Exploring 4D Topological Physics in the Laboratory

Hannah Price University of Birmingham, UK

With thanks to:

Birmingham Theory

David Reid

Patrick Regan

Ben McCanna

Chris Oliver

Birmingham Experiment

Giovanni Barontini

Tom Easton Aaron Smith

Zurich: Martin Lebrat, Samuel Hausler, Laura Corman, Tilman Esslinger

EPFL: Jean-Philippe Brantut

Munich: Michael Lohse, Christian Schweizer, Immanuel Bloch

Jena: Martin Wimmer, Monika Monika, Ulf Peschel

Singapore: Wang You, Baile Zhang, Yidong Chong

Outline

1. Brief Introduction to 2D Quantum Hall Physics

2. Introduction to 4D Quantum Hall Physics

- 3. How can we explore 4D Quantum Hall with quantum simulation?
 - (Topological Pumping)
 - Connectivity
 - Synthetic Dimensions

Topological Invariants

e.g. topology of surfaces

No holes: genus=0

1 hole: genus=1

- Global property
- Integer-valued
- Robust under smooth deformations

Topology from geometry

Gauss-Bonnet theorem for closed surfaces:

$$\int_{\mathcal{S}_{\text{tot}}} \kappa \mathrm{d}S = 4\pi (1-g)$$

For energy bands:

Geometrical properties: Berry curvature

$$\Omega = \frac{1}{2} \Omega^{\mu\nu}(\mathbf{k}) \mathrm{d}\mathbf{k}_{\mu} \wedge \mathrm{d}\mathbf{k}_{\nu}$$
$$\Omega_{n}^{\mu\nu} = i \left[\langle \frac{\partial u_{n}}{\partial k_{\mu}} | \frac{\partial u_{n}}{\partial k_{\nu}} \rangle - \langle \frac{\partial u_{n}}{\partial k_{\nu}} | \frac{\partial u_{n}}{\partial k_{\mu}} \rangle \right]$$

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,k}(\mathbf{r})$$
$$\hat{H}_{\mathbf{k}}u_{n,\mathbf{k}} = \mathcal{E}_n(\mathbf{k})u_{n,\mathbf{k}}$$

Figure Credit: Nathan Goldman

Topology from geometry

An energy band in the Brillouin Zone is a closed surface

Topology from geometry

Gauss-Bonnet theorem for closed surfaces:

$$\int_{\mathcal{S}_{\text{tot}}} \kappa \mathrm{d}S = 4\pi (1-g)$$

Analogously for energy bands:

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,k}(\mathbf{r})$$
$$\hat{H}_{\mathbf{k}}u_{n,\mathbf{k}} = \mathcal{E}_n(\mathbf{k})u_{n,\mathbf{k}}$$

Geometrical properties: Berry curvature

$$\Omega = \frac{1}{2} \Omega^{\mu\nu}(\mathbf{k}) \mathrm{d}\mathbf{k}_{\mu} \wedge \mathrm{d}\mathbf{k}_{\nu}$$
$$\Omega_{n}^{\mu\nu} = i \left[\langle \frac{\partial u_{n}}{\partial k_{\mu}} | \frac{\partial u_{n}}{\partial k_{\nu}} \rangle - \langle \frac{\partial u_{n}}{\partial k_{\nu}} | \frac{\partial u_{n}}{\partial k_{\mu}} \rangle \right]$$

Topological properties: First Chern number

$$\nu_1 = \frac{1}{2\pi} \int_{\mathbb{T}^2} \Omega$$

Figure Credit: Nathan Goldman

Analogy with Magnetic Fields

Berry connection	Magnetic vector potential
$\mathcal{A}_n(\mathbf{k}) = i \langle u_{n,\mathbf{k}} \frac{\partial}{\partial \mathbf{k}} u_{n,\mathbf{k}} \rangle$	$\mathbf{A}(\mathbf{r})$
Berry curvature	Magnetic field
$\Omega_n(\mathbf{k}) = \nabla \times \mathcal{A}_n(\mathbf{k})$	$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$
Berry phase	Magnetic Flux
$\gamma_n = \oint_{\mathcal{C}} d\mathbf{k} \cdot \mathcal{A}_n(\mathbf{k}) = \int_{\mathcal{S}} d\mathbf{S} \cdot \Omega_n(\mathbf{k})$	$\Phi = \int_{\mathcal{S}} \mathrm{d}\mathbf{S} \cdot \mathbf{B}(\mathbf{r})$
Chern number	No/ magnetic monopoles
$\nu_1^n = \frac{1}{2\pi} \int_{BZ} \mathrm{d}^2 \mathbf{k} \cdot \Omega_n(\mathbf{k})$	$N = \frac{1}{\Phi_0} \int_{\mathcal{S}_{\text{tot}}} d\mathbf{S} \cdot \mathbf{B}(\mathbf{r})$

Connection to Homotopy

Minimal two-band model, e.g. spinless atoms on lattice with two-site unit cell:

 $\sigma_{\chi} =$

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Pauli matrices

 $H(\mathbf{k}) = \varepsilon(\mathbf{k})\hat{I} + \mathbf{d}(\mathbf{k}) \cdot \sigma$ $E_{\pm} = \varepsilon(\mathbf{k}) \pm \sqrt{\mathbf{d}(\mathbf{k}) \cdot \mathbf{d}(\mathbf{k})}$

Normalized 3D "pseudo-spin" vector

which is a 3D vector field over the Brillouin zone

Example: 2-Band Lattice Chern Insulator Model

 $H = \sin(k_x)\sigma_x + \sin(k_y)\sigma_y + (2 + M - \cos(k_x) - \cos(k_y))\sigma_z$

e.g. for more about this model, see for example "Topological Insulators and Superconductors" by Bernevig and Hughes

Skyrmions

Pseudo-spin space

How many times does the vector field (associated with the Hamiltonian) wrap over the psuedo-spin sphere?

$$\nu_1^- = \frac{1}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 \mathbf{k} \cdot \Omega_- = \frac{1}{4\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 \mathbf{k} \epsilon^{abc} \hat{d}_a \partial_{k_x} \hat{d}_b \partial_{k_y} \hat{d}_c$$

Figures: By Markus Hoffmann, Bernd Zimmermann, Gideon P. Müller, Daniel Schürhoff, Nikolai S. Kiselev, Christof Melcher & Stefan Blügel - https://www.nature.com/articles/s41467-017-00313-0/figures/1, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=74555701

Example: 2-Band Lattice Chern Insulator Model

 $H = \sin(k_x)\sigma_x + \sin(k_y)\sigma_y + (2 + M - \cos(k_x) - \cos(k_y))\sigma_z$

e.g. for more about this model, see for example "Topological Insulators and Superconductors" by Bernevig and Hughes

Summary: First Chern Number

• A 2D Topological Invariant (of a vector bundle)

• e.g. integral of Berry curvature over 2D BZ

• Counts Number of "Magnetic" Monopoles Enclosed

• For 2-band models, gives "skyrmion" (winding) number

Example Models

• 2-Band Lattice Chern Insulator

 $H = \sin(k_x)\sigma_x + \sin(k_y)\sigma_y + (2 + M - \cos(k_x) - \cos(k_y))\sigma_z$

- Landau levels
- Harper-Hofstadter Model

$$\mathcal{H} = J \sum_{m,n} (\hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\Phi m} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n}) + \text{h.c.}$$

 Haldane model (tight-binding honeycomb lattice with TRS-breaking).....

Physical Consequences: 2D Quantum Hall Effect

Klaus von Klitzing

 $j_x = \frac{Ne^2}{h}E_y$ E_y j_x

 $n \in \text{occ.}$

 $N = \sum \nu_1^n$ topological first Chern numbers

Physical Consequences: One-Way Topological Edge States

Figure from C. L. Kane & E. J. Mele, Science 314, 5806, 1692 (2006)

Bands are topologically -trivial

Bands have non-zero Chern numbers

Bulk-boundary correspondence

Polaritons: Klembt et al. Nature 562, 552(2018)

Engineering Chern bands in cold atoms/photonics:

- Cold atoms review: Cooper et al., Rev. Mod. Phys. 91, 015005 (2019)
- Photonics review: T. Ozawa, et al., Rev. Mod. Phys. 91, 015006 (2019)

Outline

1. Review of 2D Quantum Hall Physics

2. Introduction to 4D Quantum Hall Physics

- 3. How can we explore 4D Quantum Hall with quantum simulation?
 - (Topological Pumping)
 - Connectivity
 - Synthetic Dimensions

Analogy with Magnetic Fields

Berry connection	Magnetic vector potential
$\mathcal{A}_n(\mathbf{k}) = i \langle u_{n,\mathbf{k}} \frac{\partial}{\partial \mathbf{k}} u_{n,\mathbf{k}} \rangle$	$\mathbf{A}(\mathbf{r})$
Berry curvature	Magnetic field
$\Omega_n(\mathbf{k}) = \nabla \times \mathcal{A}_n(\mathbf{k})$	$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$
Berry phase	Magnetic Flux
$\gamma_n = \oint_{\mathcal{C}} d\mathbf{k} \cdot \mathcal{A}_n(\mathbf{k}) = \int_{\mathcal{S}} d\mathbf{S} \cdot \Omega_n(\mathbf{k})$	$\Phi = \int_{\mathcal{S}} \mathrm{d}\mathbf{S} \cdot \mathbf{B}(\mathbf{r})$
Chern number	No/ magnetic monopoles
$\nu_1^n = \frac{1}{2\pi} \int_{BZ} \mathrm{d}^2 \mathbf{k} \cdot \Omega_n(\mathbf{k})$	$N = \frac{1}{\Phi_0} \int_{\mathcal{S}_{\text{tot}}} d\mathbf{S} \cdot \mathbf{B}(\mathbf{r})$

Classical Particle in a magnetic field

Classical Particle in a magnetic field

$$4D \qquad B_{xy}, B_{xz}, B_{xw}, B_{yz}, B_{yw}, B_{zw}$$

Not always possible to rotate axes so that only one component is non-zero

Quantum Hall Effects

2D system in a perpendicular magnetic field

$$B_{xz} \neq 0$$

Topological first Chern number

 ν_1^{zx}

3D

2D

Minimal 4D system with

4D

$$B_{xz}, B_{yw} \neq 0$$

(more generally, up to 6 planes)

 ν_1^{zx}, ν_1^{yw} (Simple example of) topological *second* Chern number $\nu_2 = \nu_1^{zx} \nu_1^{yw}$

Second Chern Number

$$\nu_{2} = \frac{1}{8\pi^{2}} \int_{4\text{DBZ}} \Omega \wedge \Omega \in \mathbb{Z} \qquad \text{c.f.} \quad \nu_{1} = \frac{1}{2\pi} \int_{\mathbb{T}^{2}} \Omega$$
$$= \frac{1}{4\pi^{2}} \int_{4\text{DBZ}} \left[\Omega^{xy} \Omega^{zw} + \Omega^{wx} \Omega^{zy} + \Omega^{zx} \Omega^{yw} \right] \mathrm{d}^{4}k$$

Generalize to degenerate bands by tracing over

Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008)..... Sugawa et al, Science, 360, 1429 (2018)

And then the third Chern number in 6D...

for 6DQH see Petrides, HMP, Zilberberg Phys. Rev. B 98, 125431 (2018) and references there-in

Topological Nonlinear Quantum Hall Response

Zhang et al, Science 294, 823 (2001).... <u>HMP</u>, Zilberberg, Ozawa, Carusotto & Goldman, PRL 115, 195303 (2015) <u>HMP</u>, Zilberberg, Ozawa, Carusotto & Goldman, PRB 93, 245113 (2016)

$$j_{\mu} = \frac{q^3}{2h^2} \varepsilon^{\mu\gamma\delta\nu} E_{\nu} B_{\gamma\delta}\nu_2$$

c.f.
$$j_x \propto E_y
u_1$$

ſ

1

Connection to Homotopy

Minimal <u>four-band</u> model:

Qi et al, Phys. Rev. B 78, 195424 (2008).....

 $H(\mathbf{k}) = \varepsilon(\mathbf{k})\Gamma_0 + \mathbf{d}(\mathbf{k}) \cdot \mathbf{\Gamma}$

$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

Normalized 5D "pseudo-spin" vector

$$\hat{\mathbf{d}}(\mathbf{k}) = \frac{1}{\sqrt{\sum_i d_i^2}} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{pmatrix}$$

 (d_1)

$$\nu_2^- = \frac{1}{8\pi^2} \int_{\text{BZ}} \text{tr}(\Omega_- \wedge \Omega_-), \qquad \qquad \forall \Sigma$$
$$= \frac{3}{8\pi^2} \int_{\text{BZ}} d^4 \mathbf{k} \epsilon^{abcde} \hat{d}_a \partial_{k_x} \hat{d}_b \partial_{k_y} \hat{d}_c \partial_{k_z} \hat{d}_d \partial_{k_w} \hat{d}_e$$

How many times do we wrap over the 4-sphere in the 4D BZ?

Summary: Second Chern Number

• A 4D Topological Invariant

 e.g. integral of trace of wedge product of Berry curvature over 4D BZ

- Can Count Number of "Yang" Monopoles Enclosed c.f. Sugawa et al, Second Chern number of a quantum-simulated non-Abelian Yang monopole, Science, 360, 1429, (2018)
- For 4-band models, gives 4D "skyrmion" (winding) number

Example Models

- •4D Landau levels
- •4D Harper-Hofstadter Model
- Qi/ Zhang/ Hughes Model
- 4D Modified Brickwall Model

Qi et al, Phys. Rev. B 78, 195424 (2008).....

HMP Phys. Rev. B 101, 205141 (2020)

Bulk-Boundary Correspondence

Aside: Symmetries...

"Periodic table" of gapped phases of quadratic fermionic Hamiltonians without extra symmetries

Symmetry			Dimensionality d									
Class	Time- reversal	Particle- hole	Chiral	1	2	3	4	5	6	7	8	
A	0	0	0	0	Z	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	← Quantum Hall
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0	
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	SSH Model
D	0	1	0	\mathbb{Z}_2	Z	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	 Topological Superconductors
DIII	$^{-1}$	1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	\mathbb{Z}	0	
AII	$^{-1}$	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z	Topological Insulators/
CII	$^{-1}$	$^{-1}$	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	quantum spin
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	Hall
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

Result of squaring the symmetry operator (0=symmetry is broken)

Possible values of topological invariant:

0 : always trivial \mathbb{Z} : an integer \mathbb{Z}_2 : 0,1

Kitaev, arXiv:0901.2686 Ryu et al., New J. Phys. 12, 065010 (2010) **Chiu, et al., RMP 88, 035005, (2016)**

Outline

1. Review of 2D Quantum Hall Physics

2. Introduction to 4D Quantum Hall Physics

- 3. How can we explore 4D Quantum Hall Systems with quantum simulation?
 - (Topological Pumping)
 - Connectivity
 - Synthetic Dimensions

Approach 1: 2D Topological Pumping

Expt with photons: O. Zilberberg et al., Nature 553, 59 (2018)

Approach 2: Circuit Connectivity

2D Lattice Embedded into 1D Chain

144 sites (6x2x6x2 with some PBCs)

Y. Wang, <u>HMP</u>, B. Zhang and Y. Chong, Nature Communications 11, 2356 (2020) Yu et al. National Science Review, 7(8),1288-1295 (2020)...

Approach 2: Circuit Connectivity

С

4D Topological Circuit

Grounding impedance is related to LDOS, so can probe properties of states

C. H. Lee et al, Comm. Phys. 1 (2018).

а 4 m = 4. E = 0m = 8. E = 0**Bulk bands** 2 2 E_0 Surface states 0 -2 -2 Bulk bands -4 -3 -6 -2 0 m -6 -4 -2 0 *m* -4 2 2 -8 4 6 8 -8 4 6 8 **Bulk State** 0 Max **No State** Tuning parameter

Also observed robustness and emergence

3D Surface states

d

m = 0, E = 1

m = 0, E = 0

of surface states

Y. Wang, HMP, B. Zhang and Y. Chong, Nature Communications 11, 2356 (2020)

Approach 3: Synthetic dimensions

1. Identify a set of states and reinterpret as sites in a synthetic dimension

Boada et al., PRL, 108, 133001 (2012), Celi et al., PRL, 112, 043001 (2014)

2. Couple these modes to simulate a tight-binding "hopping"

Simulates a particle on a 1D lattice

Approach 3: Synthetic dimensions

3. Add a second (real or synthetic) spatial dimension

For example: give a phase to the synthetic "hopping" that depends on the other co-ordinate

Harper-Hofstadter model

$$\mathcal{H} = J \sum_{m,n} (\hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\Phi m} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n}) + \text{h.c.}$$

Synthetic dimension with internal atomic states

Ingredients:

- 1. Reinterpret states as sites in synthetic dimension -> Internal atomic states
- 2. Couple states to simulate a "hopping" term
- -> Raman beams

Experiments

Florence: Mancini et al, Science, 349, 1510 (2015), Livi et al, Phys. Rev. Lett. 117, 220401 (2016) Maryland: Stuhl et al. Science, 349, 1514 (2015) Boulder: Kolkowitz et al, Nature, 542, 66 (2017) Paris: Chalopin et al, Nature Phys, 16, 1017 (2020)

They observed skipping orbits in (1 real + 1 synthetic)-D...

A lot of recent progress

Atomic states: Celi et al., PRL, 112, 043001 (2014), Mancini et al, Science, 349, 1510 (2015), Stuhl et al. Science, 349, 1514 (2015)...

Momentum states of atoms: An, Meier, Galway, Sci. Adv. e1602685 (2017), Viebahn et al, PRL 122 (11), 110404 (2019)....

Harmonic trap states of atoms: <u>HMP</u> et al., PRA 95, 023607 (2017), Salerno, <u>HMP</u> et al, Phys. Rev. X 9, 041001 (2019)

Rotational States of ultracold molecules: Sundar, Gadway & Hazzard, Sci. Rep. 8, 3422 (2018) Sundar et al, PRA, 99, 013624 (2019)

Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015)

Photons in Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015)

Frequency modes: Ozawa, <u>HMP</u>, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016), Yuan, et al, Optics Letters 41, 4, 741 (2016).... ... Yuan et al, Photon. Res. 8(9), B8-B14 (2020), Tusnin et al, PRA, 102, 023518 (2020) Dutt et al. Nature Communications 10, 3122 (2019), Dutt et al Science 367, 59 (2020)

Angular co-ordinate of ring resonator: Ozawa & Carusotto, PRL, 118, 013601 (2017)

Arrival time of pulses Schreiber, A. et al. Phys. Rev. Lett. 104, 050502 (2010). Wimmer, <u>HMP</u>, Carusotto & Peschel, Nat. Phys. 13, 545 (2017), Chen, C. et al. Phys. Rev. Lett. 121, 100502 (2018)....

Spatial modes of waveguide array: Lustig et al., Nature, 567, 356 (2019)

Mesoscopic Nanomagnet-Ring system: <u>HMP</u>, Ozawa & Schomerus, PRR, 2, 032017(R) (2020)

Floquet states: Martin, Refael, & Halperin, PRX 7, 041008 (2017)...

DTHER

Future Experiments? Synthetic Dimensions?

4D Quantum Hall effect with synthetic dimensions:

<u>**HMP**</u>, Zilberberg, Ozawa, Carusotto & Goldman, Phys. Rev. Lett. 115, 195303 (2015) T. Ozawa, <u>**HMP**</u>, N. Goldman, O. Zilberberg, and I. Carusotto, Phys. Rev. A 93, 043827 (2016)

Topological Pumping

- Experiments in 1D (mapped from 2D) and 2D (mapped from 4D)
- External parameters
- Topology after a pump cycle $x(T) \propto \nu_1$
- Limited dynamics

Circuit connectivity

- Experiment in "4D"!
- Easy to scale, and very accessible
- Probing of surface states
- Classical circuits

Synthetic Dimensions

- Experiments not yet up to 4D
- Each implementation quite different
- Topology in current response $j_x \propto E_y \nu_1$
- Can be truly quantum
- Interactions!?

Aside: a few other recent projects...

Summary

4D Topological Physics

Topological pumping, connectivity and synthetic dimensions for cold atoms and photonics

Future Prospects: Quantum Simulation of 4D Lattices? Interactions?

