Quantum many-body dynamics in two dimensions with artificial neural networks

Markus Heyl MPI-PKS Dresden

QM³ seminar Lisbon

03/22/2021

Markus Schmitt University of Cologne

Markus Heyl

European Research Council Established by the European Commission

Machine learning quantum dynamics

Beyond equilibrium

Universe

Biological organisms

Wikipedia

Quantum simulators

Markus Heyl

NASA

Machine learning quantum dynamics

Harvard, Greiner lab

Beyond equilibrium

Coherent dynamics of quantum matter

 $i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle$

Unprecedented control at the quantum level

Quantum simulators

Universe

Biological organisms

Wikipedia

Markus Heyl

NASA

Machine learning quantum dynamics

Dynamics in correlated quantum matter

Outline

- Quantum dynamics in 2D: motivation and challenges
- Classical networks and artificial neural network wave functions
- The inversion problem: how to stabilize dynamics with neural networks
- Outlook

Quantum dynamics in 2D: motivation and challenges

Machine learning quantum dynamics

Quantum Dynamics in 2D

Today: key turning point in theory and experiment

Quantum Dynamics in 2D

Today: key turning point in theory and experiment

Quantum simulators: Coherent dynamics of quantum matter in 2d Harvard, MPQ, Princeton, Paris,...

Theory: severe limitation for (numerically) exact methods

Quantum Dynamics in 2D

Today: key turning point in theory and experiment

Quantum simulators: Coherent dynamics of quantum matter in **2** Harvard, MPQ, Princeton, Paris,...

Theory: severe limitation for (numerically) exact methods

Review: Schollwöck '11

Limited by spatial resolution Review: Aoki '13

Dynamics in correlated quantum matter

Challenge: Hilbert space exponential

Quantum many-body state: $|\psi\rangle = \sum_{s} \psi(s) |s\rangle$ # amplitudes ~ 2^N (N spin-1/2's, fermions,...)

Exponential computational resources required (without efficient compression)

Dynamics in correlated quantum matter

Challenge: Hilbert space exponential

Quantum many-body state: $|\psi\rangle = \sum_{s} \psi(s) |s\rangle$ # amplitudes ~ 2^N (N spin-1/2's, fermions,...)

Exponential computational resources required (without efficient compression)

Our approach

"Don't store. Generate on the fly."

 $|s\rangle$ — Machine $\tilde{\psi}(s) \approx \psi(s)$

sample with Monte Carleo (MC)

Classical networks and artificial neural network wave functions

Classical networks

Effective classical Hamiltonian

- Structure obtained from cumulant expansion (around a classical limit)
- Perturbatively controlled
- Further variationally optimized

(similar to Jastrow or Huse & Elser wave functions)

 $|s\rangle$

Classical networks

Effective classical Hamiltonian

- Structure obtained from cumulant expansion (around a classical limit)
- Perturbatively controlled
- Further variationally optimized

(similar to Jastrow or Huse & Elser wave functions)

Successful for tailored problems

|S'|

Markus Heyl

Machine learning quantum dynamics

Encoding quantum states in artificial neural networks (ANN)

Enabling idea: ANNs universal function approximators

 \rightarrow Any quantum state can be encoded in a (sufficiently large) ANN

Carleo & Troyer Science '17

Encoding quantum states in artificial neural networks (ANN)

Enabling idea: ANNs universal function approximators

Encoding quantum states in artificial neural networks (ANN)

Enabling idea: ANNs universal function approximators

ANN is not just a black box → Numerically exact approach Convergence parameter: size of ANN

Complexity of algorithm: poly(size of ANN, system size)

Challenging for nonequilibrium dynamics

Carleo & Troyer Science '17

Markus Heyl

Challenging for nonequilibrium dynamics

Machine learning quantum dynamics

Overcoming the challenges

2D transverse-field Ising model

$$H = -J\sum_{\langle i,j\rangle}\sigma_i^z\sigma_j^z - h\sum_j\sigma_j^x$$

Nonequilibrium quantum quench: $|\psi_0\rangle = | \rightarrow \rangle \implies |\psi_0(t)\rangle = e^{-iHt} |\psi_0\rangle$

M. Schmitt & MH PRL '20

iPEPS data from Czarnik et al. PRB '19

The inversion problem: how to stabilize dynamics with neural networks

The setup

Quantum many-body wave function

$$|\psi\rangle = \sum_{s} \psi(s)|s\rangle$$

The setup

Quantum many-body wave function

$$|\psi
angle = \sum_{s}\psi(s)|s
angle$$
Solving the dynamics

$$i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle, \quad |\psi(t)\rangle = \sum_s \psi(s,t) |s\rangle$$

The setup

Quantum many-body wave function

 $|\psi
angle = \sum_{s} \psi(s) |s
angle$ Solving the dynamics

$$i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle, \quad |\psi(t)\rangle = \sum_s \psi(s,t) |s\rangle$$

Approximate time-evolved state by variational wave function

$$|\psi(t)\rangle \approx |\psi_{\eta(t)}\rangle = \sum_{s} \psi_{\eta(t)}(s)|s\rangle$$

Goal: choose variational parameters optimally. How?

Do (infinitesimal) step

```
|\psi_{\eta(t)}\rangle \mapsto e^{-iH\Delta t}|\psi_{\eta(t)}\rangle
```

Is now out of the variational subspace

Do (infinitesimal) step

 $|\psi_{\eta(t)}\rangle \mapsto e^{-iH\Delta t}|\psi_{\eta(t)}\rangle$

Is now out of the variational subspace

Project back and identify a new optimal set of variational parameters

$$F_{\eta'} = |\langle \psi_{\eta'} | e^{-iH\Delta t} | \psi_{\eta(t)} \rangle| \implies \sup_{\eta'} F_{\eta'}$$

For an infinitesimal time step: Taylor expansion

$$\eta' = \eta + \Delta \eta, \quad e^{-iH\Delta t} = 1 - iH\Delta t - \frac{1}{2}H^2\Delta t + \dots$$

Quantum dynamics \rightarrow Nonlinear classical ODE for network weights η_k

$$S_{k,k'} = \langle \langle O_k^* O_{k'} \rangle \rangle_c \longrightarrow S_{k,k'} \dot{\eta}_{k'} = F_k \longrightarrow F_k = -i \langle \langle O_k^* E_{\text{loc}} \rangle \rangle_c$$
$$O_k(s) = \frac{\partial \ln \psi_\eta(s)}{\partial \eta_k} \qquad E_{\text{loc}}(s) = \sum_{s'} \langle s | H | s' \rangle \frac{\psi_\eta(s')}{\psi_\eta(s)}$$

When solved exactly: prescription to follow the minimum in variational manifold step by step

Quantum dynamics \rightarrow Nonlinear classical ODE for network weights η_k

$$S_{k,k'} = \langle \langle O_k^* O_{k'} \rangle \rangle_c \longrightarrow S_{k,k'} \dot{\eta}_{k'} = F_k \longrightarrow F_k = -i \langle \langle O_k^* E_{\text{loc}} \rangle \rangle_c$$
$$O_k(s) = \frac{\partial \ln \psi_\eta(s)}{\partial \eta_k} \qquad E_{\text{loc}}(s) = \sum_{s'} \langle s | H | s' \rangle \frac{\psi_\eta(s')}{\psi_\eta(s)}$$

When solved exactly: prescription to follow the minimum in variational manifold step by step

Key solution: properly account for noisy estimates

$$S\dot{\eta} = F \quad \Rightarrow \quad \dot{\eta} = S^{-1}F$$

M. Schmitt & MH PRL '20

Problem: S **not** invertible... \rightarrow Pseudo-inverse: threshold on singular values

But: We do MC and there is noise everywhere (also in the singular values)

Key solution: properly account for noisy estimates

$$S\dot{\eta} = F \quad \Rightarrow \quad \dot{\eta} = S^{-1}F$$

M. Schmitt & MH PRL '20

Problem: S **not** invertible...

 \rightarrow Pseudo-inverse: threshold on singular values

But: We do MC and there is noise everywhere (also in the singular values)

Solution: Represent TDVP in the diagonal basis of the S matrix

Key solution: properly account for noisy estimates

New regularization scheme for inversion: SNR threshold

Overcoming the challenges

M. Schmitt & MH PRL '20

iPEPS data from Czarnik et al. PRB '19

Machine learning quantum dynamics

Collapse and revival oscillations in the 2D Ising model

$$|\psi_0\rangle = |\uparrow\rangle \implies |\psi_0(t)\rangle = e^{-iHt}|\psi_0\rangle$$

Order parameter \rightarrow decay and revival of long-range order

Transverse magnetization \rightarrow Buildup of thermal magnetization profile

Quantum Fisher information density \rightarrow significant *multipartite entanglement*

$$f_Q(t) = \frac{1}{N} \sum_{i,j} \left\langle \sigma_i^z \sigma_j^z \right\rangle_c$$

Outlook

Kibble-Zurek mechanism in 2D transverse-field Ising model (together with M. Schmitt, M. Rams, J. Dziarmaga, W. Zurek)

 \rightarrow room for exploring yet inaccessible regimes with ANNs

Summary

Powerful tool to describe nonequilibrium dynamics in 2D

- Competitive with (or even superior to) tensor networks
- Increasing system size or time at moderate polynomial costs
- Current limitations: still instabilities
- Not (so much) limited by network size (expressivity)

Computational resources

Distribution of compute time for one time step on 40 NVIDIA Tesla V100 GPUs

 $N_{MC} = 5 \cdot 10^5$ N = 100

Overall complexity: $\mathcal{O}(N_{MC} \times \max(N^2, P) \times P)$