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Introduction and motivation

Qubit state: Not a coin flip!

o Quantum superposition
W) =c1]0)+e2 1) leads to several phenomena

2 qubit state:

V) 45 = €1]00) 4+ c2 |11) Quantum entanglement

V)ap = (0) +[1) 4 @ (10) +[1))p s separable

Classical correlations are introduced via the
density matrix representation of the state:

p =D Wl) <¢1’ + po WQ) <¢2’ This is a coin flip!

Is a state entangled or separable?

If pap = Zpi ot @ pP  state is separable.
i
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Introduction and motivation

Much of quantum information revolves around the following:

Given a quantum state, how much entangled is it?

How to usefully quantify/classify entanglement?

. A o B
Bipartite entanglement: PAB = Zpi Pi D P
i

L PA—(BCD)  PB—(ACD)
Multipartite entanglement: +

. . P(AB)—(CD)
PC—-(ABD) PD—(ABQC)

Given a desired entanglement property, how to find a state associated to it?
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a <O
GHZ) = \%(|000> +111)) (0
c <O

(Entangled / separable) qubits

GHZ) =
CHZ) =

QHZ) =

Measuring a qubit Cutting a ring

(GHZ)
(1997)

P.K. ARAVIND

BORROMEAN ENTANGLEMENT OF THE GHZ STATE*

In this paper, I will point out some curious connections between entangled
quantum states g.nd classical knot configurations. In particular, I will show that the

Sep.)
Sep.)
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Sugita (2006)

Borromean Entanglement Revisited

Ayumu Sugita *
Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

Tracing a qubit Cutting a ring

Partial trace over subsystem B

pas =Y pijw lik) (j
ijkl

pa =Trplpap] = Z (KLY pigrr |2) (71
ikl
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A formalism to study links

Definition: Two links are equivalent if the results of all possible ring
cuts are the same. (Link equivalence criterion)

- 1 letter to each ring a— 0 0
- Cutting a ring = set variable to 0
- - - P(2}) = ab
- Product of variables = rings are linked
- No linked ri = pol ial is 0
o linked rings = polynomial is b0 0

Hopf link

& Link class 2!




Rules to construct polynomials:

1) Only powers of 1. (aab is superfluous)

2) Each variable must appear at least once. (we want all rings linked)

3) No first order terms. (same as above)

4) Relabeling is irrelevant.

5) An n-variable term M is irrelevant if all variables already appear as a
smaller n-ring link polynomial. (E.g. abc+ab+ac is the same as ab+ac
since setting each variable to 0 gives the same outcomes.)



Rules to construct polynomials:

1) Only powers of 1. (aab is superfluous)

2) Each variable must appear at least once. (we want all rings linked)

3) No first order terms. (same as above)

4) Relabeling is irrelevant.

5) An n-variable term M is irrelevant if all variables already appear as a
smaller n-ring link polynomial. (E.g. abc+ab+ac is the same as ab+ac
since setting each variable to 0 gives the same outcomes.)

Full 3 ring case abc

P(3') = abc

38 ——0

P(3%) = ab + ac P(3*) = ab + ac + be

3
33—;>0 @ 34 ——— 9l
\_>21



Rules to construct polynomials:

1) Only powers of 1. (aab is superfluous)

2) Each variable must appear at least once. (we want all rings linked)

3) No first order terms. (same as above)

4) Relabeling is irrelevant.

5) An n-variable term M is irrelevant if all variables already appear as a
smaller n-ring link polynomial. (E.g. abc+ab+ac is the same as ab+ac
since setting each variable to 0 gives the same outcomes.)

Full 3 ring case abc

P(3') = abc P(3%) = abc + ab

32 ——0

1
\H21

38 ——0

P(3%) = ab + ac P(3*) = ab + ac + be

3
33—;>0 @ 34 ——— 9l
\_>21



Three ring classes constructed from the basis: {abc, ab, ac, bc}

P(3') = abe P(3%) = abc+ab P(3%) =ab+ac , P(3*) =ab+ac+be



Three ring classes constructed from the basis: {abc, ab, ac, bc}

P(3') = abe P(3%) = abc+ab P(3%) =ab+ac , P(3*) =ab+ac+be

Four ring basis: {abcd, abe, abd, acd, bed, ab, ac, ad, be, bd, cd}
Hbasis =2V — N — 1



Three ring classes constructed from the basis: {abc, ab, ac, bc}

P(3') = abe P(3%) = abc+ab P(3%) =ab+ac , P(3*) =ab+ac+be

Four ring basis: {abcd, abe, abd, acd, bed, ab, ac, ad, be, bd, cd}
Hbasis =2V — N — 1

40 Link classes for 4 rings

P(4') = abed ,

P(42) = abed + abe, P(4') = abe + ad + bd + cd, P(428) = abe + abd + acd + ab,

P(4%) = abed + abe + ab. P(4%%) = abc + ab + ad + bd, P(4*) = abc + abd + acd + be,

P(4%) = abed + ab, P(4'7") = abc + ab + ad + cd P(43°) = abc + abd + acd + ab + cd
P(4°) = abed + ab + ac, P(4'%) =abc+ab+ad+bd+cd,  P(4%') = abe + abd + acd + be + bd,
P(4°) = abed + ab + cd, P(4') = abc + abd + ab, P(43%) = abe + abd + acd + be + bd + cd ,
P(47) = abed + ab + ac + be, P(4?") = abe + abd + ac, P(4%3) = abc + abd + acd + bed + ab,
P(48) = abe + abd, P(4°") = abc + abd + cd, P(4**) = abc + abd + acd + bed + ab + cd,
P(4°) = abe + abd + acd, P(4*2) = abc + abd + ab + cd, P(4%°) = ab+ ac + ad,

P(4'%) = abe + abd + acd + bed,  P(4%°) = abe + abd + ac + ad, P(4%°) = ab + ac + bd,,

P(4H) — abc+ ad 73(424) = abc + abd + ac + ed P(437) ab+ ac + ad + be,

P(41%) = abe + ab + ad, P(4*°) = abe + abd + ac + bd, P(4%%) = ab + ac + bd + cd

P(4'3) = abe + ad + bd P(4%%) = abc + abd + ac + ad + cd, P(4%%) = ab + ac + ad + be + bd,
P(4') = abc + ab + cd, P(4%7) = abc + abd + ac + bd + cd, P(41%) = ab + ac + ad + be + bd + cd..
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P (41) — abed

41 = |0000) + [1111)

GHZ-like states

1
2'),; = —=(100);; + |11);),

V2
1
I

13%) ik = EUOOO)W + [111);1),
1

1

4) i = EUOOOO)UH + [1111); 1),
1
INY = —=(00...); +[11...);.),

V2

Brunnian links

Liang & Mislow 1997
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{abed, abe, abd, acd, bed, ab, ac, ad, be, bd, cd}

P (421) = abc + abd + cd

=



{abed, abe, abd, acd, bed, ab, ac, ad, be, bd, cd}

P (4*') = abc + abd + cd
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Link Representation
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____________

Just connect the ends with no additional intersections!
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Rules to construct polynomials:

1) Only powers of 1. (aab is superfluous)

2) Each variable must appear at least once. (we want all rings linked)
3) No first order terms. (same as above)

4) Relabeling is irrelevant.

5) An n-variable term M is irrelevant if all variables already appear as a

smaller n-ring link polynomial. (e.g. abc+ab+ac is the same as ab+ac
since setting each variable to 0 gives the same outcomes.)

Plug rules into a code
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Rules to construct polynomials:

1) Only powers of 1. (aab is superfluous)

2) Each variable must appear at least once. (we want all rings linked)
3) No first order terms. (same as above)

4) Relabeling is irrelevant.

5) An n-variable term M is irrelevant if all variables already appear as a

smaller n-ring link polynomial. (e.g. abc+ab+ac is the same as ab+ac
since setting each variable to 0 gives the same outcomes.)

Plug rules into a code
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Full 3 ring case a bc

P(3') = abc P(3%) = abc + ab

32 ——0

1
\H21

31 ——0

P(3%) = ab + ac P(3*) = ab + ac + be

3

1 What link class does this

|?7D> — —3(|000>abc _|_ |111>abc _|_ |001>abc) state belong to?
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Separability Criterion for Density Matrices

Asher Peres*®

Department of Physics, Technion—Israel Institute of Technology, 32 000, Haifa, Israel
(Received 8 April 1996)

Separability of mixed states: necessary and sufficient conditions
Michat Horodecki?, Pawel Horodecki®, Ryszard Horodecki ©

4 Department of Mathematics and Physics. University of Gdarisk. 80-952 Gdarisk, Poland
" Faculty of Applied Physics and Mathematics. Technical University of Gdarisk, 80-952 Gdarisk. Poland
€ Institute of Theoretical Physics and Astrophysics, University of Gdarisk, 80-952 Gdarisk, Poland

Recetved 24 June 1996; accepted for publication 9 September 1996
Communicated by V.M. Agranovich

PRL 77.1413 (1996)

PLA 223.1 (1996)

Peres-Horodecki criterion Positive Partial Transposition criterion (PPT)
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What link class does this
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+ 1001
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From states to links
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From states to links

1 What link class does this
= ——(|000 111 001
W> \/g(‘ >abc T | >abc + ‘ >abc) state belong to?
PPT

Pabe = | V) (¢ Ent. All 3 rings are linked. abc
_|_

Pap = trc :pAabc: Ent. a and b are linked. ab
_ _ +

Pac = tTb|Pabe. Sep. a and c are not linked. 0
_ _ +

Pbe = g |Pabe] Sep. b and ¢ are not linked. 0

P(3*) = abc + ab
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From links to states

Starting from the polynomial, how can we
obtain a representative state? (“qubit map")

|deally, we would want a pure state map. For now, we
only have a mixed state (incomplete) one.

Basic block for each term in P : |Ent. qubits) [Sep. qubits) |Extra qudit)
P(3%) = ab + ac

[5) = 112" oy la1) . [0)y + 212" o0 la2)y 1)
-~

~ 33 tId [’¢3> <¢3H Plug in a COde and flnd l:lle
pabc( ) -
<¢3|¢3> free parameters.
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Applications

What is the physical advantage of using link classification for entanglement?

Pabe entangled

Alice Charlie
o o
o
Bob If Pab = tre[Pabe is separable, Alice and Bob will never be able

to perform protocols without the help of Charlie.

SLOCC classification Link classification
States of a class can States of a class have the same
perform the same protocols. restrictions regarding successful

protocol performance.

Great for managing communications in qubit networks.
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Applications

Example: Alice, Bob, Charlie and Diana share a four-partite state.

We want to allow only the following parties to communicate:

- Alice, Bob and Charlie; Pabe Ent. abc
- Alice, Bob and Diana; Pabd Ent. abd
- Charlie and Diana. Ped  Ent. cd

[21) = 13" 4 114 10) + 13" 4pa 0D [1), +
+ |21>cd |00>ab |2>e

tre [[121) (¥21]]
V (Va1 |121)

ﬁabcd (421 ) —

This method bypasses a lot of calculations. 7)(421) — abc + abd + ed
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Applications

k-uniform states of N qubits: trace out any N-k parties and the resulting state
is maximally mixed.

k-resistant states of N qubits: trace out any N-k parties and the resulting state

is separable. Trace one less party and the system remains entangled.
(Phys. Rev. A 100, 062329 (2019))

In terms of polynomials, this gives the classes:

N=4 N=5
k=1: abcd k=1: abcde
k=2: abc + abd + acd + bcd k=2: abcd + abce + ... + bcde
k=3: ab 4+ ac + ... + cd k=3: abc + abd + ... + cde

k=4: ab + ac + ... + de



We found a complete map for m-resistant mixed states of N qubits:

’Em>ijk:... =(m+1)0... O>ijk... +1... 1>z’jk:...
A tre [|¥4,m) (Va,ml]
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We found a complete map for m-resistant mixed states of N qubits:

|Em>z‘jk:... =(m+1)0... O>7ij... +1... 1>z‘jkz...
. tre [|Ya,m) (Yaml]
p(4,m) = ’ ’
\/<w4,m|w4,m>
k=1: P = abcd
|¢4,0> — ‘E0>a,bcd ‘O>e
k=2: P = abc + abd + acd + bed

V4,1) = [E1) ape 0)410)e &+ + 1 E1)peq 10), 3).

k=3: P =ab+ ac+ ad + be + bd + cd
|¢4,2> — ‘E1>ab ’00>d |O>e T ...+ |E1>cd |Oo>ab |5>e
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structure to guide us into an (non-heuristic) answer in the Hilbert space.
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The polynomials give us an answer in the link space but we need more mathematical
structure to guide us into an (non-heuristic) answer in the Hilbert space.

01
O
IO = AT = jabra
g2
77(33) = ab + ac - -
02

Use the braid group to build a
direct connection to quantum
states, via the generators 0.

Braid group o1 — R®1
B3:{01,0210102012020102} 0'2—>1®R

Yang-Baxter Eq.
Work in progress.. (I1®R)(R®1)(1®R)=(R®1)(1®R)(R®1)




If the idea is correct, we must start by getting right the case for 3 qubits:
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A very recent work was published (arXiv:2007.02882 [quant-ph]) which uses the link
formalism to derive a representation of the entanglement flow and dynamics in
quantum teleportation using graphs.
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A very recent work was published (arXiv:2007.02882 [quant-ph]) which uses the link
formalism to derive a representation of the entanglement flow and dynamics in
quantum teleportation using graphs.

Monomials ab abe abed abede

Links

Graphs

P(3°*) = abc + abd + acd + bed + ab + cd



Conclusions and future work

New classification scheme: link classes = entanglement classes.

Intuitive as a cataloging system 4+ has computational advantages.

Physical applications in qubit networks: who gets to communicate with who.

States from polynomials show problem-solving potential.

Future work:

- Complete pure map (abcd+ab+ac); C@:D

- Protocols based on links;

- Consider details of the links (such as crossing numbers)?
- Finding the number of classes for N rings;

- A rigorous connection with known mathematical
formalisms.



