2-representation theory of Soergel bimodules

(joint work with Mackaay, Mazorchuk, Tubbenhauer and Zhang)

Vanessa Miemietz (University of East Anglia)

Motivation

Why 2-representation theory?

- representation theory: used for over a century to understand algebraic structures
- monoidal categories and 2-categories becoming more and more important ⇒ study them using 2-representation theory

Why Soergel bimodules?

significant advances in representation theory:

- categorify Hecke algebras
- intimately connected to representation theory of symmetric groups, algebraic groups, Lie algebras, etc.
- algebraic proof of Kazhdan-Lusztig conjectures for all Coxeter types
- counterexamples to James' conjectures for symmetric groups

Hecke algebras

$$(W,S)$$
 Coxeter group $W=\langle s_i|,s_i\in S,s_i^2=1,(s_is_j)^{m_{ij}}=1
angle$ for some $m_{ij}\in\{2,3,\cdots,\infty\}$

The **Hecke algebra** H(W) associated to W is a quantisation of $\mathbb{Z}W$, and has an associated **cell theory** (Kazhdan–Lusztig cells). To a **two-sided cell** J and each intersection H of a **left cell** with its associated **right cell**, Lusztig associates an **asymptotic Hecke algebra**, and there is a bijection

 $\{ \mbox{simple representations of the asymptotic algebras} \} \\ \\ \\ \{ \mbox{simple representations of the Hecke algebra} \}$

Idea: Asymptotic algebras are easier to understand.

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary). Further, k is an algebraically closed field.

Definition. A 2-category $\mathscr C$ is a category enriched over the monoidal category \mathbf{Cat} of small categories, i.e. it consists of

- ▶ a class (or set) % of objects;
- ▶ for every $i, j \in \mathcal{C}$ a small category $\mathcal{C}(i, j)$ of morphisms from i to j (objects in $\mathcal{C}(i, j)$ are called 1-morphisms of \mathcal{C} and morphisms in $\mathcal{C}(i, j)$ are called 2-morphisms of \mathcal{C});
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity 1-morphisms $\mathbb{1}_i$ for every $i \in \mathscr{C}$;
- natural (strict) axioms.

General examples of 2-categories

Examples.

- ▶ A (strict) monoidal category $\mathcal C$ is a 2-category with one object, which has the objects of $\mathcal C$ as 1-morphisms, and the morphisms of $\mathcal C$ as 2-morphisms.
- ▶ the 2-category **Cat** of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- ightharpoonup the 2-category $\mathfrak{A}^f_{\mathbb{k}}$ whose
 - objects are small idempotent complete k-linear categories with finitely many indecomposable objects up to isomorphism and finite-dimensional morphism spaces (that is, equivalent to the category of finitely generated projective modules over a finite-dimensional k-algebra);
 - ▶ 1-morphisms are additive k-linear functors;
 - 2-morphisms are natural transformations.

Finitary 2-categories

Definition. A 2-category $\mathscr C$ is **finitary** over \Bbbk if

- ▶ each $\mathscr{C}(i,j)$ is in \mathfrak{A}_k^f (i.e. equivalent to A-proj for some algebra A);
- ► composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.

Definition. A 2-category $\mathscr C$ is **fiat** (finitary - **i**nvolution - **a**djunction - **t**wo category) if

- ▶ it is finitary;
- ▶ there is a weak involutive equivalence $(-)^* : \mathscr{C} \to \mathscr{C}^{\mathrm{op,op}}$ such that there exist adjunction morphisms $F \circ F^* \to \mathbb{1}_{\mathtt{i}}$ and $\mathbb{1}_{\mathtt{j}} \to F^* \circ F$.

Examples

Examples

- tensor categories (only weakly fiat)
- fusion categories (semi-simple tensor categories)
- projective endofunctors of A-mod
- finitary quotients of Kac-Moody 2-categories (aka KLR 2-categories)
- Soergel bimodules (aka Hecke 2-categories)

Soergel bimodules or the Hecke 2-category

What are Soergel bimodules?

(W, S, V) finite Coxeter system, V reflection representation

$$R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$$
 coinvariant algebra

$$R_i := R \otimes_{R^{s_i}} R$$
 for $s_i \in S$

The 2-category $\mathscr{S} = \mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

- ▶ one object Ø (identified with R-proj);
- 1-morphisms are endofunctors of Ø isomorphic to direct summands of direct sums of finite tensor products (over R) of the R_i;
- ▶ 2-morphisms are all natural transformations (bimodule morphisms).

Fact: Indecomposable 1-morphisms are labelled by elements in W, and $\mathcal S$ categorifies the Hecke algebra. In particular, indecomposable 1-morphism descend to a cellular basis (the KL-basis) .

2-representations

From now on, $\mathscr C$ denotes a finitary 2-category.

Definition. A finitary 2-representation **M** of $\mathscr C$ is a (strict) 2-functor $\mathscr C \to \mathfrak A^f_\Bbbk$, i.e.

- ▶ $M(i) \approx B_i$ -proj for some algebra B_i ;
- ▶ for $F \in \mathscr{C}(i, j)$, $M(F): M(i) \rightarrow M(j)$ is an additive functor;
- ▶ for $\alpha \colon F \to G$, $M(\alpha) \colon M(F) \to M(G)$ is a natural transformation.

Examples.

- For each object i in \mathscr{C} , we have the **principal** 2-representation $\mathbf{P}_i = \mathscr{C}(i, -)$.
- ▶ The 2-category $\mathscr S$ was defined via its **defining** 2-representation.

Simple transitive 2-representations

Definition. M is simple transitive if $\coprod_{i \in \mathscr{C}} M(i)$ has no proper \mathscr{C} -stable ideals.

Theorem. [Mackaay–Mazorchuk–M–Tubbenhauer]

For $\mathscr C$ fiat, $\mathbf M$ simple transitive, there exists a coalgebra 1-morphisms C in $\underline{\mathscr C}$ such that $\mathbf M \approx \mathbf{inj}_\mathscr C C$.

Theorem. [Mackaay-Mazorchuk-M-Zhang]

There is a bijection

 $\frac{\{\text{simple trans. 2-representations}\}}{\approx} \leftrightarrow \frac{\{\text{cosimple coalg. 1-morphisms in } \underline{\mathscr{C}}\}}{\text{MT-equiv}}$

Vanessa Miemietz

Cell combinatorics

 $\Sigma(\mathscr{C})$, the set of isoclasses of indecomposable 1-morphisms in \mathscr{C} , has several partial preorders.

left preorder: $F \geq_{\mathcal{L}} G$ if $\exists H$ such that F is a direct summand of HG

left cells: equivalence classes w.r.t. \geq_L

Similarly:

right preorder: $F \ge_R G$ if $\exists H$ such that F is a direct summand of GH

right cells: equivalence classes w.r.t. \geq_R

two-sided preorder: $F \ge_J G$ if $\exists H_1, H_2$ such that F is a direct

summand of $\mathrm{H}_{1}\mathrm{GH}_{2}$

two-sided cells: equivalence classes w.r.t. \geq_J

Cell combinatorics

Example. Cells for the 2-category $\mathscr S$ are Kazhdan–Lusztig cells.

E.g. let $W = \langle s, t | s^2 = 1 = t^2, stst = tsts \rangle$ of type B_2 . Cells are given by

An \mathcal{H} -cell is the intersection of a left and a right cell.

A two-sided cell is **strongly regular**, if every \mathcal{H} -cell in it has precisely one element.

Cell 2-representations

To any left cell \mathcal{L} , we can associate the **cell** 2-**representation** $\mathbf{C}_{\mathcal{L}}$, which is simple transitive.

In many cases (e.g. (finitary quotients of) Kac–Moody 2-categories, $\mathscr S$ in type A), cell 2-representations exhaust simple transitive 2-representations.

Not for $\mathscr S$ in other types! Why?

Lemma. [Chan–Mazorchuk] Every simple transitive 2-representation ${\bf M}$ has an **apex**, which is the unique maximal two-sided cell ${\mathcal J}$ such that ${\bf M}({\mathcal J}) \neq 0$.

Theorem. [Mazorchuk–M.] If the apex of a simple transitive 2-representation \mathbf{M} is strongly regular, \mathbf{M} is equivalent to a cell 2-representation.

\mathcal{H} -cell reduction

Assume from now on \mathscr{C} is fiat.

Let $\mathcal{L} \subseteq \mathcal{J}$ be a left cell in \mathscr{C} and set $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^*$.

Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

- ▶ take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;
- ▶ inside quotient, take additive closure of $\mathbb{1}_{i(\mathcal{H})}$ and 1-morphisms in \mathcal{H} ;
- ▶ factor out the maximal ideal not containing id_F for $F \in \mathcal{H}$.

Theorem. [Mackaay–Mazorchuk–M–Zhang] There is a bijection $\{ \text{simple transitive 2-representations of } \mathscr{C} \text{ with apex } \mathscr{J} \}$ $\{ \text{simple transitive 2-representations of } \mathscr{C}_{\mathcal{H}} \text{ with apex } \mathscr{H} \}$

Upshot: concentrate on $\mathscr{C}_{\mathcal{H}} \sim \text{smaller!}$

Classification of simple transitive 2-representations?

To $\mathscr{S}_{\mathcal{H}}$, associate the **asymptotic bicategory** $\mathscr{A}_{\mathcal{H}}$. This categorifies Lusztig's asymptotic Hecke algebra. [Lusztig, Elias-Williamson]

 $\mathscr{A}_{\mathcal{H}}$ is a fusion category and for almost all \mathcal{H} -cells, $\mathscr{A}_{\mathcal{H}}$ is well-understood and its simple transitive 2-representations have been classified. [Ostrik et al.]

Goal. Relate 2-representations of $\mathscr{S}_{\mathcal{H}}$ to those of $\mathscr{A}_{\mathcal{H}}$.

Classification of simple transitive 2-representations?

Fact. There exists an oplax bifunctor $\Theta: \mathscr{A}_{\mathcal{H}} \to \mathscr{S}_{\mathcal{H}}$. Hence

A coalgebra 1-morphism in $\mathscr{A}_{\mathcal{H}}\Rightarrow\Theta(A)$ coalgebra 1-morphism in $\mathscr{S}_{\mathcal{H}}$

Proposition. Θ preserves cosimplicity and MT equivalence.

⇒ There exists an injection

Conjecture. $\hat{\Theta}$ is a bijection.

Upshot. Reduces classification problem to a well-studied one.

Classification of simple transitive 2-representations?

Conjecture. $\hat{\Theta}$ is a bijection.

Proved for

- each apex which contains the longest element of a parabolic subgroup (on arxiv);
- probably in general written in draft form but needs rechecking/restructuring.

If true, obtain classification of simple transitive 2-representations of $\mathscr S$ with the exception of those with apex one $\mathcal J$ -cell in type H_3 and three $\mathcal J$ -cells in type H_4 .

Thank you for your attention!