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@ The classification problem
e litaka’s philosophy
e Quasi-abelian (semi-abelian) varieties

@ Characterization of quasi-abelian varieties

e Strategy
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The classification
problem
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The world of projective varieties '
University

Projective variety = closed, irreducible subset X C P" with the Zarsiki
topology.
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Classification up to what? e
Deray

A morphism f: X — Y of projective varieties is a map that locally
around any point p can be written as

ag1(X1,...,Xn) an(Xt, ..., Xn)
( )

hi(x1,..., %) " hn(X4, ..oy Xn)

with g; and h; homogeneous polynomials of the same degree, with h;
non vanishing around p. An isomorphism is a bijective morphism
whose inverse is a morphism

We say that two varieties are birationally equivalent if they contain
isomorphic non empty open sefs
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On a smooth projective variety X of dimension n we can define the
vector bundle of regular differential forms:

—b o Sly,p= Zﬁ&'@ O\/KL

It has@o its n-th exterior power is a line bundle, called
canonical line bundle and denoted by

n

By taking cohomology we get important invariants:
@ g(X) := h°(X,Qx) is the irregularity of X
@ Pn(X) := hO(X,w§™) is the m-th plurigenus of X.
_ T~
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The invariants Isjtkhlr;l

On a smooth projective variety X of dimension n we can define the
vector bundle of regular differential forms:

Qx

It has rank n so its n-th exterior power is a line bundle, called
canonical line bundle and denoted by

n
wx = /\Qx,

By taking cohomology we get important invariants:
@ g(X) := h°(X,Qx) is the irregularity of X
@ Pn(X) := hO(X,w§™) is the m-th plurigenus of X.

These are birational invariants!!!
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Suppose that L is a line bundle such that L*™ has sections for m
sufficiently large and divisible. Then L™ induces a rational map (a
morphism defined on a open set)

rem: X ——> PN
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The Kodaira dimension fkhlm
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Suppose that L is a line bundle such that L*™ has sections for m
sufficiently large and divisible. Then L™ induces a rational map (a
morphism defined on a open set)

rem: X ——> PN

The dimension of the image of ;2= stabilizes. We call this stable
value the litaka dimension of L, and we denote it by
el

w(X, L),\
If HO(X, L®™) = 0 for every m > 0 we say that

k(X, L) = —o0,
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The Kodaira dimension fkhlm
University

Suppose that L is a line bundle such that L*™ has sections for m
sufficiently large and divisible. Then L™ induces a rational map (a
morphism defined on a open set)

rem: X ——> PN

The dimension of the image of ¢, «m stabilizes. We call this stable
value the litaka dimension of L, and we denote it by

k(X, L),
If HO(X, L®™) = 0 for every m > 0 we say that
k(X, L) = —o0,

The Kodaira dimension ou

#(X) = K(X, wx),
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Special varieties S

@ P", We have that g(P") = 0, P,(P") = 0if m > 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
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@ P". We have that q(P") = 0, Py(P") =0if m> 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
@ Abelian varieties
An abelian variety A is a projective variety with a group structure such

that the multiplication map m and the inverse map / are morphims.
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Special varieties Is;khh;l

@ P". We have that q(P") = 0, P»(P") =0if m > 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
@ Abelian varieties
An abelian variety A is a projective variety with a group structure such
that the multiplication map m and the inverse map / are morphims.
If n = 1 they are elliptic curves, genus one curves with a rational
point.
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Special varieties S

@ P". We have that q(P") = 0, Py(P") =0if m> 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
@ Abelian varieties

An abelian variety A is a projective variety with a group structure such
that the multiplication map m and the inverse map / are morphims.

If n =1 they are elliptic curves, genus one curves with a rational
point.

If the base field is C they are quotient of @with A afinetely
generated free abelian group of maximal rank.

Cochucied oy Bl > o el
e\lignc W&QSQ@&5
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Special varieties Is;khh;l

@ P". We have that q(P") = 0, Py(P") =0if m> 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
@ Abelian varieties
An abelian variety A is a projective variety with a group structure such
that the multiplication map m and the inverse map / are morphims.
If n =1 they are elliptic curves, genus one curves with a rational
point.
If the base field is C they are quotient of C"/A with A a finetely
generated free abelian group of maximal rank.

We have that
Qa~0%"| and M
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@ P". We have that q(P") = 0, Py(P") =0if m> 0 and
K(P") = —oc.
A variety that is birational equivalent to P is rational.
@ Abelian varieties

An abelian variety A is a projective variety with a group structure such
that the multiplication map m and the inverse map / are morphims.
If n =1 they are elliptic curves, genus one curves with a rational
point.
If the base field is C they are quotient of C"/A with A a finetely
generated free abelian group of maximal rank.
We have that

Qa~0%", and wa~ Op,

In particular

A)=dimA, Pn(A)=1foreverym, and x(A)=0

-
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Castelnuovo criterion
A smooth complex surface S is rational if, and only if,

q(S) = Px(S) =0,

Kawamata 1981

A smooth complex projective variety X is birationally equivalent to an
abelian variety if, and only if

k(X)=0, and g(X)=dimX,

Chen—-Hacon 2001

A smooth complex projective variety X is birationally equivalent to an
abelian variety if, and only if

Pi(X)=Py(X)=1, and q(X)=dimX,
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A tale of two worlds

Projective World

X smooth complex projective
variety of dimension n

Stockholm
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A tale of two worlds ¢ S
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Projective World Quasi-Projective World
X smooth complex projective | V smooth vari-
variety of dimension n ety of dimensio

\V/
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Projective World Quasi-Projective World

X smooth complex projective | V smooth quasi-projective vari-
variety of dimension n ety of dimension n

T
(X, D) with D asné divisor

Ve X?“Q\\
XA\ pne- coaiter \
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Projective World Quasi-Projective World

X smooth complex projective | V smooth quasi-projective vari-
variety of dimension n ety of dimension n

0
(X, D) with D a snc divisor

Qx

wx
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A tale of two worlds .

Projective World

X smooth complex projective
variety of dimension n

Qx

wx

University

Quasi-Projective World

V smooth quasi-projective vari-
ety of dimension n

0
(X, D) with D a snc divisor
Qx(log D)

the sheaf of logarithmic 1-forms
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A tale of two worlds

Projective World

X smooth complex projective
variety of dimension n

Qx

wx

@Wr»
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Quasi-Projective World

V smooth quasi-projective vari-
ety of dimension n

T
(X, D) with D a snc divisor
Qx(log D) Yockéx (OUNA‘M’
@%{(‘O\m N\
the sheaf of logarithmic 1-forms

/\n Qx(|0g D) ~ Ox(KX + D)
the log-canonical shea
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Logarithmic invariants et

Projective World

X smooth projective
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)
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Logarithmic invariants et

Projective World

X smooth projective

a(X)

Pm(X)
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)
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Logarithmic invariants et

Projective World

X smooth projective

a(X)

Pm(X)
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)

q(V) = h°(X,Qx(log D)) the
log-irregularity




Logarithmic invariants et

Projective World

X smooth projective

a(X)

Pm(X)
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)

q(V) = h°(X,Qx(log D)) the
log-irregularity

Pm(V) := hO(X, Ox(m(Kx + D))
the m-th log-plurigenus




Logarithmic invariants et

Projective World

X smooth projective

a(X)

Pm(X)
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)

q(V) = h°(X,Qx(log D)) the
log-irregularity

Pm(V) := h°(X, Ox(m(Kx + D))
the m-th log-plurigenus

%(V) the log-Kodaira dimension




Logarithmic invariants e

Projective World

X smooth projective

a(X)

Pm(X)

K(X)

& s,
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Quasi-Projective World

V' smooth quasi-projective <
(X, D)

q(V) = h°(X,Qx(log D)) the
log-irregularity

Pn(V) := ho(X, Ox(m(Kx + D))
the m-th log-plurigenus

%(V) the log-Kodaira dimension

@ The logarithmic invariants do not depend on the compactification

X.

@ They are not birational invariantsg\)‘&D 2 Q(Q\’L
D .

T\ﬂ\ib?@] N g T o
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litaka’s Philosophy fkhlm
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litaka’s Philosophy

To any statement in the projective world that is dictated by the
behavior of regular forms there should be a corresponding statement
in the quasi-projective world dictated by the behavior of logarithmic
forms.
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litaka’s Philosophy fkhlm
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litaka’s Philosophy

To any statement in the projective world that is dictated by the
behavior of regular forms there should be a corresponding statement
in the quasi-projective world dictated by the behavior of logarithmic
forms.

Log-Castelnuovo Criterion (Zhu 2014)

The following statement are equivalent for a smooth quasi-projective
surface V:

@ Vs log-rationally connected;

Q@ h°(X,Qx(log D)®™) = 0 forany m > 1;

Q 7(V) = —oo and h°(X, S2Qx(log D)) = 0,
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We look for a quasi-projective analogue of the following statement:

Theorem (Enriques 1905, Chen—-Hacon 2001)

Let S be a smooth complex projective surface such that

Pi(S)=Px(S)=1, q(S)=2.
A (Cnﬂq\ke,s
Then S is birationally equivalent to an abelian surface.
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We look for a quasi-projective analogue of the following statement:

Theorem (Enriques 1905, Chen—-Hacon 2001)

Let S be a smooth complex projective surface such that
Pi(S) = P2(S) =1, q(S) =2.
Then S is birationally equi nt to an abeli .
L> VG tha Mb@m@a T
Questions: \DQ i\/&@&f\g&u\,\% (- S AASA \% .

@ Why is this a good candidate for litaka’s philosophy? \/
@ What is the right notion of equivalence to consider? W\?% @5{9\\’0&@“&

@ What is the analogue of an abelian variety?
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The tale continues

Projective World

A abelian variety
A ~ C"/A with A a free abelian

group of rank 2n

~ (OOn
Qp =~ OF
wAQOA

=0
)=1foreverym>0
=n
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Quasi-Projective World



The tale continues

Projective World

A abelian variety
A ~ C"/A with A a free abelian

group of rank 2n

~ (OHON
Qp =~ O
wAZOA

=0
)=1foreverym>0
=n
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Quasi-Projective World

ai%z\a‘w&c M

G quasi-abelian variety
AH—> CE,V,M"7 e — A
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The tale continues

Projective World

A abelian variety

A ~ C"/A with A a free abelian

group of rank 2n

~ (OON
Qp =~ OF
wAZOA

=0
)=1foreverym>0
=n

&,
7, &

Vi st
Stockholm
University

Quasi-Projective World

G quasi-abelian variety
G ~ C"/L with }\ a free abelian
group of rank < 2n

LA (@D




The tale continues

Projective World

A abelian variety

A ~ C"/A with A a free abelian

group of rank 2n
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Quasi-Projective World

G quasi-abelian variety
G ~ C"/L with A a free abelian

group of rank < 2n

Qz(log A) ~ O%"



The tale continues

Projective World

A abelian variety

A ~ C"/A with A a free abelian

group of rank 2n

~ (OON
Qp =~ OF
wAZOA

=0
)=1foreverym>0
=n
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Quasi-Projective World

G quasi-abelian variety
G ~ C"/L with A a free abelian

group of rank < 2n

Qz(log A) ~ O%"

Oz(KZ + A) ~ Oz



The tale continues

Projective World

A abelian variety
A ~ C"/A with A a free abelian
group of rank 2n

QA >~ O?n

waA ~ OA
k(A)=0
Pm(A) =1 for every m > 0
q(A)=n
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Quasi-Projective World

G quasi-abelian variety
G ~ C"/L with A a free abelian
group of rank < 2n

Qz(log A) ~ O%"

Oz(KZ + A) ~ Oz

<(G) =0
P,(G) =1 for every m > 0
q(G)=n
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Projective World

Given a smooth projective vari-
ety X, there is an abelian va-
riety Alb(X), and a morphism
ax : X — Alb(X) satisfying the
obvious universal property. We
call the pair (Alb(X), ax) the Al-
banese variety of X.

5 Al

Stockholm
University

Quasi-Projective World



The quasi-Albanese variety

Projective World

Given a smooth projective vari-
ety X, there is an abelian va-
riety Alb(X), and a morphism
ax : X — Alb(X) satisfying the
obvious universal property. We
call the pair (Alb(X), ax) the Al-
banese variety of X.
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Quasi-Projective World

Given a smooth quasi-projective
variety V, there is a quasi-
abelian variety Alb(V), and a
morphism ay : V — Alb(V)
satisfying the obvious univer-
sal property. We call the pair
(Alb(V), ay) the quasi-Albanese

variety of V
\ S A\\o@\
o
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The quasi-Albanese variety s

Projective World

Given a smooth projective vari-
ety X, there is an abelian va-
riety Alb(X), and a morphism
ax : X — Alb(X) satisfying the
obvious universal property. We
call the pair (Alb(X), ax) the Al-
banese variety of X.

o
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Quasi-Projective World

Given a smooth quasi-projective
variety V, there is a quasi-
abelian variety Alb(V), and a
morphism ay : V — Alb(V)
satisfying the obvious univer-
sal property. We call the pair
(Alb(V), ay) the quasi-Albanese
variety of V

In both cases it is constructed by integrating 1-forms over 1-cycles. It

still fit litaka’s Philosophy
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Section 4
Characterization of
quasi-abelian varieties
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Theorem (litaka 1979)
Let V be a smooth complex quasi-projective surface satisfying
R(V)=0, g(V)=2.

Then ay : V — Alb(V) is birational. Furthermore there are finitely
many points py, ... pk in Alb(V), and an open set Vy C V such that
ayy,, : Vo = Alb(V)\{p1, ..., px} is proper.
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litaka’s characterization e
University

Theorem (litaka 1979)
Let V be a smooth complex quasi-projective surface satisfying
R(V)=0, g(V)=2.

Then ay : V — Alb(V) is birational. Furthermore there are finitely
many points py, ... px in Alb(V), and an open set Vy C V such that
ayy,, : Vo = Alb(V)\{p1, ..., px} is proper.

@ In the language of litaka, ay is a WWPB equivalence.

WQQ\(,\% I\eeY'e 9\0@; %\(\Q& el
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litaka’s characterization e
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Theorem (litaka 1979)
Let V be a smooth complex quasi-projective surface satisfying
R(V)=0, g(V)=2.

Then ay : V — Alb(V) is birational. Furthermore there are finitely
many points py, ... px in Alb(V), and an open set Vy C V such that
ayy,, : Vo = Alb(V)\{p1, ..., px} is proper.

@ In the language of litaka, ay is a WWPB equivalence.
WWPB= "Weakly Weak Proper Birational"
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litaka’s characterization e
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Theorem (litaka 1979)
Let V be a smooth complex quasi-projective surface satisfying

®V)=0, g(V)=2.

Then ay : V — Alb(V) is birational. Furthermore there are finitely
many points py, ... px in Alb(V), and an open set Vy C V such that
ayy,, : Vo = Alb(V)\{p1, ..., px} is proper.

@ In the language of litaka, ay is a WWPB equivalence.
WWPB= "Weakly Weak Proper Birational"

@ WWPB equivalences preserve the logarithmic invariants.
@ WWPB equivalences between affine varieties are isomorphisms.
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Theorem (Mendes Lopes, Pardini, &)

Let V be a smooth complex quasi-projective surface with g(V) = 2.
Assume that either one of the following hold:

Q Pi(V)=Py(V)=1,and q(X) > 0;
Q Pi(V)=P3(V)=1,and q(X) = 0.
Then ay : V — Alb(V) is a WWPB equivalence.

Corollary

If V is an affine surface with P;(V) = P3(V) =1 and (V) = 2, then
V is isomorphic to G2, \

X;’@%
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Let X’ be a Z/3-cyclic cover of P! x P! branched on 3 fibers of each
fioration.

Then a (minimal) smooth model of Xl is an elliptic K3 surface such
that the fibration X — P! has 3 fibers of type IV*, F;, F2, and Fs.



& s,
R
Example Stockholm

University

Let X’ be a Z/3-cyclic cover of P! x P! branched on 3 fibers of each
fioration.

Then a (minimal) smooth model of X is an elliptic K3 surface such
that the fibration X — P! has 3 fibers of type IV*, F;, F2, and Fs.

oo s Dt Gt

1 2

3
2
1
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Denote by F7? the support of the fiber F;. Let
V.= X\{F}, F5, F5}.
We have that
o ﬁ1(V) Zﬁg(V) = 1,
e g(V)=2,
@ g(X)=0,and...
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Denote by F7? the support of the fiber F;. Let
V.= X\{F}, F5, F5}.

We have that

o Pi(V)=Po(V) =1, W§ 4

o G(V) =2, S\l :

@ g(X)=0,and...
...the quasi-Alanese morphism is not dominant!!!

v S AR
Aol oA,

e )

Coppn g = AL ey -AO
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Higher dimension?
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Theorem (Kawamata 1981)
Let V be a quasi-projective variety with

&(V)=0, g(V)=dimV.

Then the quasi-Albanese morphism ay : V — Alb( V) is birational.
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Higher dimension* Sesinam

Theorem (Kawamata 1981)
Let V be a quasi-projective variety with

®(V)=0, g(V)=dimV.

Then the quasi-Albanese morphism ay : V — Alb( V) is birational.

Theorem (Mendes Lopes - Pardini- &)
Under the same assumptions ay is a WWPB equivalence.
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Theorem (Kawamata 1981)
Let V be a quasi-projective variety with

&(V)=0, g(V)=dimV.

Then the quasi-Albanese morphism ay : V — Alb( V) is birational.

Theorem (Mendes Lopes - Pardini- &)
Under the same assumptions ay is a WWPB equivalence.

Effective versions of this result using the first 2 plurigenera were given
by Chen—Hacon in 2001 (when V' is projective) and
Pareschi-Popa—Schnell in 2014 (when V' is compact Kahler).
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(Very” Bold) Conjecture
Let V be a quasi-projective variety with

Pi(V)=Ps(V) =1, G(V)=dim V.

Then the quasi-Albanese morphism ay : V — Alb(V) is a WWPB
equivalence.
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(Very” Bold) Conjecture
Let V be a quasi-projective variety with

Pi(V)=Po(V) =1, G(V)=dim V.

Then the quasi-Albanese morphism ay : V — Alb(V) is a WWPB
equivalence.

Okay Conjecture

Let V be a quasi-projective variety. Then there exist k a positive
integer independent of the dimension of V such that, if

Pi(V)=P(V)=1, q(V)=dimV,

the quasi-Albanese morphism ay : V — Alb(V) is a WWPB
equivalence.
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Outline of the proof et
et

There are three main steps:
@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;
© the quasi-Albanese morphism is a WWBP equivalence.

- GW= gk) zo
- g2
o qlx\=)
® QLK) =0
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Outline of the proof et
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There are three main steps:
@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;
© the quasi-Albanese morphism is a WWBP equivalence.

AX) =2\ g(X)=1]q(X)=0
Step)/((.v'

S30))
ok

\
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Outline of the proof

There are three main steps:
@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;

© the quasi-Albanese morphism is a WWBP equivalence.

2

q(X) =1

g(X)=0

Step 1

Step 2

Step 3
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There are three main steps:
@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;
© the quasi-Albanese morphism is a WWBP equivalence.

Outline of the proof

q(X) =2 q(X) =0
Step 1 e
Step 2 e
Step 3 S’i{_
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Outline of the proof et
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There are three main steps:
@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;
© the quasi-Albanese morphism is a WWBP equivalence.

gX)=2]qgX)=1[qX)=0

a2 )
Step 1 = = 6).%

S
Step 2 Lo d

f‘)’
©)
=

Step 3




Outline of the proof et
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There are three main steps:

@ the quasi-Albanese morphism is dominant;

@ the quasi-Albanese morphism is birational;

© the quasi-Albanese morphism is a WWBP equivalence.

aX)=21qgX)=1]qX)=0
L2 AR\
sw1| & | 6 | @
Step 2 27, éj
Il:i\) ()
Step 3 \:‘& = 3




Outline of the proof et
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There are three main steps:

@ the quasi-Albanese morphism is dominant;
@ the quasi-Albanese morphism is birational;
© the quasi-Albanese morphism is a WWBP equivalence.

a(X) =2 q(X) = 1| qUE=0
© | & (@
Step 2 e /_\ ’;_J ]

Step 3 @\

Step 1

1)
)

)
)

©®©
O]

J)

f~ =
-
-— —

X
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Case g(X)

@ The first two points follows (almost) directly from Chen—Hacon,
with the help of generic vanishing (and recent extensions to

pairs).
@ It remains to show that the Albanese morphism of X contracts
the boundary D.



Case gq(X) =1,0

@ The argument for the dominance of the quasi-Albanese
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morphism proceeds smoothly thanks to generic vanishing when

g(X)=1.
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@ The argument for the dominance of the quasi-Albanese
morphism proceeds smoothly thanks to generic vanishing when
q(X) =1.

@ You do not really want to know the argument in the case
q(X) =0...
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Case (X) =1,0 sy

@ The argument for the dominance of the quasi-Albanese
morphism proceeds smoothly thanks to generic vanishing when

q(X) = 1.
@ You do not really want to know the argument in the case
q(X) =0...

A great tool is the following formula

2 C 2 ol O O
h°(X, Kx + D) = pa(D) + pg(X) — q(X) + h'(X,-D).

@ Once one knows that the quasi-Albanese morphism is dominant
(and hence generically finite), we can use the logarithmic
ramification formula

Kx-l—DN_Fr’g
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Thank Uou!!
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A birational map ¢ : V --» W is a WPB-equivalence if it can be
written as a composition of
@ proper birational morphism and their inverse;
@ open immersions V C V'’ such that V' \ V has codimension at
least 2, and their inverses.

[92]
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A birational map ¢ : V --» W is a WPB-equivalence if it can be
written as a composition of

@ proper birational morphism and their inverse;

@ open immersions V C V' such that V'’ \ V has codimension at
least 2, and their inverses.

[92]

WPB-equivalent varieties have the same logarithmic plurigenera and
irreqularity. Therefore, it would seem that WPB-equivalence is the
right equivalence to consider when studying the birational geometry
of open varieties.
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A birational map ¢ : V --» W is a WPB-equivalence if it can be
written as a composition of

@ proper birational morphism and their inverse;

@ open immersions V C V' such that V'’ \ V has codimension at
least 2, and their inverses.

WPB-equivalent varieties have the same logarithmic plurigenera and
irreqularity. Therefore, it would seem that WPB-equivalence is the
right equivalence to consider when studying the birational geometry
of open varieties.

Problem
the set of WPB-maps is not saturated.
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[92]

W:={f:V --» W]thereis Uand g or h such that
either fo g or ho f are WPB},

Definition

A rational map f: V --» W between algebraic varieties is a WWPB
equivalence, if we can write f = f; o - - - o fi with f; birational maps
such that either f; or £~ is in W.

It can be proven that WWPB-equivalent varieties have the same
plurigenera and the same irregularity.



Thank Uou!!
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