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Introduction

@ The theory of dynamical systems has its origins in the work of
Henri Poincaré on the three-body problem of celestial
mechanics

Jodo Rijo Topological Pressure and Dimension



Introduction

@ The theory of dynamical systems has its origins in the work of
Henri Poincaré on the three-body problem of celestial
mechanics

@ It comprises of a set of tools and methods to study ordinary
differential equations and iterated mappings

Jodo Rijo Topological Pressure and Dimension



Introduction

@ The theory of dynamical systems has its origins in the work of
Henri Poincaré on the three-body problem of celestial
mechanics

@ It comprises of a set of tools and methods to study ordinary
differential equations and iterated mappings

Example - Quadratic map
f:R—R
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Introduction

@ The theory of dynamical systems has its origins in the work of
Henri Poincaré on the three-body problem of celestial
mechanics

@ It comprises of a set of tools and methods to study ordinary
differential equations and iterated mappings

Example - Quadratic map
f:R>R,f(x)=ax(l-—x),a>0
What happens to a point x € R if we iterate the function f7?
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Introduction

@ The theory of dynamical systems has its origins in the work of
Henri Poincaré on the three-body problem of celestial
mechanics

@ It comprises of a set of tools and methods to study ordinary
differential equations and iterated mappings

Example - Quadratic map

f:R>R,f(x)=ax(l-—x),a>0
What happens to a point x € R if we iterate the function f7?
What is the behaviour of {f"(x)}nen?
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Introduction

One method of studying this problems is by defining new quantities
over the systems, this quantities can help us analyse and classify
the different dynamics
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Introduction

One method of studying this problems is by defining new quantities

over the systems, this quantities can help us analyse and classify
the different dynamics

@ Metric Entropy
@ Topological Entropy
@ Topological Pressure

Loosely speaking, these quantities give us information on how fast
points are moving away from each other
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Introduction

One method of studying this problems is by defining new quantities
over the systems, this quantities can help us analyse and classify
the different dynamics

@ Metric Entropy

@ Topological Entropy

@ Topological Pressure
Loosely speaking, these quantities give us information on how fast
points are moving away from each other

@ Dimension

In some systems the interesting dynamics is comprised in a
complicated subset, this quantity allow us to assign a non integer
dimension to this sets
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The Main Example

For the remainder of the presentation we'll consider a particular
example
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® A, )\ >0and A+ o < 1
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The Main Example

For the remainder of the presentation we'll consider a particular
example

@ A, o>0and M+ <1

o A1 =[0,A1], A2 =1 — A2, 1]
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The Main Example

For the remainder of the presentation we'll consider a particular
example

@ M\, M2>0and M1+ X< 1

o A1 =[0,A1], A2 =1 — A2, 1]

o {1 ={A1,Az}
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The Main Example

For the remainder of the presentation we'll consider a particular
example

o Ao >0and A+ Mo < 1
o A1 =[0,A1], A2 =1 — A2, 1]
o {1 ={A1,Ar}

n—1
§n = {ﬂ f_k(Aik)
k=0
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The Main Example

For the remainder of the presentation we'll consider a particular
example

o Ao >0and A+ Mo < 1
o A1 =[0,A1], A2 =1 — A2, 1]
o {1 ={A1,Ar}

n—1
&n = {ﬂ FH() = Doy
k=0
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The Main Example

For the remainder of the presentation we'll consider a particular
example

o Ao >0and A+ Mo < 1
o A1 =[0,A1], A2 =1 — A2, 1]
o {1 ={A1,Ar}

n—1
n = { ﬂ f_k(Aik) == AiO---in—l DOy ey p_1 = ]_’2}
k=0

Jodo Rijo Topological Pressure and Dimension



The Main Example

For the remainder of the presentation we'll consider a particular
example

o Ao >0and A+ Mo < 1
o A1 =[0,A1], A2 =1 — A2, 1]
o {1 ={A1,Ar}

n—1
n = { ﬂ f_k(Aik) == AiO---in—l DOy ey p_1 = ]_’2}
k=0

The set of points that remain in the interval [0, 1] forever is

k=N U 8. |

neN i, ....in
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Metric Entropy

Let 4 be a probability measure over [0, 1]
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

& ={A1, A2}
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 = {Ar1, Az}
H,u(fl) =
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 = {Ar1, Az}
H.(&) = w(A1)
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 = {Ar1, Az}
H.(&1) = p(Ar)log(u(Ar))
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 = {Ar1, Az}
H.(&1) = p(A1) log(u(Ar)) +
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 = {Ar1, Az}
Hu(&1) = p(A1)log(p(A1)) + p(Az)log(n(A2))
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

§1={A1,A2}
Hu(&r) = ((Da) log(i(B1)) + u(82) log(1(2)) )
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

§1={A1,A2}
Hu(é) = = ((Da) log(1(B1)) + u(82) log(1(2)) )

Jodo Rijo Topological Pressure and Dimension



Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

§1={A1,A2}
Hu(é) = = ((Da) log(1(B1)) + u(82) log(1(2)) )
fn = {Ail...i,, . il,...,in = 1,2}
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 ={A1, Az}

Hu(&1) = — (1(D1) log(n(A1)) + u(82) log(1(B2)) )
En={Ai.i, = f,...,in=12}

H.(n) = — Z (i) log(i(Ai...in))

i17-~~7in
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 ={A1, Az}

Hu(&1) = — (1(D1) log(n(A1)) + u(82) log(1(B2)) )
En={Ai.i, = f,...,in=12}

H.(n) = — Z (i) log(i(Ai...in))

ilv--win

Metric Entropy
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Metric Entropy

Let 4 be a probability measure over [0, 1]
We define the entropy of each collection &,

&1 ={A1, Az}

Hu(&1) = — (1(D1) log(n(A1)) + u(82) log(1(B2)) )
En={Ai.i, = f,...,in=12}

H.(n) = — Z (i) log(i(Ai...in))

ilv--win

Metric Entropy

ha(F) = lim SHL(E)

n—oco N
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Topological Entropy

Topological Entropy

h(f) =
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Topological Entropy

Topological Entropy

h(f) = &n
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Topological Entropy

Topological Entropy

h(f) = card &,
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Topological Entropy

Topological Entropy

h(f) = log( card &)
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Topological Entropy

Topological Entropy

h(f) = %Iog( card &)
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oco N
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oco N

@ card&¢, = 2"
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oco N

@ card&¢, = 2"
@ h(f)=Ilim,500 % log(2") = log(2)
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oo N

@ card&¢, = 2"
@ h(f)=Ilim,500 % log(2") = log(2)

4

Properties of Entropy

A\
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oco N

@ card&¢, = 2"
@ h(f)=Ilim,500 % log(2") = log(2)

Properties of Entropy

@ Entropy is an invariant quantity over the dynamics
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Topological Entropy

Topological Entropy

h(f) = lim 1Iog(card €n)

n—oco N

@ card&¢, = 2"
@ h(f)=Ilim,500 % log(2") = log(2)

Properties of Entropy

@ Entropy is an invariant quantity over the dynamics
o h,(f*) = kh,(f) and h(f¥) = kh(f) for all k € N
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Variational Principle

Variational Principle for entropy

h(f) = szp{hu(f)}
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Variational Principle
Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) > sup,{h,(f)}
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Variational Principle
Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) > sup,, {h,.(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N
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Variational Principle
Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) > sup,, {h,.(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N
° %Hu(g,,) < %Iog(card &n)
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Variational Principle
Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) > sup,, {h,.(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N
o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)
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Variational Principle
Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) > sup,{h,(f)}

@ It can be shown that H,(&,) < log(card&,) for all n€ N

o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)

h(f) S Supu,{hlb(f)}
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Variational Principle

Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) Z sup;ly{hll‘(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N
o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)

h(f) S Supu,{hlb(f)}

@ Consider the measure y that assigns a measure of % to each
element of the collection &,
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Variational Principle

Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) Z sup;ly{hll‘(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N
o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)

h(f) S Supu,{hlb(f)}

@ Consider the measure y that assigns a measure of % to each
element of the collection &,

o Hu(€n) = =25 i i(Diy i) log(uu(Aiy..i,)) = —2" 55 log(55)
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Variational Principle

Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) Z sup;ly{hll‘(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N

o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)

h(f) S Supu,{hlb(f)}

@ Consider the measure y that assigns a measure of % to each
element of the collection &,

o Hu(€n) = =25 i i(Diy i) log(uu(Aiy..i,)) = —2" 55 log(55)
o hu(f) = limpsoo LH,(&n)
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Variational Principle

Variational Principle for entropy

h(f) = szp{hu(f)}

h(f) Z sup;ly{hll‘(f)}
@ It can be shown that H,(&,) < log(card&,) for all n€ N

o 1H,(&) < Llog(card&,)
e Taking n — oo we get h,(f) < h(f)

h(f) S Supu,{hlb(f)}

@ Consider the measure y that assigns a measure of % to each
element of the collection &,

o Hu(€n) = =25 i i(Diy i) log(uu(Aiy..i,)) = —2" 55 log(55)
o hu(f) = limp_oo LH,(&n) = log(2)
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

Jodo Rijo Topological Pressure and Dimension



Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

o P(0) = sup,{h.(f)}
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

o P(0) = sup,{hu.(f)} = h(f)
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

o P(0) = sup,{hu.(f)} = h(f)
e We consider the function ¢(x) = log(\;) if x € A;
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

° P(0) = sup,{hu(f)} = h(f)
@ We consider the function ¢(x) = log(\;) if x € A;
o Let d be the only solution of AY + A =1
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

° P(0) = sup,{hu(f)} = h(f)
@ We consider the function ¢(x) = log(\;) if x € A;
o Let d be the only solution of AY + A =1

@ We define a measure p over K such that
(i) = Ny - Ap)?
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Topological Pressure

Let ¢ : [0,1] — R be a continuous function

Topological Pressure

P() = sup{h,() + / ]

P(0) = sup, {hu(f)} = h(f)

We consider the function ¢(x) = log()\;) if x € A;

Let d be the only solution of A¢ + A\ =1

We define a measure p over K such that

(i) = (N Ap)?

It can be shown that this measure attains the maximum value
on the definition above for the function dp
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
hy(f)

Hu(fn) =
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp

Hu(€n) = = > (- i) log((Ag -+ X))

ilv---vin
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp

Hu(€n) = = > (- i) log((Ag -+ X))

ilv---vin

Hu(gn) = ”H,u(gl)
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp

e

Hu(€n) = = > (- i) log((Ag -+ X))

ilv---vin

Hu(gn) = ”H,u(gl)
() = lim = Hy(cn)
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp

e

Hu(€n) = = > (- i) log((Ag -+ X))

ilv---vin

Hu(€n) = nHu(61)
() = Jim_ > Huln) = Hu(é2)
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp

G ——

Hu(€n) = = > (- i) log((Ag -+ X))

ilv---vin

Hu(gn) = ”H,u(gl)
Bu(F) = Tim 2 H,(60) = Huler) = ~A{ 1og(A) — M log(X9)

V.
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
hy(f)

Hu(€) = = Y i A log((Ai - - Xi,)9)

ilv---vin

Hu(gn) =nH (é‘l)
hu(F) = lim = H,(¢n) = Hu(é1) = =A{ log(A{) — XS log(A3)

V.
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
hy(f)

Hu(€) = = Y i A log((Ai - - Xi,)9)

ilv---vin

Hu(gn) =nH (é‘l)
hu(F) = lim = H,(¢n) = Hu(é1) = =A{ log(A{) — XS log(A3)
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
hy(f)

Hu(€) = = Y i A log((Ai - - Xi,)9)

ilv---vin

Hu(gn) =nH (é‘l)
hu(F) = lim = H,(¢n) = Hu(é1) = =A{ log(A{) — XS log(A3)

d [ = du(s)log(hs) + di(22) log(32)
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Computing the Topological Pressure

With this observations we can compute P(dy) = h,(f) + d [ pdp
hy(f)

Hu€n) = = > (Vi Ni)) log((A - Ai,)°)

d [ = du(s)log(hs) + di(22) log(32)

= d\dlog(\1) + dAS log(\2)
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Hausdorff Dimension

Let A be any subset of R
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

m(A, o) = lim inf > (diam U)®
Uel
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

m(A, o) = lim inf > (diam U)®
Uel

Where the infimum is taken over all covers U of A with |[U| < ¢
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

Where the infimum is taken over all covers U of A with |[U| < ¢

Hausdorff Dimension J
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

Where the infimum is taken over all covers U of A with |[U| < ¢

Hausdorff Dimension

dimy A = inf{a : m(A,a) = 0}
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

Where the infimum is taken over all covers U of A with |[U| < ¢

Hausdorff Dimension

dimy A = inf{a : m(A,a) = 0}

@ We will compute the Hausdorff dimension of the set K
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

Where the infimum is taken over all covers U of A with |[U| < ¢

Hausdorff Dimension

dimy A = inf{a : m(A,a) = 0}

@ We will compute the Hausdorff dimension of the set K

@ It can be shown that we can use the collections &, as our
covers and taking the limit
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Hausdorff Dimension

Let A be any subset of R

a-dimensional Hausdorff measuse of A

m(A, o) = lim inf > (diam U)®
Uel

Where the infimum is taken over all covers U of A with |[U| < ¢

Hausdorff Dimension

dimy A = inf{a : m(A,a) = 0}

@ We will compute the Hausdorff dimension of the set K

@ It can be shown that we can use the collections &, as our
covers and taking the limit

m(K,a) = lim " (diam U)”
Ueé,
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Computing the Hausdorff Dimension

We will compute m(K, ) = limp—00 D e, (diam U)®
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Computing the Hausdorff Dimension

We will compute m(K, ) = limp—00 D e, (diam U)®

o A i €&
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Computing the Hausdorff Dimension

We will compute m(K, ) = limp—00 D e, (diam U)®

o Aj..i, €&n
@ diam A,‘lm,'n = A,‘l ol )\,’

n
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Computing the Hausdorff Dimension

We will compute m(K, ) = limp—00 D e, (diam U)®
° Aj i, €&n
@ diam A,‘lm,'n = A,‘l PN )\,’n
° ZUesn(diam U)«
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Computing the Hausdorff Dimension

We will compute m(K, &) = limp_,o0 Zuegn(diam U)e
° Ay i, €&
o dlam A,‘l'“,’n = Ail . )\in
° ZUE{n(diam U)a - Zil,...,in()\il e A,‘n)a
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Computing the Hausdorff Dimension

We will compute m(K, &) = limp_,o0 ZUEgn(diam u)~
° Aj i, €&n
@ diam A,‘lm,'n = A,‘l ol )\,’n
© > yeg,(diamU)* =37, i (Ao Ai)* = (AT +A2)"
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Computing the Hausdorff Dimension

We will compute m(K, &) = limp_,o0 ZUEgn(diam u)~
° Aj i, €&n
@ diam A,‘l”_,'n = A,‘l ol )\,’n
© > yeg,(diamU)* =37, i (Ao Ai)* = (AT +A2)"

m(K, a)
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Computing the Hausdorff Dimension

We will compute m(K, &) = limp_,o0 ZUEgn(diam u)~
° Aj i, €&n
@ diam A,‘l”_,'n = A,‘l ol )\,’n
© > yeg,(diamU)* =37, i (Ao Ai)* = (AT +A2)"

m(K,«a) = ILm (AT +A3)"
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@ The Topological Entropy and the Metric Entropy are related
via the Variational Principle

@ The Hausforff Dimension can be obtain from the Topological
Pressure

Why Dynamical Systems?

@ It requires proficiency in a large number of areas such as
Topology, Measure Theory, Real Analysis, Differential
Geometry

@ It uses creative approaches and surprising results to tackle a
wide range of complex problems on Dynamics and Differential
Equations

@ Applications can stretch as far as Number Theory
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