisms without having genuine identities.

A lot of choice involved: (op)lax identities are in no way unique (in particular, they are closed under composition).

The genuine identity is the coequalizer of $\mathrm{II} \xrightarrow[r_{\mathrm{I}}]{\xrightarrow{l_{\mathrm{I}}}} \mathrm{I}$.

Good case: Unitors split (true in our main examples).

Some results from 2-representation theory of finitary 2-categories generalize (sometimes in a "cleaner" form).

Very technical.

Many open questions.

THANK YOU!!!

