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Basic setup

(R2n+2, ω), ω =
∑

i dqi ∧ dpi = dλ where
λ = 1

2

∑
i (qidpi − pidqi ).

Consider the unit sphere S2n+1 ⊂ R2n+2 and the (cooriented)
standard contact structure ξ = ker λ|S2n+1 .

A contact form on S2n+1 supporting ξ is a 1-form α given by
f λ|S2n+1 for some positive function f : S2n+1 → R. Its Reeb
vector field is the unique vector field Rα s.t. ιRαdα = 0 and
α(Rα) = 1.

We want to study the dynamics of Reeb flows on the standard
contact sphere (S2n+1, ξ).
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There is a bijection between contact
forms α on (S2n+1, ξ) and starshaped
hypersurfaces Σα in R2n+2:

α = f λ|S2n+1 ←→ Σα = {
√
f (x)x ; x ∈ S2n+1}.

Let H : R2n+2 → R be the homogeneous of degree two
Hamiltonian such that H−1(1) = Σα.

The Hamiltonian flow on a regular energy level of H is
equivalent to the Reeb flow of α.

Therefore, the study of Reeb flows on (S2n+1, ξ) is equivalent
to the study of Hamiltonian flows of proper homogeneous of
degree two Hamiltonians on R2n+2.
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Basic dynamical objects: periodic orbits.

Denote by P the set of simple periodic orbits of the Reeb
flow of α.

A periodic orbit is called hyperbolic if every eigenvalue of its
linearized Poincaré map has modulus different from one.

A periodic orbit is called elliptic or stable if every eigenvalue
of its linearized Poincaré map has modulus one.

Let Pe ⊂ Pnh ⊂ P denote the set of simple elliptic and
non-hyperbolic orbits.
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linearized Poincaré map has modulus different from one.

A periodic orbit is called elliptic or stable if every eigenvalue
of its linearized Poincaré map has modulus one.
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General problem:

Study the multiplicity and stability of periodic orbits of α. More
precisely, try to get lower bounds for #P, #Pnh and #Pe .

Very hard questions in Hamiltonian Dynamics:

#P ≥ n + 1? #Pnh ≥ n + 1? #Pe ≥ n + 1?

Note that irrational ellipsoids in R2n+2 carry precisely n + 1
periodic orbits. Moreover, all these orbits are elliptic. (An
irrational ellipsoid is given by

∑
i ri‖zi‖2 = 1 with r0, ..., rn

rationally indepedent.)
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General results

Without any assumption on α we have the following results:

Rabinowitz’1978: #P ≥ 1 for any n.

Cristofaro Gardiner-Hutchings’2016,
Ginzburg-Hein-Hryniewicz-M.’2015, Liu-Long’2016 (using a
result proved in GHHM): #P ≥ 2 for n = 1.

No general lower bound for #Pe or #Pnh is known.
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Results assuming strict convexity

We say that α is strictly convex if Σα bounds a strictly convex
subset.

When α is strictly convex the following is known:

Long-Zhu’2002: #P ≥ bn+1
2 c+ 1 (bxc = sup{k ∈ N; k ≤ x}).

Wang’2016: #P ≥ dn+1
2 e+ 1 (dxe = inf{k ∈ N; k ≥ x}).

Long-Zhu’2002: Suppose that #P <∞. Then #Pe ≥ 1 and
#Pnh ≥ bn+1

2 c.
When α is strictly convex and invariant by the antipodal
map we have:

Liu-Long-Zhu’2002: #P ≥ n + 1.

Dell’Antonio-D’Onofrio-Ekeland’1995: #Pe ≥ 1 for any n.

The hypothesis of convexity is used in several ways.
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Dynamical convexity

The hypothesis of convexity is not natural
from the point of view of Contact
Topology since it is not a condition
invariant by contactomorphisms.

An alternative definition is dynamical convexity.

Definition. (Hofer-Wysocki-Zehnder) A contact form α on
S2n+1 is dynamically convex if µCZ(γ) ≥ n + 2 for every
closed Reeb orbit γ, where µCZ(γ) denotes the
Conley-Zehnder index of γ.

It is not hard to see that if α is strictly convex then it is DC.

Clearly, dynamical convexity is a condition invariant by
contactomorphisms.

Leonardo Macarini (ongoing joint work with Miguel Abreu) Dynamical implications of convexity beyond DC 8 / 25
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Results assuming dynamical convexity

Assuming that α is DC we have the following results:

Ginzburg-Gurel’2019 and Duan-Liu’2017 independently:
#P ≥ dn+1

2 e+ 1.

Abreu-M.’2017: Suppose that #P <∞. Then #Pe ≥ 1.

When α is DC and invariant by the antipodal map we have:

Abreu-M.’2017: #Pe ≥ 1 for any n.

Ginzburg-M.’2019: #P ≥ n + 1 for any n if α is strongly
dynamically convex.

Leonardo Macarini (ongoing joint work with Miguel Abreu) Dynamical implications of convexity beyond DC 9 / 25
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A contact form α on S2n+1 invariant by the antipodal map is
strongly dynamically convex if it is DC and its degenerate
symmetric periodic orbits satisfy a technical additional
assumption involving the normal forms of the eigenvalue one.

This definition was introduced in Ginzburg-M.’2019 where we
proved that if α is strictly convex and invariant by the
antipodal map then it is SDC.

Using this, we were able to give the first examples of
symmetric DC contact forms that are not equivalent to convex
ones via contactomorphisms that preserve the symmetry:

Theorem. (Ginzburg-M.’2019)

Given n ≥ 2 there exists a contact form on S2n+1 that is DC but it
is not equivalent to a strictly convex contact form via a
contactomorphism that commutes with the antipodal map.
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This gives a partial answer to the following important
question: Are there examples of DC contact forms that are
not contactomorphic to convex ones? This is part of the
general question on how to understand convexity from the
symplectic point of view.

Goal of this talk:

Show new dynamical implications of convexity that do not follow
from dynamical convexity. In this way, we will furnish new
examples of DC contact forms that are not equivalent to (strictly
or not) convex ones via contactomorphisms preserving the
symmetry. Moreover, we will also establish the multiplicity of
symmetric non-hyperbolic closed Reeb orbits without assuming
that #P <∞ and the existence of symmetric elliptic orbits.
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Given an integer p ≥ 1, consider the Zp-action on S2n+1,
regarded as a subset of Cn+1 \ {0}, generated by the map

ψ(z0, . . . , zn) =

(
e

2πi`0
p z0, e

2πi`1
p z1, . . . , e

2πi`n
p zn

)
,

where `0, . . . , `n are integers called the weights of the action.
Such an action is free when the weights are coprime with p
and in that case we have a lens space obtained as the
quotient of S2n+1 by the action of Zp. We denote this lens
space by L2n+1

p (`0, `1, . . . , `n).

We consider on L2n+1
p (`0, `1, . . . , `n) the induced contact

structure ξ. We say that a contact form on this lens space is
(strictly) convex if so is its lift to S2n+1.
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Equivariant symplectic homology

The positive equivariant symplectic homology
ESH∗(L2n+1

p (`0, . . . , `n)) is an invariant of the contact
structure ξ that can be obtained as the homology of a chain
complex generated the periodic orbits of the Reeb flow graded
by the CZ index. It has a filtration given by the homotopy
classes of L2n+1

p (`0, . . . , `n).

Although c1(ξ) 6= 0 in general, Nc1(ξ) = 0 for some N ∈ N.

It allows us to give a fractional grading to ESH∗.

Although a fractional grading may seem unnatural at first
(since the differential decreases the degree by 1) it can be
thought of as a way of keeping track the filtration of ESH∗ in
the homotopy classes. Indeed, given two homotopic orbits
γ1, γ2 we have that µCZ(γ1)− µCZ(γ2) ∈ Z.
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We will choose the weights `0, . . . , `n such that `0 = 1 and
−p/2 < `i ≤ p/2 for every i . These conditions determine the
weights uniquely up to permutation.

Given a ∈ π1(L2n+1
p (`0, . . . , `n)), let ja ∈ {1, . . . , p} be such

that ψja is the deck transformation corresponding to a. Let
`a0, `

a
1, . . . , `

a
n be the homotopy weights given by the (unique)

integers such that

ψja(z0, . . . , zn) =

(
e

2πi`a0
p z0, e

2πi`a1
p z1, . . . , e

2πi`an
p zn

)
satisfying −p/2 < `ai ≤ p/2 for every i , `a0 = ja if ja ≤ p/2,
`a0 = ja − p if ja > p/2.
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Given a ∈ π1(L2n+1
p (`0, . . . , `n)), we will associate to it three

integers.

Firstly, ka := min{k ∈ Q; ESHa
k(L2n+1

p (`0, . . . , `n)) 6= 0}.
We have that k0 = n + 2.

When a 6= 0, it can computed as follows. Consider the
number of positive/negative weights counted with multiplicity:

wa
+ = #{`aj ; `aj > 0} and wa

− = #{`aj ; `aj < 0}.

Then one can show that

ka = wa
− − wa

+ +
2
∑

i `
a
i

p
+ 1.

Example: Let a be a non-trivial homotopy class of
L2n+1
p (1, . . . , 1). It is easy to see that ka = 2ja(n+1)

p − n. In
particular, ka 6= kb whenever a 6= b.
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Now, when a 6= 0, we will consider two integers related to ka
and the multiplicity of the weights.

Let ¯̀a
1, . . . ,

¯̀a
k be the absolute values of the weights `a0, . . . , `

a
n.

Order ¯̀a
i such that ¯̀a

1 <
¯̀a
2 < · · · < ¯̀a

k . Given i ∈ {1, . . . , k}
we define:
µa
i = #{`aj ; `aj = ¯̀a

i and `aj 6= p/2} and

νai = #{`aj ; `aj = −¯̀a
i or `aj = p/2}.

µ̃a
i = #{`aj ; `aj = ¯̀a

i } and ν̃ai = #{`aj ; `aj = −¯̀a
i }.

Set µa0 = νa0 = ν̃a0 = 0 and consider the integers

ha = max

{
ka − 1 +

j∑
i=0

µa
i −

j∑
i=0

νai ; j ∈ {0, . . . , k}
}

h̃a = max

{
ka − 1 +

j∑
i=1

µ̃a
i −

j−1∑
i=0

ν̃ai ; j ∈ {1, . . . , k}
}
.

Note that ha ≤ h̃a.
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Example

Let a be a non-trivial homotopy class of L2n+1
p (1, . . . , 1).

If ja ≤ p/2 then ha = h̃a = ka + n = 2ja(n+1)
p .

If ja = p/2 then ha = ka − 1 = 0 and h̃a = ka + n = n + 1.

If ja > p/2 then ha = h̃a = ka − 1 = 2ja(n+1)
p − (n + 1).
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Theorem 1. (Abreu-M.’2020)

Let α be a convex (resp. strictly convex) contact form on a lens
space L2n+1

p (`0, . . . , `n) and γ a closed Reeb orbit of α with
non-trivial homotopy class a. Then the following assertions hold:

1 µCZ(γ) ≥ ka;

2 if µCZ(γ) < ha (resp. µCZ(γ) < h̃a) then γ is non-hyperbolic;

3 if `ai > 0 and `ai 6= p/2 (resp. `ai > 0) for every i and µCZ(γ) = ka
then γ is elliptic.

When γ is contractible, µCZ(γ) ≥ k0 = n + 2 is precisely DC.

This result is sharp: we must have an orbit γ such that µCZ(γ) = ka
and we have convex examples with an hyperbolic orbit γ such that

µCZ(γ) = ha and with a non-elliptic orbit γ s.t. µCZ(γ) = ka + 1

and whose homotopy class a satisfies `ai > 0 and `ai 6= p/2.
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In particular, consider a strictly convex contact form α on
RP2n+1. Then every closed Reeb orbit γ of α satisfying
µCZ(γ) < n + 1 is non-hyperbolic (if γ is contractible then
µCZ(γ) ≥ n + 2).

When n = 1 this result readily follows from the dynamical
convexity of α (i.e. µCZ(γ) ≥ n + 2 for every contractible
orbit γ). Indeed, if γ is hyperbolic then µCZ(γk) = kµCZ(γ)
∀k (in any dimension). Thus, if γ is hyperbolic and
µCZ(γ) < 2 then µCZ(γ2) < 3 (on RP3, µCZ(γ) ∈ Z),
contradicting the dynamical convexity. However, in higher
dimensions it does not follow from DC:

Theorem 2. (Abreu-M.’2020)

Given n ≥ 4 there exists a dynamically convex contact form on
RP2n+1 with a hyperbolic closed Reeb orbit γ satisfying
µCZ(γ) = n + 1− 2.
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The previous thm shows that the hypothesis of strict
convexity cannot be relaxed to DC in the second assertion of
Thm 1. It turns out that the assumption that α is convex in
Thm 1 cannot be relaxed to the condition that α is DC at all:

Theorem 3. (Abreu-M.’2020)

The following assertions hold:
1 Consider integers n ≥ 1 and p ≥ 3. Then there exists a DC contact

form α on L2n+1
p (1, . . . , 1) carrying a closed Reeb orbit with

non-trivial homotopy class a such that µCZ(γ) < ka.

2 There exists a DC contact form α on L173 (1, . . . , 1) and a hyperbolic
closed Reeb orbit γ of α with non-trivial homotopy class a such that
µCZ(γ) < ha.

3 There exists a DC contact form α on L59(1, 1, 1) and a hyperbolic
closed Reeb orbit γ of α with non-trivial homotopy class a such that
`ai > 0 (`ai 6= p/2 since p is odd) for every i and µCZ(γ) = ka.
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Note that, by invariance of ESH, if ϕ : L2n+1
p (`0, . . . , `n)←↩ is

a contactomorphism then ka = kϕ∗a. In particular, if ka 6= kb
whenever a 6= b then ϕ acts trivially on π1. Hence, in this
case, all the properties stated in Thm 1 are invariant by ϕ
(ha = hϕ∗a and h̃a = h̃ϕ∗a). Therefore, since this property
holds for L2n+1

p (1, . . . , 1), Thm 3 furnish new examples of DC
contact forms on spheres that are not equivalent to convex
ones via contactormophisms that commute with the
symmetry. Actually, we have something better.

Theorem 4. (Abreu-M.’2020)

Let α be one of the contact forms furnished by Thm 3 and
consider its lift β to S2n+1. Let S ⊂ Cont(S2n+1) be the subset of
contactomorphisms that commute with the corresponding
Zp-action. Then there exists a C 1-neighborhood U of S such that
β is not equivalent to a convex contact form via any ϕ ∈ U.
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Let α be a contact form on L2n+1
p (`0, . . . , `n) and β its lift to

S2n+1.

Let Hβ : R2n+2 → R be the unique Hamiltonian homogeneous
of degree two such that Σβ = H−1

β (1).

A periodic orbit γ of β is symmetric if ψ(γ(R)) = γ(R).

Note that the simple symmetric periodic orbits of β are in
bijection with the simple closed orbits of α whose homotopy
classes are generators of π1(L2n+1

p (`0, . . . , `n)).
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Given real numbers 0 < r ≤ R we say that α is (r ,R)-pinched
if R−2‖v‖ ≤ d2Hβ(x)(v , v) ≤ r−2‖v‖ for every x ∈ Σβ and
v ∈ R2n+2.

Theorem 5. (Abreu-M.’2020)

Let n ≥ 1 and p ≥ 2 be integers and 0 < r ≤ R be real numbers
such that R

r <
√
p + 1. Given an (r ,R)-pinched contact form α on

L2n+1
p (1, . . . , 1) we have that α carries at least bn+1

2 c simple
non-hyperbolic closed Reeb orbits with homotopy class a such that
a is a generator of π1(L2n+1

p (`0, . . . , `n)).

Note that we are not assuming that #P <∞.

Liu obtained related results when p = 2.
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Theorem 6. (Abreu-M.’2020)

Let α be a convex (resp. strictly convex) contact form on
L2n+1
p (`0, . . . , `n). Assume that `i > 0 and `i 6= p/2 (resp. `i > 0)

for every i . Then α carries at least one elliptic closed orbit whose
homotopy class is a generator of π1(L2n+1

p (`0, . . . , `n)).

When α is strictly convex it follows from a previous result due
to Arnaud.
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Very brief idea of the proof of Theorem 1

Let α be convex (resp. strictly convex). Given a closed orbit γ
of α with non-trivial homotopy class a we have its Bott
function Bγ : S1 → Q.

This function is continuous except possibly at the eigenvalues
of the linearized Poincaré map with modulus one.

In particular, Bγ is constant whenever γ is hyperbolic.

We have that µCZ(γk) =
∑

zk=1 Bγ(z) (Bott’s formula).

If α is convex and p ≥ 2 we can show that Bγ(1) ≥ ka.

Moreover, ∃z ∈ S1 s.t. Bγ(z) ≥ ha (resp. Bγ(z) ≥ h̃a).

Hence, if Bγ(1) = µCZ(γ) < ha (resp. µCZ(γ) < h̃a) then γ is
non-hyperbolic.

Under the assumptions of item (3) of Thm 1, we can show
that there exists z ∈ S1 such that Bγ(z) ≥ ka + n. If
Bγ(1) = µCZ(γ) = ka this implies that γ is elliptic.
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