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infinite dim geometry finite dim geometry
=⇒

QFT Math

Typically, one starts with a path integral in quantum field theory∫
E

eiS/ℏ

In good situations (e.g. when supersymmetry exists), the
ill-defined path integral is localized to a well-defined integral∫

E
eiS/ℏ =

∫
M

(−)

over a finite dim M ⊂ E . M is some interesting moduli space.
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Example: Topological quantum mechanics (TQM)

TQM leads to a path integral on the loop space∫
Map(S1,X)

e−S/ℏ ℏ→0
=⇒

∫
X
(curvatures)

Topological nature implies the exact semi-classical limit ℏ → 0,
which localizes the path integral to constant loops.
▶ LHS= the analytic index expressed in physics
▶ RHS= the topological index.

This is the physics “derivation” of Atiyah-Singer Index Theorem.
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Example: Witten’s “Index Theorem” on loop space

Replace S1 by an elliptic curve E:∫
Map(E,X)

e−S/ℏ ℏ→0
=⇒

Intuitively, if we view

Map(E,X) = Map(S1, LX)

as defining a quantum mechanics on LX, then this leads to
Witten’s proposal for index of dirac operators on loop space.
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Example: Mirror symmetry

Mirror symmetry is about a duality between

symplectic geometry (A-model) ⇐⇒ complex geometry (B-model)

∫
Map(Σg,X) (A-model)

localize
��

Fourier transform ∫
Map(Σg,X′) (B-model)

localize
��∫

Holomorphic maps(Σg,X)
oo //______

��

∫
Constant maps(Σg,X′) ???

��
Gromov-Witten Theory Hodge theory

The B-model can be viewed as a suitable mysterious way to “count
constant surfaces”, which will be related to the variation of Hodge
structures and its quantization.
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Observable algebras

”Observables = functions on fields”.

The topology of X =⇒ factorization algebra.

V

U1 U2

Ui

⊗
i Obs(Ui) → Obs(V)

factorization product

▶ Beilinson-Drinfeld: Factorization algebra in 2d CFT.
▶ Costello-Gwilliam: Factorization algebras from

(perturbative) quantum field theory in BV formalism.
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Example: dimX = 1 (topological quantum mechanics)

QFT in dim = 1 is quantum mechanics.

In the topological case, for any contractible open U, Obs(U) = A.
The factorization product doesn’t depend on the location and size:

A ⊗ A → A.

We find an (homotopy) associative algebra.
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There are several algebraic structures for observables in TQM.
Let A := A/C · 1. Define

Cp(A) := A ⊗ A⊗p
, cyclic p-chains.

a0

a1

a2

ap

∈ Cp(A)

It carries two natural differentials{
Hochschild differential b : Cp(A) → Cp−1(A)
Connes operator B : Cp(A) → Cp+1(A).

The periodic cyclic complex is defined by

CCper
• (A) := (C•(A)[u, u−1], b + uB).

This can be viewed as S1-equivariant observables on the cycle.
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We will be mainly interested in σ-models about the mapping space

E = {ϕ : Σ → X}

and consider the case when it is localized to constant maps

M = {const map : Σ → X} .
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E

M

M̂

Let M̂ be the formal neighborhood of M inside E . Then intuitively∫
E

eiS/ℏ =

∫
M̂

eiSeff/ℏ =

∫
M

(−) .

The pair (M̂,Seff) will be called the localized effective theory.
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E = {ϕ : Σ → X}
The idea is to formulate the effective geometry of σ-models as a
sheaf on X of quantum algebras (observables) living on Σ

Obsℏ(Σ)

##G
GG

GG
GG

GG

⟨−⟩ // A[[ℏ]]

}}zz
zz
zz
zz
z

X

▶ A is a BV algebra (IR theory of zero modes), equipped with∫
BV

: A → C.

▶ ⟨−⟩ is a chain map (quantum master equation).
▶ Trace map Tr(−) =

∫
BV ⟨−⟩ : Obsℏ → C((ℏ)). Then

Index = Tr(1).
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Application: counting const loops =⇒ algebraic index
Let (X, ω) be a symplectic manifold, (C∞(X)[[ℏ]], ?) be a
deformation quantization. There exists a unique linear map

Tr : C∞(X)[[ℏ]] → R((ℏ))

satisfying
▶ Trace property: Tr(f ? g) = Tr(g ? f)
▶ Normalization:

Tr(f) = 1
ℏn

∫
X

ωn

n! (f + O(ℏ)) n = dimX/2.

The Algebraic Index Theorem [Fedosov, Nest-Tsygan] says that

Tr(1) =
∫

X
eωℏ/ℏÂ(X).

I will explain how to use localized effective theory to prove such
index theorem, making the physics argument into math realization.
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The framework of localized effective theory

The localized effective theory contains three main steps

1. Local model

2. Gluing and descent

3. Exact semi-classical approximation.
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1. Local model

Assume that X is locally modeled by a flat geometry TModel such
that X is built up from gluing pieces of TModel.

X
TModel

Σ p

Quantum fluctuations around a point p ∈ X is locally modeled by

Σ → TModel.

Since TModel is flat, this is usually a free quantum field theory.
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Even the theory is free, it carries a nontrivial factorization algebra
of quantum observables Obsℏ living on Σ.
We are interested in an evaluation map

Tr : Obsℏ → C[[ℏ]], δ Tr = 0.

δ is some natural differential (BRST operator).
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Example: Topological quantum mechanics

One way to formulate TQM is to consider the mapping space

ϕ : S1
dR → (X, ω).

X

Here (X, ω) is a symplectic manifold. S1
dR is the supermanifold

S1
dR = (S1,Ω•

S1)

with underlying topology S1 and the structure ring the sheaf of de
Rham complex Ω•

S1 .
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Local Model

We first study the local model: S1
dR → (R2n, ω)

ϕ ∈ Map
(
S1

dR,R2n) = Ω•
S1 ⊗ R2n.

The action is the free one

Sfree[ϕ] =

∫
S1
ω(ϕ, dϕ).

Constant maps are presented by

Constant maps = H•(S1)⊗ R2n.
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Free correlation function

Obsℏ = functions on Ω•
S1 ⊗ R2n.

Ω•
2n = functions on H•(S1)⊗ R2n, ∆ = LΠ.

Then we can use Feynman diagrams to define

⟨−⟩free :=

∫
[Dϕ]e−Sfree[φ]/ℏ(−) : Obsℏ → Ω•

2n[[ℏ]]

The correlation functions play the role of integrating out
informations from normal neighborhood of constant maps.
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Local observables on S1 form the Weyl algebra
W2n =

(
C[[pi, qi]][[ℏ]], ?

)
where ? is the Moyal-Weyl product

(f ? g)(p, q) := f(p, q)eℏ
( ←−

∂
∂pi

−→
∂
∂qi −

←−
∂
∂qi
−→
∂
∂pi

)
g(p, q).

W2n
W2n
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We consider the following types of observables

CCper
• (W2n) → Obsℏ

by sending O0 ⊗O1 ⊗ · · · ⊗ Om (Oi ∈ W2n) to the functional
O0(ϕ(t0))

∫
Om(ϕ(tm))O1(ϕ(t1))

t0 = 0 < t1 < · · · < tm < 1

· · ·

Ok(ϕ(tk))

Composing with the free correlation function

⟨−⟩free : CCper
• (W2n) → Ω•

2n((ℏ)) .

This intertwines the Hochschild differential with BV operator

(b + ℏ∆) ⟨−⟩free = 0.
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The trace map
CCper

• (W2n)
⟨−⟩free //

Tr ((PP
PPP

PPP
PPP

P
Ω•

2n((ℏ))[u, u−1]∫
const maps: α→eℏιπ/uα|0

��
R((ℏ))[u, u−1].

We end up with the following trace map

Tr : CCper
• (W2n) → R((ℏ))[u, u−1].

It can be checked that it satisfies the cocycle condition

(b + uB) Tr = 0 .

b = the Hochschild differential and B = the Connes’ operator.

Tr has an explicit formula in terms of Feynman diagrams
(Feigin-Felder-Shoikhet formula).
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2. Gluing and descent

Once we have a local theory modeled on TModel, the next step is to
glue them to form a sheaf on X. The gluing symmetry is typically
described by a Harish-Chandra pair

(g,K), Lie(K) ⊂ g.

▶ K is the linearized transformations.
▶ g contains all nonlinear transformations.
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Gluing geometry of X

The geometry of X will be represented by a principal K-bundle

K // P

��
X

together with a flat (g,K)-connection γ, i.e. γ ∈ Ω1(P, g)
▶ ιξγ = ξ, ∀ξ ∈ Lie(K);
▶ γ is K-equivariant;
▶ dγ + 1

2 [γ, γ] = 0.

It induces a flat connection on the associated vector bundle
P ×K V for any (g,K)-module V.
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Gelfand-Fuks descent
Let

C•(g,K;V) := HomK(∧•(g/ Lie(K)),V), ∂Lie

be the Lie algebra cochain complex valued in V. Let

Ω•(P,V)basic ≃ Ω•(X,P ×K V), d + γ

be the de Rham complex of the associated flat bundle P ×K V.

There is a natural cochain map of Gelfand-Fuks descent

desc : C•(g,K;V) → Ω•(P,V)basic

α → α(γ, γ, · · · , γ).

This allows us to descent a local coupling to a global object on X

desc : H•(g,K;V) → H•(X,P ×K V)
Lie theoretic geometric
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This set-up follows closely the philosophy of Gelfand-Kazhdan
formal geometry. Several examples are established along this line
▶ Kontsevich and Cattaneo-Felder: Poisson σ-model
▶ Costello: holomorphic CS theory on an elliptic curve E
▶ Grady-Gwilliam: TQM on X = T∗M
▶ Grady-Li-L: TQM on a symplectic manifold X
▶ Gorbounov-Gwilliam-Williams: β − γ-system.
▶ · · ·
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Example: Topological quantum mechanics

The relevant Harish-Chandra pair (g,K) is

g = W2n, K = Sp2n

The principal bundle is the frame bundle

Sp2n // Fr(TX)

��
X

Fedosov shows that there exists flat (g,K)-connection

γ ∈ Ω1(Fr(TX), g).

γ will be called the Fedosov connection.
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γ induces a flat connection on the associated Weyl bundle

W(X) := Fr(X)×Sp2n W2n.

Let
WD = {flat sections of W(X)}.

▶ WD defines a deformation quantization of C∞(X)
▶ WD can be viewed as quantum observables glued on X.
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Coupling with gluing symmetry

We will glue our trace map

Tr ∈ Hom
(
CCper

• (W2n),C((ℏ))[u, u−1]
)

on X by lifting it to

TrL ∈ C•(g,K; Hom
(
CCper

• (W2n),C((ℏ))[u, u−1]
)
)

satisfying the coupled equation

(∂Lie + (b + uB)) TrL = 0.
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Connection v.s. Interaction

There is a very natural way to realize this, by turning on an
interaction by a universal connection. In our context, we consider

Θ̂ ∈ C1(g;W2n)

which represents the natural embedding g ↪→ W2n.
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Introduce the following interacting action∫
S1
Θ̂(ϕ)

which is a C1(g;C) = g∗-valued local functional on S1. Define

TrL(−) := Tr((−)e 1
ℏ
∫

S1 Θ̂) ∈ C•(g,K;−)

Proposition (Gui-L-Kai)
TrL satisfies the coupled equation

(∂Lie + (b + uB)) TrL = 0.
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Descent

Now we can use Fedosov connection to descent TrL to give

desc(TrL) : CCper
• (WD) → Ω2n−•(X)((ℏ))[u, u−1].

b + uB → d

This gives our glued correlation functions on quantum observables.

The index is given by the partition function

Index =

∫
X

desc(TrL)(1).
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3. Exact semi-classical approximation
Now we explain the strategy to understand the physics idea of
exact semi-classical approximation. Suppose

Tr : Obsℏ → C((ℏ))

which is suitably coupled with gluing symmetry by

TrL = Tr+ · · · ∈ C•(g,K; Hom(Obsℏ,C((ℏ))))

In particular, the partition function (the index) is given by Tr(1).

We need to figure out the Gauss-Manin connection ∇ along
ℏ-variation. Then exact semi-classical approximation of the index is

(∇ℏ∂ℏ) Tr(1) = ∂Lie − exact.

This will allow us to compute the index via one-loop Feynman
diagrams, the same as what physicists would do.
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Example: Topological quantum mechanics

The ℏ-variation is computed by Getzler’s Gauss-Manin connection
∇ on periodic cyclic homologies. We have

∇ℏ∂ℏ acts on CCper
• (W2n).
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The calculation of index consists of the following steps
1. Feynman diagram computation implies:

TrL(1) = eωℏ/ℏ(Â + O(ℏ)) ∈ C•(g,K;R((ℏ))[u, u−1]).

Here ωℏ is the char. class of the deformation quantization.
2. Computation of Gauss-Manin connection implies

∇ℏ∂ℏ

(
e−ωℏ/ℏ TrL(1)

)
= ∂Lie − exact.

3. Combining the above two computations, we find

[TrL(1)] = eωℏ/ℏÂ ∈ H•(g,K;R((ℏ))[u, u−1]).

This is the algebraic index at the Lie algebraic level.
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Algebraic Index Theorem

After geometric descent, we obtain

Index =

∫
X

desc(TrL)(1) =
∫

X
eωℏ/ℏÂ(X).

This is the simplest version of algebraic index theorem which was
first formulated by Fedosov and Nest-Tsygan as the algebraic
analogue of Atiyah-Singer index theorem.
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Coupling with bundle

This construction has a natural generalization by coupling with a
rank r vector bundle E on X. The Harish-Chandra pair (g,K) is

g = W2nIdn + ℏglr(W2n), K = Sp2n ×Glr.

The algebraic index can be computed in a similar way by

Index =

∫
X

desc(TrL)(1) =
∫

X
eωℏ/ℏÂ(X)Ch(E).

This shows that

counting constant loops =⇒ index theorem!
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Remarks
1. If we consider 2d worldsheet, then the effective field theory of

a chiral conformal field theory for C → X gives

VOA

��
X

together with a flat connection (L-2016).
2. In 1d TQM case, integrals over Conf(S1) intertwines the

Hochschild differential with the BV operator

(b + ℏ∆) ⟨−⟩1d = 0.

In 2d chiral CFT, the regularized integral (as defined in
L-Zhou 2020) over Conf(Σ) intertwines the chiral differential

(dch + ℏ∆) ⟨−⟩2d = 0.

Work in progress with Zhengping Gui.
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Thank you!
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Sketch of Feynman diagram computation
The index (partition function) has a Feynman diagram expansion

TrL(1) = une

(
1
ℏ

con. tree∑
Γ0

WΓ0
|Aut(Γ0)|

)1-loop∑
Γ1

WΓ1

|Aut(Γ1)|
+ O(ℏ)

 .

· · ·

dyim

yi1

yi2 yi3

Figure: vertex

ιΠ̂/u = ω̂ij/udyi dyj

yi yj

∂P
= ω̂ij

Figure: propagator

Here the vertex is valued in W2n = C[[yi]][[ℏ]].
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d2nγ̂0

d2nγ̂0

d2nγ̂0

d2nγ̂1

d2nγ̂1
d2nγ̂1

ι
Π̂
/u

ι
Π̂
/u

ι
Π̂
/u

∂P

∂P

Figure: An example of WΓχ .
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The tree and one-loop Feynman diagram computation gives

desc(TrL)(1) = e−ωℏ/ℏ
(

Â(M)Ch(E) + O(ℏ)
)
.

d2n(γ̂
(1)
0 )

· · ·

Pd2n(γ̂
(3)
0 )

ιΠ̂/u

Figure: Â(M)

· · ·∑
tr

d2nγ̂
(1)
1

d2nγ̂
(1)
0

ι
Π̂
/u

R2/u︷︸︸︷

Figure: Ch(E)
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