

Characterization of Quasi-Abelian Surfaces

Joint Work with M. Mendes Lopes and R. Pardini

Sofia Tirabassi tirabassi@math.su.se

- Iitaka's philosophy
- Quasi-abelian (semi-abelian) varieties
- Characterization of quasi-abelian varieties

Section 1 The classification problem

The world of projective varieties

Projective variety = closed, irreducible subset $X \subseteq \mathbb{P}^n$ with the Zarsiki topology.

The dream

Classification up to what?

A morphism $f: X \to Y$ of projective varieties is a map that locally around any point *p* can be written as

$$\left(\frac{g_1(x_1,\ldots,x_n)}{h_1(x_1,\ldots,x_n)},\ldots,\frac{g_N(x_1,\ldots,x_n)}{h_N(x_1,\ldots,x_n)}\right)$$

with g_i and h_i homogeneous polynomials of the same degree, with h_i non vanishing around p. An isomorphism is a bijective morphism whose inverse is a morphism We say that two varieties are birationally equivalent if they contain

isomorphic non empty open sets

The invariants

On a smooth projective variety X of dimension n we can define the vector bundle of regular differential forms:

 $\rightarrow \Omega_X$ $\mathcal{I}_{X,P} = \sum_{r=0}^{r} \mathcal{O}_{X,P} \frac{dX_i}{dX_i}$

It has tank n so its *n*-th exterior power is a line bundle, called canonical line bundle and denoted by

$$\omega_X := \bigwedge^n \Omega_X,$$

By taking cohomology we get important invariants:

- $q(X) := h^0(X, \Omega_X)$ is the irregularity of X
- $P_m(X) := h^0(X, \omega_X^{\otimes m})$ is the *m*-th plurigenus of *X*.

The invariants

On a smooth projective variety X of dimension n we can define the vector bundle of regular differential forms:

Ω_X

It has rank *n* so its *n*-th exterior power is a line bundle, called canonical line bundle and denoted by

$$\omega_X := \bigwedge^n \Omega_X,$$

By taking cohomology we get important invariants:

- $q(X) := h^0(X, \Omega_X)$ is the irregularity of X
- $P_m(X) := h^0(X, \omega_X^{\otimes m})$ is the *m*-th plurigenus of *X*.

These are birational invariants!!!

The Kodaira dimension

Suppose that *L* is a line bundle such that $L^{\otimes m}$ has sections for *m* sufficiently large and divisible. Then $L^{\otimes m}$ induces a rational map (a morphism defined on a open set)

 $\varphi_{L^{\otimes m}}: X \dashrightarrow \mathbb{P}^N$

The Kodaira dimension

Suppose that *L* is a line bundle such that $L^{\otimes m}$ has sections for *m* sufficiently large and divisible. Then $L^{\otimes m}$ induces a rational map (a morphism defined on a open set)

$$\varphi_{L^{\otimes m}}: X \dashrightarrow \mathbb{P}^N$$

The dimension of the image of $\varphi_{L^{\otimes m}}$ stabilizes. We call this stable value the litaka dimension of *L*, and we denote it by

If $h^0(X, L^{\otimes m}) = 0$ for every $m \ge 0$ we say that

 $\kappa(X,L) = -\infty,$

The Kodaira dimension

Suppose that *L* is a line bundle such that $L^{\otimes m}$ has sections for *m* sufficiently large and divisible. Then $L^{\otimes m}$ induces a rational map (a morphism defined on a open set)

$$\varphi_{L^{\otimes m}}: X \dashrightarrow \mathbb{P}^N$$

The dimension of the image of $\varphi_{L^{\otimes m}}$ stabilizes. We call this stable value the litaka dimension of *L*, and we denote it by

 $\kappa(X,L),$

If $h^0(X, L^{\otimes m}) = 0$ for every $m \ge 0$ we say that

$$\kappa(X,L) = -\infty,$$

The Kodaira dimension of X is $\kappa(X) := \kappa(X, \omega_X),$

• $\underline{\mathbb{P}^n}$. We have that $\underline{q}(\underline{\mathbb{P}^n}) = 0$, $\underline{P_m}(\underline{\mathbb{P}^n}) = 0$ if m > 0 and $\kappa(\underline{\mathbb{P}^n}) = -\infty$. A variety that is birational equivalent to \mathbb{P}^n is rational.

• \mathbb{P}^n . We have that $q(\mathbb{P}^n) = 0$, $P_m(\mathbb{P}^n) = 0$ if m > 0 and $\kappa(\mathbb{P}^n) = -\infty$.

A variety that is birational equivalent to \mathbb{P}^n is rational.

Abelian varieties

An abelian variety *A* is a projective variety with a group structure such that the multiplication map *m* and the inverse map *i* are morphims.

• \mathbb{P}^n . We have that $q(\mathbb{P}^n) = 0$, $P_m(\mathbb{P}^n) = 0$ if m > 0 and $\kappa(\mathbb{P}^n) = -\infty$.

A variety that is birational equivalent to \mathbb{P}^n is rational.

Abelian varieties

An abelian variety *A* is a projective variety with a group structure such that the multiplication map *m* and the inverse map *i* are morphims. If $\underline{n = 1}$ they are elliptic curves, genus one curves with a rational point.

• \mathbb{P}^n . We have that $q(\mathbb{P}^n) = 0$, $P_m(\mathbb{P}^n) = 0$ if m > 0 and $\kappa(\mathbb{P}^n) = -\infty$.

A variety that is birational equivalent to \mathbb{P}^n is rational.

Abelian varieties

An abelian variety *A* is a projective variety with a group structure such that the multiplication map *m* and the inverse map *i* are morphims. If n = 1 they are elliptic curves, genus one curves with a rational point.

If the base field is \mathbb{C} they are quotient of \mathbb{C}^n/Λ with Λ a finetely generated free abelian group of maximal rank.

Constructed by Abel ~> to solve elliptic integrals

• \mathbb{P}^n . We have that $q(\mathbb{P}^n) = 0$, $P_m(\mathbb{P}^n) = 0$ if m > 0 and $\kappa(\mathbb{P}^n) = -\infty$.

A variety that is birational equivalent to \mathbb{P}^n is rational.

Abelian varieties

An abelian variety *A* is a projective variety with a group structure such that the multiplication map *m* and the inverse map *i* are morphims. If n = 1 they are elliptic curves, genus one curves with a rational point.

If the base field is \mathbb{C} they are quotient of \mathbb{C}^n/Λ with Λ a finetely generated free abelian group of maximal rank.

We have that

$$\Omega_A \simeq \mathcal{O}_A^{\oplus n},$$
 and $\omega_A \simeq \mathcal{O}_A$

• \mathbb{P}^n . We have that $q(\mathbb{P}^n) = 0$, $P_m(\mathbb{P}^n) = 0$ if m > 0 and $\kappa(\mathbb{P}^n) = -\infty$.

A variety that is birational equivalent to \mathbb{P}^n is rational.

Abelian varieties

An abelian variety *A* is a projective variety with a group structure such that the multiplication map *m* and the inverse map *i* are morphims. If n = 1 they are elliptic curves, genus one curves with a rational point.

If the base field is \mathbb{C} they are quotient of \mathbb{C}^n/Λ with Λ a finetely generated free abelian group of maximal rank.

We have that

$$\Omega_A \simeq \mathcal{O}_A^{\oplus n}$$
, and $\omega_A \simeq \mathcal{O}_A$

In particular

$$\underline{q(A)} = \dim A$$
, $\underline{P_m(A)} = 1$ for every m , and $\kappa(A) = 0$

Castelnuovo criterion

A smooth complex surface S is rational if, and only if,

 $q(S)=P_2(S)=0,$

Kawamata 1981

A smooth complex projective variety X is birationally equivalent to an abelian variety if, and only if

$$\kappa(X) = 0$$
, and $q(X) = \dim X$,

Chen–Hacon 2001

A smooth complex projective variety X is birationally equivalent to an abelian variety if, and only if

 $P_1(X) = P_2(X) = 1$, and $q(X) = \dim X$,

Section 2 litaka's philosophy

Projective World

X smooth **complex** projective variety of dimension *n*

Projective World

X smooth **complex** projective variety of dimension *n*

Quasi-Projective World V smooth quasi-projective) variety of dimension n 1 X smooth pro such that V~ open sot of X

Projective World

X smooth **complex** projective variety of dimension *n*

Quasi-Projective World

V smooth quasi-projective variety of dimension *n*

Projective World

X smooth **complex** projective variety of dimension *n*

 Ω_X

 ω_X

Quasi-Projective World

V smooth quasi-projective variety of dimension n

\$

(X, D) with D a snc divisor

Projective World

X smooth **complex** projective variety of dimension *n*

 Ω_X

 ω_X

Quasi-Projective World

V smooth quasi-projective variety of dimension n

\$

(X, D) with D a snc divisor

 $\Omega_X(\log D)$

the sheaf of logarithmic 1-forms

Sx(log D)p X,....Xn local system of conditiontes near p st $D = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2}$ $\Omega_{X}(\log D)_{p} = \sum_{i=0}^{S} \Theta_{x} \frac{dx_{i}}{x_{i}} + \sum_{i=s+i}^{T} \Theta_{x} \frac{dx_{i}}{x_{i}}$ "Logarithmic poles colong D"

Projective World

X smooth **complex** projective variety of dimension *n*

 Ω_X

 ω_X

Quasi-Projective World

V smooth quasi-projective variety of dimension n

↕

(X, D) with D a snc divisor $\Omega_X(\log D)$ Vector bundle of vouck W the sheaf of logarithmic 1-forms

 $\bigwedge^n \Omega_X(\log D) \simeq \mathcal{O}_X(K_X + D)$ the log-canonical sheaf

Projective World

X smooth projective

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

Projective World

X smooth projective

q(X)

 $P_m(X)$

 $\kappa(X)$

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

Projective World

X smooth projective

q(X)

 $P_m(X)$

 $\kappa(X)$

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

 $\overline{q}(V) := h^0(X, \Omega_X(\log D))$ the log-irregularity

Projective World

X smooth projective

q(X)

 $P_m(X)$

 $\kappa(X)$

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

 $\overline{q}(V) := h^0(X, \Omega_X(\log D))$ the log-irregularity

 $\overline{P}_m(V) := h^0(X, \mathcal{O}_X(m(K_X + D)))$ the *m*-th log-plurigenus

Projective World

X smooth projective

q(X)

 $P_m(X)$

 $\kappa(X)$

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

 $\overline{q}(V) := h^0(X, \Omega_X(\log D))$ the log-irregularity

 $\overline{P}_m(V) := h^0(X, \mathcal{O}_X(m(K_X + D)))$ the *m*-th log-plurigenus

 $\overline{\kappa}(V)$ the log-Kodaira dimension

 $L_{\mathcal{K}}(X, \mathcal{O}_{X}(k_{X}, tD))$

Projective World

X smooth projective

q(X)

 $P_m(X)$

 $\kappa(X)$

Quasi-Projective World

V smooth quasi-projective \Leftrightarrow (X, D)

 $\overline{q}(V) := h^0(X, \Omega_X(\log D))$ the log-irregularity

 $\overline{P}_m(V) := h^0(X, \mathcal{O}_X(m(K_X + D)))$ the *m*-th log-plurigenus

 $\overline{\kappa}(V)$ the log-Kodaira dimension

• The logarithmic invariants do not depend on the compactification X. • They are not birational invariants P(y) = 2 q(v) = 2 q(v) = 2

litaka's Philosophy

litaka's Philosophy

To any statement in the projective world that is dictated by the behavior of regular forms there should be a corresponding statement in the quasi-projective world dictated by the behavior of logarithmic forms.

litaka's Philosophy

litaka's Philosophy

To any statement in the projective world that is dictated by the behavior of regular forms there should be a corresponding statement in the quasi-projective world dictated by the behavior of logarithmic forms.

Log-Castelnuovo Criterion (Zhu 2014)

The following statement are equivalent for a smooth quasi-projective surface V:

- V is log-rationally connected;
- $I; \quad e^{0}(X, \overline{\Omega_X(\log D)^{\otimes m}}) = 0 \text{ for any } m \geq 1;$
- $\ \, {\overline{\kappa}}(V)=-\infty \text{ and } h^0(X,S^{12}\Omega_X(\log D))=0,$

Log-rationally connected = every 2 points lie on a curve of log-genus 0, that is either a \mathbb{P}^1 or an \mathbb{A}^1

2022-12-06 | S. Tirabassi - Quasi-Abelian |
Today's topic

We look for a quasi-projective analogue of the following statement:

Theorem (Enriques 1905, Chen–Hacon 2001)

Let S be a smooth complex projective surface such that

$$P_1(S) = P_2(S) = 1, \quad q(S) = 2.$$

4 (Convers)

Then S is birationally equivalent to an abelian surface.

Today's topic

We look for a quasi-projective analogue of the following statement:

Theorem (Enriques 1905, Chen–Hacon 2001)

Let S be a smooth complex projective surface such that

$$P_1(S) = P_2(S) = 1, \quad q(S) = 2.$$

Then S is birationally equivalent to an abelian surface.

Ly via the Albanese map constructed Questions: by integrating 1-fours over 1 cycle.

- Why is this a good candidate for litaka's philosophy?
- What is the right notion of equivalence to consider? WWPB equivalence
- What is the analogue of an abelian variety?

Section 3 Quasi-abelian varieties

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

$$\kappa(A) = 0$$

 $P_m(A) = 1$ for every $m \ge 0$
 $q(A) = n$

Quasi-Projective World

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

$$\kappa(A) = 0$$

 $P_m(A) = 1$ for every $m \ge 0$
 $q(A) = n$

Quasi-Projective World algebraic group G quasi-abelian variety $\begin{array}{c} G \longrightarrow G \xrightarrow{*} G \longrightarrow G \longrightarrow A \longrightarrow O \\ \\ \int & \int & A belian. \end{array}$ \mathbb{P}^{r}_{-1} , A-7NG Shc

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

 $\kappa(A) = 0$ $P_m(A) = 1$ for every $m \ge 0$ q(A) = n

Quasi-Projective World

G quasi-abelian variety $G \simeq \mathbb{C}^n/L$ with A a free abelian group of rank $\leq 2n$ L_{z} $\overline{\mathcal{K}}(G)$

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

 $\kappa(A) = 0$ $P_m(A) = 1$ for every $m \ge 0$ q(A) = n

Quasi-Projective World

G quasi-abelian variety $G\simeq \mathbb{C}^n/L$ with Λ a free abelian group of rank $\leq 2n$

 $\Omega_Z(\log \Delta) \simeq \mathcal{O}_Z^{\oplus n}$

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

 $\kappa(A) = 0$ $P_m(A) = 1$ for every $m \ge 0$ q(A) = n

Quasi-Projective World

G quasi-abelian variety $G\simeq \mathbb{C}^n/L$ with Λ a free abelian group of rank $\leq 2n$

 $\Omega_Z(\log \Delta) \simeq \mathcal{O}_Z^{\oplus n}$

 $\mathcal{O}_Z(K_Z + \Delta) \simeq \mathcal{O}_Z$

Projective World

A abelian variety $A \simeq \mathbb{C}^n / \Lambda$ with Λ a free abelian group of rank 2n

 $\Omega_A \simeq \mathcal{O}_A^{\oplus n}$

 $\omega_A \simeq \mathcal{O}_A$

 $\kappa(A) = 0$ $P_m(A) = 1$ for every $m \ge 0$ q(A) = n

Quasi-Projective World

G quasi-abelian variety $G\simeq \mathbb{C}^n/L$ with Λ a free abelian group of rank $\leq 2n$

 $\Omega_Z(\log \Delta) \simeq \mathcal{O}_Z^{\oplus n}$

 $\mathcal{O}_Z(K_Z + \Delta) \simeq \mathcal{O}_Z$

 $\overline{\kappa(G)} = 0$ $\overline{P}_m(G) = 1$ for every $m \ge 0$ $\overline{q}(G) = n$

2022-12-06 | S. Tirabassi - Quasi-Abelian |

The quasi-Albanese variety

Projective World

Given a smooth projective variety *X*, there is an abelian variety Alb(X), and a morphism $a_X : \overline{X} \to Alb(X)$ satisfying the obvious universal property. We call the pair $(Alb(X), a_X)$ the Albanese variety of *X*.

Quasi-Projective World

The quasi-Albanese variety

Projective World

Given a smooth projective variety X, there is an abelian variety Alb(X), and a morphism $a_X : X \to Alb(X)$ satisfying the obvious universal property. We call the pair $(Alb(X), a_X)$ the Albanese variety of X.

Quasi-Projective World

Given a smooth quasi-projective variety *V*, there is a quasiabelian variety Alb(V), and a morphism $a_V : V \rightarrow Alb(V)$ satisfying the obvious universal property. We call the pair $(Alb(V), a_V)$ the quasi-Albanese variety of *V*

H up to

The quasi-Albanese variety

Projective World

Given a smooth projective variety X, there is an abelian variety Alb(X), and a morphism $a_X : X \to Alb(X)$ satisfying the obvious universal property. We call the pair $(Alb(X), a_X)$ the Albanese variety of X.

Quasi-Projective World

Given a smooth quasi-projective variety *V*, there is a quasiabelian variety Alb(V), and a morphism $a_V : V \rightarrow Alb(V)$ satisfying the obvious universal property. We call the pair $(Alb(V), a_V)$ the quasi-Albanese variety of *V*

Remark

In both cases it is constructed by integrating 1-forms over 1-cycles. It still fit litaka's Philosophy

Section 4 Characterization of quasi-abelian varieties

Theorem (litaka 1979)

Let V be a smooth complex quasi-projective surface satisfying

$$\overline{\kappa}(V) = 0, \quad \overline{q}(V) = 2.$$

Then $a_V : V \to Alb(V)$ is birational. Furthermore there are finitely many points $p_1, \ldots p_k$ in Alb(V), and an open set $V_0 \subseteq V$ such that $a_{V|_{V_0}} : V_0 \to Alb(V) \setminus \{p_1, \ldots, p_k\}$ is proper.

Theorem (litaka 1979)

Let V be a smooth complex quasi-projective surface satisfying

$$\overline{\kappa}(V) = 0, \quad \overline{q}(V) = 2.$$

Then $a_V : V \to Alb(V)$ is birational. Furthermore there are finitely many points $p_1, \ldots p_k$ in Alb(V), and an open set $V_0 \subseteq V$ such that $a_{V|_{V_0}} : V_0 \to Alb(V) \setminus \{p_1, \ldots, p_k\}$ is proper.

In the language of litaka, av is a WWPB equivalence.
 Weatly weat Prope Binational.

Theorem (litaka 1979)

Let V be a smooth complex quasi-projective surface satisfying

$$\overline{\kappa}(V) = 0, \quad \overline{q}(V) = 2.$$

Then $a_V : V \to Alb(V)$ is birational. Furthermore there are finitely many points $p_1, \ldots p_k$ in Alb(V), and an open set $V_0 \subseteq V$ such that $a_{V|_{V_0}} : V_0 \to Alb(V) \setminus \{p_1, \ldots, p_k\}$ is proper.

In the language of litaka, a_V is a WWPB equivalence.
 WWPB= "Weakly Weak Proper Birational"

Theorem (litaka 1979)

Let V be a smooth complex quasi-projective surface satisfying

$$\overline{\kappa}(V) = 0, \quad \overline{q}(V) = 2.$$

Then $a_V : V \to Alb(V)$ is birational. Furthermore there are finitely many points $p_1, \ldots p_k$ in Alb(V), and an open set $V_0 \subseteq V$ such that $a_{V|_{V_0}} : V_0 \to Alb(V) \setminus \{p_1, \ldots, p_k\}$ is proper.

- In the language of litaka, a_V is a WWPB equivalence.
 WWPB= "Weakly Weak Proper Birational"
- WWPB equivalences preserve the logarithmic invariants.
- WWPB equivalences between affine varieties are isomorphisms.

Main Result

Theorem (Mendes Lopes, Pardini, 2)

Let *V* be a smooth complex quasi-projective surface with $\overline{q}(V) = 2$. Assume that either one of the following hold:

1
$$\overline{P}_1(V) = \overline{P}_2(V) = 1$$
, and $q(X) > 0$;

2
$$\overline{P}_1(V) = \overline{P}_3(V) = 1$$
, and $q(X) = 0$.

Then $a_V : V \to Alb(V)$ is a WWPB equivalence.

Corollary

If *V* is an affine surface with $\overline{P}_1(V) = \overline{P}_3(V) = 1$ and $\overline{q}(V) = 2$, then *V* is isomorphic to \mathbb{G}_m^2

Let X' be a $\mathbb{Z}/3\text{-cyclic cover of }\mathbb{P}^1\times\mathbb{P}^1$ branched on 3 fibers of each fibration.

Then a (minimal) smooth model of X^{I} is an elliptic K3 surface such that the fibration $X \to \mathbb{P}^{1}$ has 3 fibers of type IV^{*}, F_{1} , F_{2} , and F_{3} .

Let X' be a $\mathbb{Z}/3$ -cyclic cover of $\mathbb{P}^1 \times \mathbb{P}^1$ branched on 3 fibers of each fibration.

Then a (minimal) smooth model of X is an elliptic K3 surface such that the fibration $X \to \mathbb{P}^1$ has 3 fibers of type IV^{*}, F_1 , F_2 , and F_3 .

Example

Denote by F_i^s the support of the fiber F_i . Let

 $V:=X\backslash\{F_1^s,\ F_2^s,\ F_3^s\}.$

We have that

•
$$\overline{P}_1(V) = \overline{P}_2(V) = 1$$
,

- $\overline{q}(V) = 2$,
- q(X) = 0, and...

Example

Denote by F_i^s the support of the fiber F_i . Let

$$V := X \setminus \{F_1^s, F_2^s, F_3^s\}.$$

Theorem (Kawamata 1981)

Let V be a quasi-projective variety with

$$\overline{\kappa}(V) = 0, \quad \overline{q}(V) = \dim V.$$

Then the quasi-Albanese morphism $a_V : V \to Alb(V)$ is birational.

Theorem (Kawamata 1981)

Let V be a quasi-projective variety with

 $\overline{\kappa}(V) = 0, \quad \overline{q}(V) = \dim V.$

Then the quasi-Albanese morphism $a_V : V \to Alb(V)$ is birational.

Theorem (Mendes Lopes - Pardini- 🔒)

Under the same assumptions a_V is a WWPB equivalence.

Theorem (Kawamata 1981)

Let V be a quasi-projective variety with

 $\overline{\kappa}(V) = 0, \quad \overline{q}(V) = \dim V.$

Then the quasi-Albanese morphism $a_V : V \to Alb(V)$ is birational.

Theorem (Mendes Lopes - Pardini- 🖁)

Under the same assumptions a_V is a WWPB equivalence.

Effective versions of this result using the first 2 plurigenera were given by Chen–Hacon in 2001 (when *V* is projective) and Pareschi–Popa–Schnell in 2014 (when *V* is compact Kähler).

Conjectures

(Veryⁿ Bold) Conjecture

Let V be a quasi-projective variety with

$$\overline{P}_1(V) = \overline{P}_3(V) = 1, \quad \overline{q}(V) = \dim V.$$

Then the quasi-Albanese morphism $a_V : V \rightarrow Alb(V)$ is a WWPB equivalence.

With *n* as big as you want

Conjectures

(Veryⁿ Bold) Conjecture

Let V be a quasi-projective variety with

$$\overline{P}_1(V) = \overline{P}_3(V) = 1, \quad \overline{q}(V) = \dim V.$$

Then the quasi-Albanese morphism $a_V : V \rightarrow Alb(V)$ is a WWPB equivalence.

With *n* as big as you want

Okay Conjecture

Let V be a quasi-projective variety. Then there exist k a positive integer independent of the dimension of V such that, if

$$\overline{P}_1(V) = \overline{P}_k(V) = 1, \quad \overline{q}(V) = \dim V,$$

the quasi-Albanese morphism $a_V : V \rightarrow Alb(V)$ is a WWPB equivalence.

Section 5 Strategy

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

$$2 = \overline{q}(V) \ge q(x) \ge 0$$

$$= q(x) = 2$$

$$= q(x) = 1$$

$$= q(x) = 0$$

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

	q(X) = 2	q(X) = 1	q(X) = 0
Step 1			
Step 2	B		
Step 3	e		

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

	q(X) = 2	q(X) = 1	q(X) = 0
Step 1		(F)	
Step 2	(2)		
Step 3			

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

	q(X) = 2	q(X) = 1	q(X) = 0
Step 1	B	(r)	
Step 2	B		
Step 3	()		

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

	q(X) = 2	q(X) = 1	q(X) = 0
Step 1	3	(r)	
Step 2	(2)		
Step 3			

- the quasi-Albanese morphism is dominant;
- the quasi-Albanese morphism is birational;
- the quasi-Albanese morphism is a WWBP equivalence.

Case q(X) = 2

- The first two points follows (almost) directly from Chen–Hacon, with the help of generic vanishing (and recent extensions to pairs).
- It remains to show that the Albanese morphism of *X* contracts the boundary *D*.

Case q(X) = 1, 0

• The argument for the dominance of the quasi-Albanese morphism proceeds smoothly thanks to generic vanishing when q(X) = 1.

Case q(X) = 1, 0

- The argument for the dominance of the quasi-Albanese morphism proceeds smoothly thanks to generic vanishing when q(X) = 1.
- You do not really want to know the argument in the case q(X) = 0...

Case q(X) = 1, 0

- The argument for the dominance of the quasi-Albanese morphism proceeds smoothly thanks to generic vanishing when q(X) = 1.
- You do not really want to know the argument in the case q(X) = 0...
 A great tool is the following formula

• Once one knows that the quasi-Albanese morphism is dominant (and hence generically finite), we can use the logarithmic ramification formula

$$K_X + D \sim \overline{R}_g$$

Thank You!!!

Section 6 WWPB

Definition

A birational map $\varphi: V \dashrightarrow W$ is a WPB-equivalence if it can be written as a composition of

- proper birational morphism and their inverse;
- open immersions V ⊂ V' such that V' \ V has codimension at least 2, and their inverses.

Definition

A birational map $\varphi : V \dashrightarrow W$ is a WPB-equivalence if it can be written as a composition of

- proper birational morphism and their inverse;
- open immersions V ⊂ V' such that V' \ V has codimension at least 2, and their inverses.

WPB-equivalent varieties have the same logarithmic plurigenera and irregularity. Therefore, it would seem that WPB-equivalence is the right equivalence to consider when studying the birational geometry of open varieties.

Definition

A birational map $\varphi : V \dashrightarrow W$ is a WPB-equivalence if it can be written as a composition of

- proper birational morphism and their inverse;
- open immersions V ⊂ V' such that V' \ V has codimension at least 2, and their inverses.

WPB-equivalent varieties have the same logarithmic plurigenera and irregularity. Therefore, it would seem that WPB-equivalence is the right equivalence to consider when studying the birational geometry of open varieties.

Problem

the set of WPB-maps is not saturated.

 $\mathcal{W} := \{f : V \dashrightarrow W \mid \text{there is } U \text{ and } g \text{ or } h \text{ such that} \\ \text{either } f \circ g \text{ or } h \circ f \text{ are WPB} \},$

Definition

A rational map $f : V \dashrightarrow W$ between algebraic varieties is a WWPB equivalence, if we can write $f = f_1 \circ \cdots \circ f_k$ with f_i birational maps such that either f_i or f_i^{-1} is in W.

It can be proven that WWPB-equivalent varieties have the same plurigenera and the same irregularity.

Thank You!!!

