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Many open questions

Bad Global Minima Exist and SGD Can Reach Them
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Abstract

Several works have aimed to explain why overparameterized neural networks
generalize well when trained by Stochastic Gradient Descent (SGD). The consensus
explanation that has emerged credits the randomized nature of SGD for the bias
of the training process towards low-complexity models and, thus, for implicit
regularization. We take a careful look at this explanation in the context of image
classification with common deep neural network architectures. We find that if we
do not regularize explicitly, then SGD can be easily made to converge to poorly-
generalizing, high-complexity models: all it takes is to first train on a random
labeling on the data, before switching to properly training with the correct labels|
In contrast, we find that in the presence of explicit regularization, pretraining with
random labels has no detrimental effect on SGD. We believe that our results give
evidence that explicit regularization plays a far more important role in the success
of overparameterized neural networks than what has been understood until now.
Specifically, by penalizing complicated models independently of their fit to the
data, regularization affects training dynamics also far away from optima, making
simple models that fit the data well discoverable by local methods, such as SGD.
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- Gradient descent (GD):

Ol = 0 -y, Ve, (0

Defining t = kot with ot = y,, at fixed n, d the limit y, — 0 yields gradient flow:

O(t) = — Vo %, (0())
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Algorithms: SGD

. Stochastic Gradient descent (SGD): at every k, choose mini-batch B, C [n]

2 7 1 1% N ) 2
O = 0 — 1 Vouy, (0F) Au®) =77 ) (¥ —fow))

VEDB

One-pass limit: at each k, take fresh data

1 2
+1 _
O =0"-y, Ve [5 (v = fox) | 1B.1=1
As before, taking the limit y, — 0 at fixed n, d:

O@) = — Vo (0(1))
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Another look at SGD

Rewrite SGD:

Ot = 0 — 3 Ve Z (0F) + 16"
GD on population

Where;

Va\

ek = Vo | % (0F) = %2, (©F)

\A';'; Question: How to characterise this?



Two-layers: a toy problem

Let (X", V") € RYx R denoterv = 1,-+-,ni.i.d. samples from p

® = (a, W) € R? x RPX4



Mean-field IImit

On the Global Convergence of Gradient Descent for
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TRAINABILITY AND ACCURACY OF NEURAL NETWORKS:
AN INTERACTING PARTICLE SYSTEM APPROACH
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Mean field analysis of neural networks: A central limit
theorem
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A mean field view of the landscape of two-layer
neural networks

Song Mei®, Andrea Montanari®<', and Phan-Minh Nguyen®
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Mean-field IImit

Q Idea: Define empirical density of weights:
1 P
Py(@) =~ D 50 - 67) 0, = (a;, w;) € R%!
i=1

Show that, at fixed dand y, < 1/d.

One-pass p =

oD . 0,0, =7 Vy(p,VoR(O;p))

“Mean-field” Iimit

Where;

R(O; p) = V(0) + | p(d@HU(0, 0')

J Ra+1

V(O) = a E ., [yo(w x)] U9,0) = aa' E

- [(f(w Tx)(f(w’Tx)]

[Mel, Montanari, Nguyen 18’; Chizat, Bach 18’; Rotskoff,
Vanden-Eijnden 18; Sirignhano, Spiliopoulos 187]



Global convergence

From [Chizat, Bach 2T, arXiv: 2110.08084]

Theorem 2 (Informal) If the support of the initial distribution includes all directions in R,
and if the function ¥V is positively 2-homogeneous then if the Wasserstein gradient flow weakly
converges to a distribution, it can only be to a global optimum of F'.

From qualitative to quantitative results? Our result states that for infinitely many parti-
cles, we can only converge to a global optimum (note that we cannot show that the flow always
converges). However, it is only a qualitative result in comparison with what is known for convex

optimization problems in Section |[2.2;

e This is only for m = +o00, and we cannot provide an estimation of the number of particles
needed to approximate the mean field regime that is not exponential in t (see such results
e.g. in |28]).

e We cannot provide an estimation of the performance as the function of time, that would
provide an upper bound on the running time complexity.

[Mel, Montanari, Nguyen 18’; Chizat, Bach 18’; Rotskoff,
Vanden-Eijnden 18’; Sirignano, Spiliopoulos 187]



Narrow networks

VOLUME 74, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1995

Exact Solution for On-Line Learning in Multilayer Neural Networks

David Saad' and Sara A. Solla?

'Department of Physics, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
2CONNECT, The Niels Bohr Institute, Blegdamsdvej 17, Copenhagen 2100, Denmark
(Received 14 October 1994)

We present an analytic solution to the problem of on-line gradient-descent learning for two-layer
neural networks with an arbitrary number of hidden units in both teacher and student networks.

PACS numbers: 87.10.+e, 02.50.—r, 05.20.—y




Teacher-student setting

Teacher network

NN

\ X ~ N(O,1) ¢~ H(0,1)
\

/1‘ W = fun(X) + /AL

k

=

W* = kad

1 k
forX) = — ; o(W* Tx)



Teacher-student setting

X~ N(O,1) ¥~ H0,1)

Teacher network Student network




Sufficlient statistics

Goal: track population error exactly throughout the dynamics

|
K(W") = E[EXNJV(O,Id)

] & 1 & ’
<— Z o(W*x) — — Z a(wyTx)>
k r=1 p =1




Sufficlient statistics

Goal: track population error exactly throughout the dynamics

R(W) = E[E(/I*”,M)N./V(O,QV)

Where:

o - (

P M*

mr!

1 « 1Y 2
<;§0(/@ )—;izzldfli)>

QI/
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Sufficlient statistics

Goal: track population error exactly throughout the dynamics

R(W) = E[E(/l*”,/lv)N,/l/(O,QV)

Where:

mr!

1 « 1Y 2
(;EU(&» )—;izzlﬁ(/li)>

1%
Or — < F M ) e REHPX+p)

Q Key idea:

One-pass

SGD

QU

QUL = QY + 5t w(QY)




Sufficlient statistics

After some work...

QUL = QY + 5t w(QY)

MI/+1 — MY = L WM(QU)

dp

Ovt! — oY = e (DY) 4 r’
dp "¢ dp?

2)rOV
W, (42



Sufficlient statistics

After some work...

QUL = QY + 5t w(QY)

4

MI/+1 — MY = WM(QU)
dp
2
v U v Y v
ot — Q¥ = (1)(52 ) (2)(9 )
dp dp*
Population

gradient



Deterministic limit

Theorem (Saad,Solla '95; Reents, Urbanczik '98; Goldt et al "19)

Defining t = vot with 6t = 1/d, for p,k,y = O(1),

ford — oo:
V(@) = By (M(D, 00
2
0(1) = < iy M), Q1) + = FM(®). Q)
P P

Note: number of samples seen attimet = O(1)isn ~ td



Typical learning curve
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Typical learning curve
=4 w.(t = 0) ~ #(0,1,)
p = ox) = erf (x/V/2 )

1071

10_2?

Unspecialised plateau

es
10_3?
d =30
A d=100 Specialised plateau
Y d=300
107*Y @ d=1000 /4 v




Bridging the two regimes

Narrow networks Wide networks

x € R4

p<d 777 p>d
(Saad & Solla) (Mean-field limit)



Bridging the two regimes

Saad & Solla ‘95

d — o0

k,p,y = O(1)

OQur work

d — o0

k= 0(1)

p~d k>0



Main theoretical result

Theorem [Veiga, Stephan, BL, Krzakala, Zdeborova '22]

2
LetT € R, 5t20max< 7

d,dz)ThenVOSVS — | :
P ap

19— Qen) | |, < C(T)log(p)y/ ot

Where Q(?) is the solution of an ODE:

dQ(t)

5 Ww($2(1))
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[Saad, Solla 95']



Blue line:xk + 0 =0

or=1/d

Extension of S&S regime to the whole blue line
(same phenomenology)
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Green region:xk +0 > 0

0 o=1/2

S5t = 1/d1+l<+5 K

Perfect learning is achieved!



Green region:xk +0 > 0

0 o=1/2

S5t = 1/d1+l<+5 K




Orange region: 0 >x+0> —1/2

St = 1/d1+2k+0) k=0 &=-—3/8

o
A A :m

Bt

y growing with d (weird!)

logd

Strong finite size effects: E | | Q¥ — Q1) | |~
7+5+K‘



Fundamental trade-off
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Lowering y by a factor d~° requires d° more samples



Summary

0=0 O=x+6 0=2Uxc+0)
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Q/ Wide hidden-layer helps achieving perfect learning

w Full phase diagram describing
cross-over between different regimes



Thank youl!




