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infinite dim geometry finite dim geometry

QFT Math

Typically, one starts with a path integral in quantum field theory

/ &iS/h
£

In good situations (e.g. when supersymmetry exists), the
ill-defined path integral is localized to a well-defined integral

/geiS/ﬁ:/M(_)

over a finite dim M C £. M is some interesting moduli space.
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Example: Topological quantum mechanics (TQM)

TQM leads to a path integral on the loop space

_ h—0
/ e = /(curvatures)
Map(St,X) X

Topological nature implies the exact semi-classical limit 7 — 0,
which localizes the path integral to constant loops.

» LHS= the analytic index expressed in physics
» RHS= the topological index.

This is the physics “derivation” of Atiyah-Singer Index Theorem.
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Example: Witten's “Index Theorem” on loop space

Replace S by an elliptic curve E:

/ e_s/h h—0
Map(E,X)

Intuitively, if we view
Map(E, X) = Map(S*, LX)

as defining a quantum mechanics on LX, then this leads to
Witten's proposal for index of dirac operators on loop space.
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Example: Mirror symmetry

Mirror symmetry is about a duality between

‘symplectic geometry‘ (A-model) <= ‘ complex geometry‘ (B-model)

Fourier transform f
Map(

fMap(zg,x) (A-model) T X') (B-model)

llocalize Iocalizei

- - - _ ?7?
fHoIomorphic maps(Xg,X) = > fConstant maps(Xg,X') * -

ﬂ i

Gromov-Witten Theory Hodge theory

The B-model can be viewed as a suitable mysterious way to “count
constant surfaces”, which will be related to the variation of Hodge
structures and its quantization.
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Observable algebras

" Observables = functions on fields”.

The topology of X => factorization algebra.

%4
@ @ factorization product

@ ®i ObS( U,) — ObS( V)

> Beilinson-Drinfeld: Factorization algebra in 2d CFT.

> Costello-Gwilliam: Factorization algebras from
(perturbative) quantum field theory in BV formalism.
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Example: dim X =1 (topological quantum mechanics)

QFT in dim = 1 is quantum mechanics.

U1 U1

In the topological case, for any contractible open U, Obs(U) = A.
The factorization product doesn’t depend on the location and size:

AR A — A.

We find an (homotopy) associative algebra.
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There are several algebraic structures for observables in TQM.

Let A:= A/C- 1. Define

Co(A):=A ® AP, cyclic p-chains.
a0
a1 p
e G(A)
a2

It carries two natural differentials

Hochschild differential b : C,(A) — Cp-1(A)
Connes operator B: Cp(A) = Cori(A).

The periodic cyclic complex is defined by

CCP(A) := (Co(A)[u, u™ ], b+ uB).

This can be viewed as S'-equivariant observables on the cycle.
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We will be mainly interested in o-models about the mapping space
E={p: X=X}
and consider the case when it is localized to constant maps

M = {const map : ¥ — X}.
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Let M be the formal neighborhood of M inside £. Then intuitively

/eiS/h:/ eiseff/n:/ ().
£ M M

The pair (/\7 Sef) will be called the localized effective theory.
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E={p: =X}

The idea is to formulate the effective geometry of o-models as a
sheaf on X of quantum algebras (observables) living on ¥

Obsh

AllA]]

\/

» Ais a BV algebra (IR theory of zero modes), equipped with

A= C.
BV
» (—) is a chain map (quantum master equation).
> Trace map Tr(—) = [, (—) : Obs" — C((h)). Then

Index = Tr(1).

11/41



Application: counting const loops = algebraic index
Let (X,w) be a symplectic manifold, (C*°(X)[A], *) be a
deformation quantization. There exists a unique linear map

Tr: C2(0[A] — R(R)

satisfying
» Trace property: Tr(fxg) = Tr(g* f)
» Normalization:

Te(f) = ; A“éf(m O(h)) n = dim X/2.

The Algebraic Index Theorem [Fedosov, Nest-Tsygan| says that

Tr(1) = /X én/MA(X).

I will explain how to use localized effective theory to prove such

index theorem, making the physics argument into math realization.
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The framework of localized effective theory

The localized effective theory contains three main steps

1. Local model
2. Gluing and descent

3. Exact semi-classical approximation.
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1. Local model

Assume that X is locally modeled by a flat geometry TM°9¢/ such
that X is built up from gluing pieces of TMode/,

Quantum fluctuations around a point p € X is locally modeled by
T TModeI

Since TMedel is flat, this is usually a free quantum field theory.
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Even the theory is free, it carries a nontrivial factorization algebra
of quantum observables Obs” living on ¥.

We are interested in an evaluation map
Tr: Obs" — C[r], 6Tr=0.

J is some natural differential (BRST operator).
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Example: Topological quantum mechanics

One way to formulate TQM is to consider the mapping space

©: SLR — (X, w).

O —~ x

Here (X,w) is a symplectic manifold. Sl is the supermanifold
Sor = (51, 92%1)

with underlying topology S' and the structure ring the sheaf of de
Rham complex Q.
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Local Model

We first study the local model: SLp — (R?",w)
(RS Map (SbR, R2n) == le (%9 R2n.
The action is the free one

Sfree[()o] = /Sl W(QO, dQD)

Constant maps are presented by

Constant maps = H*(S*) ® R®".
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Free correlation function

Obs = functions on le ® R?".

Q3, = functions on H*(S) @ R*", A = Lp.

Then we can use Feynman diagrams to define

(e = [ 1Dgle” Sty : [0bs" - 23, [1]

The correlation functions play the role of integrating out
informations from normal neighborhood of constant maps.
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Local observables on S! form the Weyl algebra

Wan = (C[lp, ¢T1[[H], »)
where x is the Moyal-Weyl product

(fxg)(p,q) := fip, q)eh<0"f o od E’”f)g(p-, q)-

W2n
‘/ A/ W2n
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We consider the following types of observables
CCP" (W) — Obs"
by sending Op ® O1 ® - -+ ® O, (O; € Whp) to the functional

Oo((to))
O1(p(t1)) Om((tm))

Oulp(ti))

Composing with the free correlation function

<_>free : Ccfer(WZN) - Qan((h)) .

This intertwines the Hochschild differential with BV operator

(b+ hA) <_>free =0.
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The trace map
CCE¥/(Way) 75 03, (), u™)

. hiL
\ J/fconst maps’ a 6“"“/“0‘0
r

R((R)[u, u™].

We end up with the following trace map
Tr : CQ(Wan) = R(B)[u, u™"].

It can be checked that it satisfies the cocycle condition

[(b+uB)Tr =0},

b = the Hochschild differential and B = the Connes’ operator.

Tr has an explicit formula in terms of Feynman diagrams
(Feigin-Felder-Shoikhet formula).
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2. Gluing and descent

Once we have a local theory modeled on TM°9€/ the next step is to
glue them to form a sheaf on X. The gluing symmetry is typically
described by a Harish-Chandra pair

(g,K), Lie(K)Cg.

» K is the linearized transformations.

» g contains all nonlinear transformations.
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Gluing geometry of X

The geometry of X will be represented by a principal K-bundle

K——P

|

X

together with a flat (g, K)-connection v, i.e. v € Q'(P, g)
> ey =&, VE € Lie(K);
P> v is K-equivariant;
> dy+ 3[v.v] =0.

It induces a flat connection on the associated vector bundle
P x i V for any (g, K)-module V.
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Gelfand-Fuks descent
Let

C(g, K V) := Hom(A*(g/ Lie(K)), V), OLie
be the Lie algebra cochain complex valued in V. Let

Q.('D7 V)basic = Q.(X> P XK V), d+ B

be the de Rham complex of the associated flat bundle P x k V.

There is a natural cochain map of Gelfand-Fuks descent
desc: C*(g, K; V) = Q°*(P, V)basic
a— Oé(’}/,’}/,"- 77)
This allows us to descent a local coupling to a global object on X
desc: H*(g, K; V) = H*(X, P xk V)
Lie theoretic geometric
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This set-up follows closely the philosophy of Gelfand-Kazhdan
formal geometry. Several examples are established along this line

» Kontsevich and Cattaneo-Felder: Poisson g-model

» Costello: holomorphic CS theory on an elliptic curve E
» Grady-Gwilliam: TQM on X=T*"M

» Grady-Li-L: TQM on a symplectic manifold X

>

>

Gorbounov-Gwilliam-Williams: 5 — ~-system.
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Example: Topological quantum mechanics

The relevant Harish-Chandra pair (g, K) is
g= Wap, K= 5p2n
The principal bundle is the frame bundle

SpZn - Fr( TX)

l

X

Fedosov shows that there exists flat (g, K)-connection
v € QYFA(Tx). 9)-

~ will be called the Fedosov connection.
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~ induces a flat connection on the associated Weyl bundle
W(X) = FI’(X) X Spon Wg,,.
Let

Wp = {flat sections of W(X)}.

» WWp defines a deformation quantization of C*°(X)

> Wp can be viewed as quantum observables glued on X.
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Coupling with gluing symmetry

We will glue our trace map
Tr € Hom (CC’,’E’(WQn), C((h)[u, ufl])
on X by lifting it to
Tr € C(g, K; Hom (CCE* (Whn), C(R)[u, u™']))
satisfying the coupled equation

(OLie + (b+ uB)) T = 0.

28 /41



Connection v.s. Interaction

There is a very natural way to realize this, by turning on an
interaction by a universal connection. In our context, we consider

(5 c Cﬂ’(g; )ﬁ%zn)

which represents the natural embedding g < Wh,.
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Introduce the following interacting action

/66

which is a Ct(g; C) = g*-valued local functional on S'. Define

T () = Tr((—)e% Jst é) e C(g,K;—)

Proposition (Gui-L-Kai)

Tr satisfies the coupled equation

(OLie + (b+ uB)) T~ = 0.
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Descent

Now we can use Fedosov connection to descent Trl to give

desc(TrY) : CCP(Wp) — Q2" *(X)(h)[u, u™1].
b+ uB—d

This gives our glued correlation functions on quantum observables.

The index is given by the partition function

Index:/desc(TrL)(l).
X
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3. Exact semi-classical approximation

Now we explain the strategy to understand the physics idea of
exact semi-classical approximation. Suppose

Tr : Obs" — C((h))
which is suitably coupled with gluing symmetry by
Tl = Tr+--. € C(g, K; Hom(Obs", C((1))))

In particular, the partition function (the index) is given by Tr(1).

We need to figure out the Gauss-Manin connection V along
h-variation. Then exact semi-classical approximation of the index is

(Via,) Tr(1) = OLie — exact.

This will allow us to compute the index via one-loop Feynman

diagrams, the same as what physicists would do.
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Example: Topological quantum mechanics

The h-variation is computed by Getzler's Gauss-Manin connection
V on periodic cyclic homologies. We have

V1o, acts on CCL¥"(Whp).
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The calculation of index consists of the following steps

1. Feynman diagram computation implies:
Tre(1) = /(A + O(h)) € C(g, KiR(M)[u, u™]).

Here wy, is the char. class of the deformation quantization.

2. Computation of Gauss-Manin connection implies
Vi, (e‘w”/h TrL(l)) = Olje — exact.
3. Combining the above two computations, we find
[Tr(1)] = /" A € H*(g, K R((I))[u, u™]).

This is the algebraic index at the Lie algebraic level.
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Algebraic Index Theorem

After geometric descent, we obtain

Index:/desc(TrL)(l):/ e“n/MA(X).
X X

This is the simplest version of algebraic index theorem which was
first formulated by Fedosov and Nest-Tsygan as the algebraic
analogue of Atiyah-Singer index theorem.
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Coupling with bundle

This construction has a natural generalization by coupling with a
rank r vector bundle E on X. The Harish-Chandra pair (g, K) is

g = Wapld, + hgl, (Wa,), K= Sp,, XGl,.
The algebraic index can be computed in a similar way by
Index = / desc(Tr™)(1) = / e“n/mA(X)Ch(E).
X X

This shows that

‘counting constant loops = index theorem! ‘
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Remarks

1. If we consider 2d worldsheet, then the effective field theory of
a chiral conformal field theory for C — X gives

VOA

|

X

together with a flat connection (L-2016).

2. In 1d TQM case, integrals over Conf(S!) intertwines the
Hochschild differential with the BV operator

(b+hA)(—=)14=0.

In 2d chiral CFT, the regularized integral (as defined in
L-Zhou 2020) over Conf(X) intertwines the chiral differential

(deh + hA) (=)oy = 0.
Work in progress with Zhengping Gui.
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Thank you!
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Sketch of Feynman diagram computation

The index (partition function) has a Feynman diagram expansion

con. tree Wr
15 ut0 > 1-loop W
T (1) = une<” rg Ao 3 A L 4 O(h)

r ut(F1)|
dyn
o Va4 =oi
7 { ) ° °
A »” )
Y y Yy o
e p
Figure: vertex Figure: propagator

Here the vertex is valued in Wa, = C[[y]][[R]].
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Figure: An example of Wrx.
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The tree and one-loop Feynman diagram computation gives

desc(TrE)(1) = e-«n/h (Z\(M)Ch(E) + O(h)) .

R2/U
1y/u A~ =~
L4 tp/u
b3 ® & o [;‘mﬁ.‘;
) d2n:‘f\‘(]1).
°
trop
(=}
\
° ° (&) 7
. .

“_, ”

Figure: A(M) Figure: Ch(E)
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