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Motivation

Google and the Network problem

Given a search query, how do you sort the results of the search.

L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order to the web.
Technical report, 1999.

A website will be associated to vertices v and we associate edges between
those vertices when they are linked. General idea: How do we balance
between inherent importance and importance between each other. Their
answer: PageRank. Associate to each website a relevance R. Given ~b,
they introduced a PageRank associated to an equation

~R = A~R + ~b.
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Motivation

An Application: Network of Thrones
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Figure: The social network generated from A Storm of Swords. Source:
www.maa.org/mathhorizons : : Math Horizons : : April 2016.
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Motivation

A partition problem on the Sphere S2

How do we divide a sphere into two open subsets of equal volume with
minimal boundary length.
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Motivation

A partition problem on the Sphere S2

How do we divide a sphere into two open subsets of equal volume with
minimal boundary length.

Is the hemisphere the optimal choice?
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Motivation

Isoperimetric inequalities

The isoperimetric inequality in the Euclidean space Rn says, that among
subsets S with given volume the ball B with this volume has minimal
boundary measure:

|∂S | ≥ |∂B|, ∀S : |S | = |B|.

Restating this result a little differently

|∂S |
|S |
≥ |∂B|
|B|

, |S | ≤ |B|.
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Motivation

Isoperimetric inequalities on the sphere

One can generalize this result also for the sphere. Among all open subsets
on the sphere S ⊂ S2 with fixed area the circular cap C with such area has
smallest perimeter.
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Motivation

Isoperimetric inequalities on the sphere

In conclusion, as we increase the size of the cap, the quotient |∂S||S |
becomes smaller until we reach the equator.
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Cheeger inequalities

Cheeger constant

We define the Cheeger constant of a compact n-dimensional Riemannian
manifold Mn to be

∂Mn = ∅:
h(Mn) = inf

|∂An|
|An|

where An are open subsets with |An| ≤ 1
2 |M

n|.
∂Mn 6= ∅:

h(Mn) = inf
|∂An|
|An|

,

s.t. ∂An ∩ ∂Mn = ∅.
We call subsets minimizing the volume quotient Cheeger sets.
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Cheeger inequalities

An eigenvalue problem

We define the Laplace-Beltrami operator

−∆ = − div
(
∇ ·

)
.

Consider the eigenvalue problem on M = Mn:{
−∆u = λu, on M

u = 0, on ∂M,

where zero boundary conditions are only imposed if ∂M 6= ∅. The
eigenvalues (counting multiplicity) can be then arranged as a
nondecreasing sequence

0 ≤ λ1(M) ≤ λ2(M) ≤ . . .
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Cheeger inequalities

Cheeger inequality

The following inequality is referred to as the Cheeger inequality.

Theorem (Cheeger 1970)

For all eigenvalues λ > 0 to the Laplace-Beltrami operator

λ(M) ≥ 1

4
h2(M).

Remark

If ∂M = ∅ then constant functions are always eigenfunctions to the
Laplace-Beltrami operator −∆ and thus λ1(M) = 0.
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Cheeger inequalities

Cheeger inequalities for p-Laplacian

Consider the eigenvalue problem on an open, bounded, connected domain
Ω ⊂ Rn with p ≥ 1{

− div(|∇u|p−2∇u) = λ|u|p−2u, on Ω

u = 0, on ∂Ω.

One can show that there exists a unique positive eigenfunction to this
eigenvalue problem. We call the associated eigenvalue λp(Ω) the first
eigenvalue of the p-Laplacian.
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Cheeger inequalities

Cheeger inequalites for p-Laplacian (cont.)

For p > 1 one can characterize λp(Ω) by the variational principle

λp(Ω) = inf
06=v∈C1

c (Ω)

∫
Ω |∇v |

p dx∫
Ω |v |p dx

.

Then one may extend the Cheeger inequality for the p-Laplacian:

Theorem

λp(Ω) ≥
(
h(Ω)

p

)p

, λp(Ω)→ h(Ω) (p → 1+).

In particular we can relate λ1(Ω) := h(Ω).
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Cheeger inequalities

Proof of Theorem

Suppose w ∈ C 1
c (Ω) and set A(t) := {x ∈ Ω|w(x) > t}. By the coarea

formula ∫
Ω
|∇w |dx =

∫ ∞
−∞
|∂A(t)|dt =

∫ ∞
−∞

|∂A(t)|
|A(t)|

|A(t)|dt

≥ h(Ω)

∫ ∞
−∞
|A(t)| dt = h(Ω)

∫
Ω
|w | dx .

(1)

For p > 1 take any v ∈ C 1
c (Ω) and define Φ(v) = |v |p−1v ∈ C 1

c (Ω).
Indeed, Hölder’s inequality implies∫

Ω
|∇Φ(v)|dx = p

∫
Ω
|v |p−1|∇v |dx

≤ p

(∫
Ω
|v |p dx

) p−1
p
(∫

Ω
|∇v |p dx

) 1
p

(2)
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Cheeger inequalities

Proof of Theorem (cont.)

Then with (1) we infer∫
Ω
|∇Φ(v)|dx ≥ h(Ω)

∫
ω
|v |p dx .

Using (2) we obtain

h(Ω) ≤
∫

Ω |∇Φ(v)| dx∫
Ω |Φ(v)|dx

≤

Since v ∈ C 1
c (Ω) is arbitrary, we conclude the inequality. This concludes

the proof.
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Cheeger inequalities

Buser inequality

Let p = 2 and n ∈ N. Buser proved for n = 2 in 1979:

Theorem

If the curvatures of n-dimensional compact surfaces An
m without boundary

are uniformly bounded from below, then λp(An
m)→ 0 iff h(An

m)→ 0 as
m→∞.

Generalizations of this theorem for general n ∈ N and non-compact
surfaces can be found in

P. Buser.
A note on the isoperimetric constant.
In Annales scientifiques de l’École Normale Supérieure, volume 15,
pages 213–230, 1982.
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Cheeger Inequalities on Graphs

Preliminaries: Combinatorial Graphs

Let G = (V ,E ) be an undirected, finite graph with a set of vertices V and
a set of edges E . Some notations:

u ∼ v
def⇐⇒ u and v are vertices connected by an edge.

The degree of a vertex d(v) is defined as the number of edges that
have v as an endpoint, and we define the volume of a subset of
vertices S ⊂ V as

|S | =
∑
v∈S

d(v)

We define the set E (S) of a subset of vertices S ⊂ V as the subset of
edges, that connect S with its complement Sc = V \ S and we write
|E (S)| := card(E (S)).
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Cheeger Inequalities on Graphs

Normalized Discrete Laplacian

Introduce the discretized Rayleigh quotient

RG (f ) =

∑
u∼v |f (u)− f (v)|2∑

v∈V d(v)f (v)2
.

Consider the variational problem

λ1 = min
f1∈R|V |
f 6=0

RG (f )

Then we can associate similarly as before an operator, the so called
normalized Laplacian LG to the variational problem.
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Cheeger Inequalities on Graphs

Higher order eigenvalues and Minmax principle

That is, λ1 = 0 is the smallest eigenvalue for an associated eigenvalue
problem

LG f = λf

with constant functions as eigenfunctions.

The other eigenvalues can be
characterized in terms of a minmax problem

λk = min
f1,...,fk∈R|V |

max
f 6=0
{RG (f ) : f ∈ span{f1, . . . , fk}} ,

where the minimum is over sets of k linearly independent functions
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Cheeger Inequalities on Graphs

Cheeger constant on graphs

Given a subset S ⊂ V , we denote the conductance of S by

φG (S) :=
|E (S)|
|S |

.

Then we define the Cheeger constant

h := min
S :|S|≤ |G |

2

E (S)

|S |
= min

S
max

{
|E (S)|
|S |

,
|E (Sc)|
|Sc |

}
where the minimum is over subsets of vertices S ⊂ V .
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Cheeger Inequalities on Graphs

Higher-order Cheeger constants

We define higher Cheeger constants

hk(G ) = min
S1,...,Sk

max
i
φG (Si ),

where the minimium is over a k-partition of k nonempty vertices sets.

Theorem (Higher-order Cheeger inequalities)

For any finite, connected graph G and every k ∈ N we have

λk
2
≤ hk(G ) ≤ Ck4

√
λk
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Cheeger Inequalities on Graphs

Proof of the Buser inequality λk ≤ 2hk(G )

Recall the minmax principle

λk = min
f1,...,fk∈R|V |

max
f 6=0
{RG (f ) : f ∈ span{f1, . . . , fk}} ,

where the minimum is over sets of k non-zero linearly independent vectors
in R|V | and

RG (f ) =

∑
u∼v |f (u)− f (v)|2∑

v∈V d(v)f (v)2
.

Given S1, · · · , Sk we define

fi (v) =

{
1, v ∈ Si

0, else.
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Cheeger Inequalities on Graphs

Proof of Buser inequality (cont.)

Then

λk ≤ max
i

∑
u∼v |fi (u)− fi (v)|2∑

v∈V d(v)fi (v)2

≤ 2 max
i

|E (Si )|
|Si |

.

In particular

λk ≤ 2 min
S1,...,Si

max
i

|E (Si )|
|Si |

= 2hk(G ).

For the other inequality we refer to

J. R. Lee, S. O. Gharan, and L. Trevisan.
Multiway spectral partitioning and higher-order Cheeger inequalities.
Journal of the ACM (JACM), 61(6):37, 2014.
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Cheeger Inequalities on Graphs

Higher-order Cheeger inequalities for manifolds

Define the Cheeger-constant (connectivity spectrum) through

hn := min
(A1,...,An)∈Dn

max
k

|∂AK |
|Ak |

,

where Dn is the set of n-tuples of disjoint and open subsets with smooth
boundary.

Theorem (Miclo 2013)

There exists a universal constant η > 0 such that for any compact
Riemannian manifold S, we have

λn ≥
η

n6
h2
n.
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Cheeger Inequalities on Graphs

Recent extensions

Cheeger inequalities for magnetic Laplacian (on graphs and manifolds)

C. Lange, S. Liu, N. Peyerimhoff, and O. Post.
Frustration index and Cheeger inequalities for discrete and
continuous magnetic laplacians.
Calculus of Variations and Partial Differential Equations,
54(4):4165–4196, 2015.
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Cheeger Inequalities on Graphs

Recent extensions (cont.)

Cheeger inequalities on Quantum Graphs

J. B. Kennedy and D. Mugnolo.
The Cheeger constant of a quantum graph.
PAMM, 16(1):875–876, 2016.

For p-Laplacians (on combinatorial graphs)

F. Tudisco and M. Hein.
A nodal domain theorem and a higher-order Cheeger inequality
for the graph p-laplacian.
arXiv preprint arXiv:1602.05567, 2016.
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Cheeger Inequalities on Graphs

Thank you very much for your attention.

Source: www.hbo.com ; c©HBO 2017
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