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Ergodicity (loosely): time average = ensemble average 

Non-chaotic regime Chaotic regime

2D

Chaos - sensitivity of trajectories to small perturbations

Classical systems



Non-ergodic systems

1. Trivial: extra symmetries, conservations laws.

Common assumption: no nontrivial exceptions in TD limit, i.e. 
chaos is equivalent to ergodicity.

Chaotic non-ergodic Chaotic ergodic

2. Non-trivial (emergent approximate conservation laws) 



Menu.

Quantum 
chaos.

Level repulsion. Wigner-Dyson statistics

Quantum Lyapunov exponents, OTOC, scrambling

Entanglement of eigenstates

Canonical typicality. ETH 

Universal operator growth

Quantum echo (reversibility)

Diagonal entropy. Thermodynamic relations.

Today’s special: adiabatic transformations



Berry-Tabor conjecture, 1977: Non-chaotic “generic systems”: expect Poisson 
statistics. Bohigas, Giannoni, Schmit (BGS) conjecture 1984: random matrix 
statistics in chaotic generic  systems

Quantum chaos: two powerful conjectures about energy levels

Sinai Billiard. O. Bohigas et. al. 1984

Examples:

s = 0 1 2 3 4

y = e− s

Z. Rudnik, 2008

Incommensurate 
rectangular box

s= 0 1 2 3 4

GOE distribution

Another Sinai billiard: Z. Rudnik, 2008



Side remark: RMT level statistics is not special to QM and can be 
applied to classical systems (P. Claeys and A.P. 2020).  

Take a classical (say Gibbs) distribution

Take the Fourier transform w.r.t. the momentum, define

This is a symmetric (generally Hermitian) matrix. Can diagonalize it

Many close parallels with quantum mechanics: Discrete spectrum, 
representation of observables through Hermitian operators, …:



Integral equation for Gibbs Eigenstates

All eigenstates (ground and excited) ௡ satisfy the Schrödinger, 
equation. Recover tunneling states, Berry phases, band structures, 
fermions, bosons, …. There is no semiclassical limit here!

Small addle point approximation + leading corrections



Chaotic systems. BGS and Berry-Tabor conjectures
(thanks to M. Berry for the suggestion to check)

The classical Gibbs 
ensemble knows 
whether the system is 
chaotic or integrable.

Experimentally can 
detect chaos from a 
series of static images: 
no dynamics.

Connection to 
Lyapunov exponents? 
Both definitions of 
chaos are entirely 
within the classical 
framework.

Experiments?



Level statistics is a measure of ergodicity, not chaos.

RMT, ETH imply stationary states (long time average) are thermal (J. 
Deutsch 1992; M. Srednicki 1994; M. Rigol, V. Dunjko, M. Olshanii 2008).

Chaotic ergodic. 
GOE level statistics

Chaotic, non-ergodic. 
Mixed level statistics

TD limit: usually chaos implies ergodicity, so the measure is fine

OTOC (= quantum echo)

Only works for quantum systems near a classical limit (commutators can be replaced 
with Poisson brackets leading to the same result). Does not apply to e.g. quantum 
systems with local interactions (B. Fine et. al. 2013, I. Kukuljan, S. Grozdanov, T. 
Prosen 2017)



ఒ adiabatic gauge potential (AGP) – generator of adiabatic transformations. 

Intuitively: expect a very large distance in chaotic systems because of their 
high sensitivity to perturbations.

This talk: explore this idea in detail

Family of Hamiltonians Transformations of eigenstates:

,   

Key idea: use eigenstate sensitivity to probe quantum chaos

It defines a natural distance metric (a.k.a. geometric tensor, fidelity 
susceptibility) between the eigenstates (Provost Valee, 1980)



Hellmann-Feynman theorem (first order perturbation theory)

Chaotic/ergodic systems 
satisfying – ETH (RMT)

Choose ି௅ for smoothening. Physically: exponentially long cutoff time 
but less than the Heisenberg time. 

Alternatively analyze a typical ఒఒ .

Relation to the spectral (autocorrelation) function: 



Adiabatic transformations and conservation laws

஛are used to find approximate conservation laws in perturbed 
integrable models (M. Mierzejewski, T. Prosen, and P. Prelovek, PRB 2015). 
Local adiabatic transformations imply local conservation laws.

- conserved operator
Straightforward to check:



General hierarchy of time scales in chaotic systems

General hope – exponentially long times are exponentially 
sensitive to small perturbations. Shorter times – hopeless to 
detect weak chaos!

©



Mini Summary of Expectations

Ergodic/ETH

Free like TFI – AGP 
is a local extensive operator   

Generic integrable – expect 
something in between



Models

1. Interacting integrable: XXZ chain

2. ETH/ergodic: Ising chain

3. Free, also Ising chain with 3.

4. Break integrability



Numerical results

Nonuniversal -
dependent power law 
for the interacting 
integrable model

ఒ is a quasi-long range operator for generic integrable models. 

ఒ
ଶ (similar conclusions T. LeBlond, M. Rigol et. al.). Long time 

oscillatory dynamics of ఒ after Thouless time, diffusion equation is incomplete. 
Seems to be generic for interacting integrable models.



Break integrability

XXZ TFI

Fit:

Exponentially small in L threshold for the onset of chaos



Comparison with other methods 

AGP is orders of magnitude more sensitive than level statistics and the 
spectral form factor – standard measures of chaos.



At the chaos onset the system develops exponentially long (in 
the system size) relaxation times. 

Physically: the Drude weight in the integrable limit is 
transferred to frequencies of the order of the level spacing.



Extracted spectral function

Integrable

ௗ



Full transition/crossover from integrability to ergodicity
(T. LeBlond, D. Sels, A. P., M. Rigol, 2020)

Analyze typical fidelity susceptibility (also suitable for disordered 
systems, no need for cutoff).



Results 

• Universal maximum chaos 
regime separating integrable 
and ergodic phases. 

• Need exponentially small 
perturbation in L to induce 
ETH.



Disordered Anderson model with interactions

Very similar behavior of fidelity in 
clean and disordered models.

Strong indication of exponential 
(or large degree polynomial) 
scaling of the critical integrability 
breaking with the system size. 



Strong disorder (D. Sels and A.P. 2020)

Linear drift of the maximum of 
fidelity with the system size.

Results are consistent with 
Suntajs et. al. 2019 



Spectral function

• Indication for ିଵscaling ( noise?). No variable subdiffusion exponent.

• Inconsistency of the sum rule with the transition 
in TD limit. Can be fixed with Log corrections, but

• leads to other inconsistencies. 

Existence of intermediate maximally chaotic regime is missed in RG treatments 
invalidating them.



Qualitative chaos phase diagram for clean models



Conclusions

• AGP is a very (exponentially) sensitive probe of chaos. Much more 
sensitive than other measures. “Classical chaos” – exponential sensitivity 
of trajectories. “Quantum chaos” – exponential sensitivity of eigenstates.

• Exponentially long (in L) relaxation times for weak integrability 
perturbations for integrable observables

• Universal crossover from integrability to ergodicity through maximally 
chaotic (maximally sensitive) regime.

• Similar behavior of disordered and non-disordered systems. 



Direction parallel to the integrability-breaking 
perturbation. Look right at the integrable point

Exponential behavior from the onset. No threshold. 


