Exploring 4D Topological Physics in the Laboratory

Hannah Price
University of Birmingham, UK

With thanks to:

Birmingham Theory

Enrico Martello
David Reid

Patrick Regan

Ben McCanna

Chris Oliver

Birmingham Experiment

Tom Easton
Aaron Smith

Zurich:
Martin Lebrat, Samuel Hausler, Laura
Corman, Tilman Esslinger
EPFL:
Jean-Philippe Brantut
Munich:
Michael Lohse, Christian Schweizer, Immanuel Bloch

Jena:
Martin Wimmer, Monika Monika,
Ulf Peschel
Singapore:
Zilberberg
(Zurich)

Outline

1. Brief Introduction to 2D Quantum Hall Physics

2. Introduction to 4D Quantum Hall Physics
3. How can we explore 4D Quantum Hall with quantum simulation?

- (Topological Pumping)
- Connectivity
- Synthetic Dimensions

Topological Invariants

e.g. topology of surfaces

No holes: genus=0

- Global property
- Integer-valued
- Robust under smooth deformations

Topological band theory

Each single-particle band labelled
by topological invariants

Topology from geometry

Gauss-Bonnet theorem for closed surfaces:

$$
\int_{\mathcal{S}_{\text {tot }}} \kappa \mathrm{d} S=4 \pi(1-g)
$$

For energy bands:
Geometrical properties: Berry curvature

$$
\begin{aligned}
& \underbrace{k_{y}}_{k_{x}} \mathcal{E}_{2}(\boldsymbol{k}) \\
& \mathcal{E}_{1}(\boldsymbol{k}) \\
& \psi_{n, \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{n, k}(\mathbf{r}) \\
& \hat{H}_{\mathbf{k}} u_{n, \mathbf{k}}=\mathcal{E}_{n}(\mathbf{k}) u_{n, \mathbf{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \Omega=\frac{1}{2} \Omega^{\mu \nu}(\mathbf{k}) \mathrm{d} \mathbf{k}_{\mu} \wedge \mathrm{d} \mathbf{k}_{\nu} \\
& \Omega_{n}^{\mu \nu}=i\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{\mu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\nu}}\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{\nu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\mu}}\right\rangle\right]
\end{aligned}
$$

Topology from geometry

An energy band in the Brillouin Zone is a closed surface

Topology from geometry

Gauss-Bonnet theorem for closed surfaces:

$$
\int_{\mathcal{S}_{\text {tot }}} k \mathrm{~d} S=4 \pi(1-g)
$$

Analogously for energy bands:

$$
g=0
$$

Geometrical properties: Berry curvature

$$
\begin{aligned}
& \Omega=\frac{1}{2} \Omega^{\mu \nu}(\mathbf{k}) \mathrm{d} \mathbf{k}_{\mu} \wedge \mathrm{d} \mathbf{k}_{\nu} \\
& \Omega_{n}^{\mu \nu}=i\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{\mu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\nu}}\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{\nu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\mu}}\right\rangle\right]
\end{aligned}
$$

Topological properties: First Chern number

$$
\nu_{1}=\frac{1}{2 \pi} \int_{\mathbb{T}^{2}} \Omega
$$

$$
\begin{aligned}
\psi_{n, \mathbf{k}}(\mathbf{r}) & =e^{i \mathbf{k} \cdot \mathbf{r}} u_{n, k}(\mathbf{r}) \\
\hat{H}_{\mathbf{k}} u_{n, \mathbf{k}} & =\mathcal{E}_{n}(\mathbf{k}) u_{n, \mathbf{k}}
\end{aligned}
$$

Analogy with Magnetic Fields

Berry connection

$$
\mathcal{A}_{n}(\mathbf{k})=i\left\langle u_{n, \mathbf{k}}\right| \frac{\partial}{\partial \mathbf{k}}\left|u_{n, \mathbf{k}}\right\rangle
$$

Berry curvature

$$
\Omega_{n}(\mathbf{k})=\nabla \times \mathcal{A}_{n}(\mathbf{k})
$$

$$
\gamma_{n}=\oint_{\mathcal{C}} d \mathbf{k} \cdot \mathcal{A}_{n}(\mathbf{k})=\int_{\mathcal{S}} d \mathbf{S} \cdot \Omega_{n}(\mathbf{k})
$$

Chern number

$$
\nu_{1}^{n}=\frac{1}{2 \pi} \int_{B Z} \mathrm{~d}^{2} \mathbf{k} \cdot \Omega_{n}(\mathbf{k})
$$

Magnetic vector potential

$$
\mathbf{A}(\mathbf{r})
$$

$$
\mathbf{B}(\mathbf{r})=\nabla \times \mathbf{A}(\mathbf{r})
$$

Magnetic Flux

$$
\Phi=\int_{\mathcal{S}} \mathrm{d} \mathbf{S} \cdot \mathbf{B}(\mathbf{r})
$$

No/ magnetic monopoles

$$
N=\frac{1}{\Phi_{0}} \int_{\mathcal{S}_{\mathrm{tot}}} d \mathbf{S} \cdot \mathbf{B}(\mathbf{r})
$$

Connection to Homotopy

Minimal two-band model, e.g. spinless atoms on lattice with two-site unit cell:

$$
\begin{aligned}
H(\mathbf{k}) & =\varepsilon(\mathbf{k}) \hat{I}+\mathbf{d}(\mathbf{k}) \cdot \sigma \\
E_{ \pm} & =\varepsilon(\mathbf{k}) \pm \sqrt{\mathbf{d}(\mathbf{k}) \cdot \mathbf{d}(\mathbf{k})}
\end{aligned}
$$

Normalized 3D "pseudo-spin" vector

$$
\hat{\mathbf{d}}(\mathbf{k})=\frac{1}{\sqrt{\sum_{i} d_{i}^{2}}}\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
$$

Pauli matrices

Example: 2-Band Lattice Chern Insulator Model

$$
H=\sin \left(k_{x}\right) \sigma_{x}+\sin \left(k_{y}\right) \sigma_{y}+\left(2+M-\cos \left(k_{x}\right)-\cos \left(k_{y}\right)\right) \sigma_{z}
$$

e.g. for more about this model, see for example "Topological Insulators and Superconductors" by Bernevig and Hughes

Skyrmions

Pseudo-spin space

How many times does the vector field (associated with the Hamiltonian) wrap over the psuedo-spin sphere?

$$
\nu_{1}^{-}=\frac{1}{2 \pi} \int_{\mathrm{BZ}} \mathrm{~d}^{2} \mathbf{k} \cdot \Omega_{-}=\frac{1}{4 \pi} \int_{\mathrm{BZ}} \mathrm{~d}^{2} \mathbf{k} \epsilon^{a b c} \hat{d}_{a} \partial_{k_{x}} \hat{d}_{b} \partial_{k_{y}} \hat{d}_{c}
$$

Example: 2-Band Lattice Chern Insulator Model

$$
H=\sin \left(k_{x}\right) \sigma_{x}+\sin \left(k_{y}\right) \sigma_{y}+\left(2+M-\cos \left(k_{x}\right)-\cos \left(k_{y}\right)\right) \sigma_{z}
$$

e.g. for more about this model, see for example "Topological Insulators and Superconductors" by Bernevig and Hughes

Summary: First Chern Number

- A 2D Topological Invariant (of a vector bundle)
- e.g. integral of Berry curvature over 2D BZ
- Counts Number of "Magnetic" Monopoles Enclosed
- For 2-band models, gives "skyrmion" (winding) number

Example Models

- 2-Band Lattice Chern Insulator

$$
H=\sin \left(k_{x}\right) \sigma_{x}+\sin \left(k_{y}\right) \sigma_{y}+\left(2+M-\cos \left(k_{x}\right)-\cos \left(k_{y}\right)\right) \sigma_{z}
$$

- Landau levels
- Harper-Hofstadter Model

$$
\mathcal{H}=J \sum_{m, n}\left(\hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+e^{i 2 \pi \Phi m} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}\right)+\text { h.c. }
$$

- Haldane model (tight-binding honeycomb lattice with TRS-breaking).....

Physical Consequences: 2D Quantum Hall Effect

Klaus von Klitzing

2D electron gas in a perpendicular magnetic field

N.B. Alternatively: $\mathbf{j}=\sigma \mathbf{E}$

$$
j_{x}=\frac{N e^{2}}{h} E_{y} \quad E_{y} \downarrow \xrightarrow[j_{x}]{ }
$$

$$
N=\sum_{n \in \text { occ. }} \nu_{1}^{n} \quad \text { topological first Chern numbers }
$$

Physical Consequences: One-Way Topological Edge States

Figure from
C. L. Kane \& E. J. Mele, Science 314, 5806,

1692 (2006)

Bands are topologically
-trivial

Bands have non-zero Chern numbers

Engineering Chern bands in cold atoms/photonics:

- Cold atoms review: Cooper et al., Rev. Mod. Phys. 91, 015005 (2019)
- Photonics review: T. Ozawa, et al., Rev. Mod. Phys. 91, 015006 (2019)

Outline

1. Review of 2D Quantum Hall Physics
2. Introduction to 4D Quantum Hall Physics
3. How can we explore 4D Quantum Hall with quantum simulation?

- (Topological Pumping)
- Connectivity
- Synthetic Dimensions

Analogy with Magnetic Fields

Berry connection

$$
\mathcal{A}_{n}(\mathbf{k})=i\left\langle u_{n, \mathbf{k}}\right| \frac{\partial}{\partial \mathbf{k}}\left|u_{n, \mathbf{k}}\right\rangle
$$

Berry curvature

$$
\Omega_{n}(\mathbf{k})=\nabla \times \mathcal{A}_{n}(\mathbf{k})
$$

$$
\gamma_{n}=\oint_{\mathcal{C}} d \mathbf{k} \cdot \mathcal{A}_{n}(\mathbf{k})=\int_{\mathcal{S}} d \mathbf{S} \cdot \Omega_{n}(\mathbf{k})
$$

Chern number

$$
\nu_{1}^{n}=\frac{1}{2 \pi} \int_{B Z} \mathrm{~d}^{2} \mathbf{k} \cdot \Omega_{n}(\mathbf{k})
$$

Magnetic vector potential

$$
\mathbf{A}(\mathbf{r})
$$

$$
\mathbf{B}(\mathbf{r})=\nabla \times \mathbf{A}(\mathbf{r})
$$

Magnetic Flux

$$
\Phi=\int_{\mathcal{S}} \mathrm{d} \mathbf{S} \cdot \mathbf{B}(\mathbf{r})
$$

No/ magnetic monopoles

$$
N=\frac{1}{\Phi_{0}} \int_{\mathcal{S}_{\mathrm{tot}}} d \mathbf{S} \cdot \mathbf{B}(\mathbf{r})
$$

Classical Particle in a magnetic field

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

Cyclotron frequency

$$
\omega=\frac{q|B|}{m}
$$

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

$$
\begin{array}{ccc}
x & z & x \\
B_{\nu \mu}=\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu} \\
F_{\mu}=q v_{\nu} B_{\mu \nu} \\
\substack{B_{x z} \\
x=\cos (\omega t), z=\sin (\omega t)} & B_{x y}, B_{x z}, B_{y z} \rightarrow B_{x^{\prime} z^{\prime}} \\
x^{\prime}=\cos (\omega t), z^{\prime}=\sin (\omega t)
\end{array}
$$

Classical Particle in a magnetic field

4D

$$
B_{x y}, B_{x z}, B_{x w}, B_{y z}, B_{y w}, B_{z w}
$$

Not always possible to rotate axes so that only one component is non-zero

$$
\text { e.g. } \quad B_{x z}, B_{y w} \neq 0 \quad \omega=\frac{q B_{x z}}{m}, \quad \omega^{\prime}=\frac{q B_{y w}}{m} \quad \begin{array}{r}
x=\cos (\omega t), z=\sin (\omega t), \\
y=\cos \left(\omega^{\prime} t\right), w=\sin \left(\omega^{\prime} t\right)
\end{array}
$$

$$
B_{y w}=2 B_{x z}
$$

Quantum Hall Effects

2D

2D system in a perpendicular magnetic field

$$
B_{x z} \neq 0
$$

Topological first
Chern number

$$
\nu_{1}^{z x}
$$

Triad of 3D first
3D system with
$B_{x y}, B_{x z}, B_{y z} \rightarrow B_{x^{\prime} z^{\prime}}$

$$
\nu_{1}^{x y}, \nu_{1}^{z x}, \nu_{1}^{y z} \rightarrow \nu_{1}^{x^{\prime} z^{\prime}}
$$

Minimal 4D system with

$$
B_{x z}, B_{y w} \neq 0
$$

$$
\nu_{1}^{z x}, \nu_{1}^{y w}
$$

(Simple example of) topological second Chern number

$$
\nu_{2}=\nu_{1}^{z x} \nu_{1}^{y w}
$$

Second Chern Number

$$
\begin{aligned}
\nu_{2} & =\frac{1}{8 \pi^{2}} \int_{4 \mathrm{DBZ}} \Omega \wedge \Omega \in \mathbb{Z} \\
& =\frac{1}{4 \pi^{2}} \int_{4 \mathrm{DBZ}}\left[\Omega^{x y} \Omega^{z w}+\Omega^{w x} \Omega^{z y}+\Omega^{z x} \Omega^{y w}\right] \mathrm{d}^{4} k
\end{aligned}
$$

Generalize to degenerate bands by tracing over

And then the third Chern number in 6D...
for 6DQH see Petrides, HMP, Zilberberg Phys. Rev. B 98, 125431 (2018) and references there-in

Topological Nonlinear Quantum Hall Response $\quad j_{\mu}=\frac{q^{3}}{2 h^{2}} \varepsilon^{\mu \gamma \delta \nu} E_{\nu} B_{\gamma \delta} \nu_{2}$

Connection to Homotopy

Minimal four-band model:

$$
\begin{aligned}
& H(\mathbf{k})=\varepsilon(\mathbf{k}) \Gamma_{0}+\mathbf{d}(\mathbf{k}) \cdot \boldsymbol{\Gamma} \\
& \Gamma_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \Gamma_{2}=\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right), \Gamma_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \Gamma_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \Gamma_{5}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),
\end{aligned}
$$

Normalized 5D "pseudo-spin" vector

$$
\begin{aligned}
\nu_{2}^{-} & =\frac{1}{8 \pi^{2}} \int_{\mathrm{BZ}} \operatorname{tr}\left(\Omega_{-} \wedge \Omega_{-}\right), \\
& =\frac{3}{8 \pi^{2}} \int_{\mathrm{BZ}} d^{4} \mathbf{k} \epsilon^{a b c d e} \hat{d}_{a} \partial_{k_{x}} \hat{d}_{b} \partial_{k_{y}} \hat{d}_{c} \partial_{k_{z}} \hat{d}_{d} \partial_{k_{w}} \hat{d}_{e}
\end{aligned}
$$

$$
\hat{\mathbf{d}}(\mathbf{k})=\frac{1}{\sqrt{\sum_{i} d_{i}^{2}}}\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5}
\end{array}\right)
$$

How many times do we wrap over the 4-sphere in the 4D BZ?

Summary: Second Chern Number

- A 4D Topological Invariant
- e.g. integral of trace of wedge product of Berry curvature over 4D BZ
- Can Count Number of "Yang" Monopoles Enclosed
c.f. Sugawa et al, Second Chern number of a quantum-simulated non-Abelian Yang monopole, Science, 360, 1429, (2018)
- For 4-band models, gives 4D "skyrmion" (winding) number

Example Models

-4D Landau levels
-4D Harper-Hofstadter Model

- Qi/ Zhang/ Hughes Model
- 4D Modified Brickwall Model

HMP Phys. Rev. B 101, 205141 (2020)

Bulk-Boundary Correspondence

Aside: Symmetries...

"Periodic table" of gapped phases of quadratic fermionic Hamiltonians without extra symmetries

Symmetry				Dimensionality d								
Class	Timereversal	Particlehole	Chiral	1	2	3	4	5	6	7	8	
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	\longleftarrow Quantum Hall
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AI	1	0	0	0	0	0	(Z)	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\longleftarrow SSH Model
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\longleftarrow Topological
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	Superconductors
AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	(Z)	0	0	0	\mathbb{Z}	\leftarrow Topological Insulators/
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	quantum spin
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	Hall
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	

Result of squaring the symmetry operator
($0=$ symmetry is broken)

Possible values of 0 : always trivial topological invariant: $\mathbb{Z}:$ an integer $\mathbb{Z}_{2}: 0,1$

Outline

1. Review of 2D Quantum Hall Physics
2. Introduction to 4D Quantum Hall Physics
3. How can we explore 4D Quantum Hall Systems with quantum simulation?

- (Topological Pumping)
- Connectivity
- Synthetic Dimensions

Approach 1: 2D Topological Pumping

4D Quantum Hall Model

Mathematical Mapping

$$
\hat{H}(x, y, z, w)
$$

2D Topological Pump

$$
\hat{H}_{2 D}\left(x, y, \varphi_{x}, \varphi_{y}\right)
$$

Approach 2: Circuit Connectivity

2D Lattice Embedded into 1D Chain

$$
\begin{aligned}
-C_{0} & =1 \mathrm{nF} \\
\cdots \cdot L_{0} & =2 \mathrm{mH} \\
-C^{\prime} & =2 \mathrm{nF} \\
-L^{\prime} & =1 \mathrm{mH}
\end{aligned}
$$

4D Lattice Embedded into 3D Stack of Circuit Boards

Approach 2: Circuit Connectivity

4D Topological Circuit

Grounding impedance is related to LDOS, so can probe properties of states
C. H. Lee et al, Comm. Phys. 1 (2018).

Tuning parameter

Bulk State

3D Surface states
c

$$
m=0, E=0
$$

d

e

$\mathbf{f} \quad m=8, E=0$
No State

0

Also observed robustness and emergence of surface states
Y. Wang, HMP, B. Zhang and Y. Chong, Nature Communications 11, 2356 (2020)

Approach 3: Synthetic dimensions

1. Identify a set of states and reinterpret as sites in a synthetic dimension

2. Couple these modes to simulate a tight-binding "hopping"

Simulates a particle on a 1D lattice

Approach 3: Synthetic dimensions

3. Add a second (real or synthetic) spatial dimension

For example: give a phase to the synthetic "hopping" that depends on the other co-ordinate

$$
\mathcal{H}=J \sum_{m, n}\left(\hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+e^{i 2 \pi \Phi m} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}\right)+\text { h.c. }
$$

Synthetic dimension with internal atomic states

Ingredients:

1. Reinterpret states as sites in synthetic dimension -> Internal atomic states
2. Couple states to simulate a "hopping" term -> Raman beams

Experiments

A lot of recent progress

Atomic states: Celi et al., PRL, 112, 043001 (2014), Mancini et al, Science, 349, 1510 (2015),
Stuhl et al. Science, 349, 1514 (2015)...
Momentum states of atoms: An, Meier, Galway, Sci. Adv. e1602685 (2017),
Viebahn et al, PRL 122 (11), 110404 (2019)....
Harmonic trap states of atoms: HMP et al., PRA 95, 023607 (2017),
Salerno, HMP et al, Phys. Rev. X 9, 041001 (2019)
Rotational States of ultracold molecules: Sundar, Gadway \& Hazzard, Sci. Rep. 8, 3422 (2018) Sundar et al, PRA, 99, 013624 (2019)
Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015)
Photons in Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015)
Frequency modes: Ozawa, HMP, Goldman, Zilberberg, \& Carusotto, PRA 93, 043827 (2016), Yuan, et al, Optics Letters 41, 4, 741 (2016).....
... Yuan et al, Photon. Res. 8(9), B8-B14 (2020), Tusnin et al, PRA, 102, 023518 (2020)
Dutt et al. Nature Communications 10, 3122 (2019), Dutt et al Science 367, 59 (2020)
Angular co-ordinate of ring resonator: Ozawa \& Carusotto, PRL, 118, 013601 (2017)
Arrival time of pulses Schreiber, A. et al. Phys. Rev. Lett. 104, 050502 (2010).
Wimmer, HMP. Carusotto \& Peschel, Nat. Phys. 13, 545 (2017),
Chen, C. et al. Phys. Rev. Lett. 121, 100502 (2018)....
Spatial modes of waveguide array: Lustig et al., Nature, 567, 356 (2019)
Mesoscopic Nanomagnet-Ring system: HMP, Ozawa \& Schomerus, PRR, 2, 032017(R) (2020)
Floquet states: Martin, Refael, \& Halperin, PRX 7, 041008 (2017)...

Future Experiments? Synthetic Dimensions?

Topological Pumping

- Experiments in 1D (mapped from 2D) and 2D (mapped from 4D)
- External parameters
- Topology after a pump cycle $x(T) \propto \nu_{1}$
- Limited dynamics

Circuit

connectivity

- Experiment in "4D"!
- Easy to scale, and very accessible
- Probing of surface states
- Classical circuits

Synthetic Dimensions

- Experiments not yet up to 4D
- Each implementation quite different
- Topology in current response $\quad j_{x} \propto E_{y} \nu_{1}$
- Can be truly quantum
- Interactions!?

Aside: a few other recent projects...

Analogue Superfluidity in an Optical Mesh Lattice

time-multiplexing: a 1D synthetic dimension

Schreiber, A. et al. Phys. Rev. Lett. 104, 050502 (2010).

What happens to superfluid vortices in 4D?

Vortex cores: Two intersecting 2D planes

Expt + theory:
Wimmer, Monika, Carusotto, Peschel, HMP, arXiv:2008.04663

Theory:
McCanna, HMP, arXiv:2005.07485

Summary

$$
j_{\mu}=\frac{q^{3}}{2 h^{2}} \varepsilon^{\mu \gamma \delta \nu} E_{\nu} B_{\gamma \delta} \nu_{2}
$$

4D Topological Physics

Topological pumping, connectivity and synthetic dimensions for cold atoms and photonics

Future Prospects:
Quantum Simulation of 4D Lattices? Interactions?

