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Introduction: the knot group

Consider knots, i.e. smooth embeddings k : S1 → S3, or long
knots, i.e. smooth embeddings k : R→ R3, such that
k(t) = (t, 0, 0) outside a compact interval.

The complement of a knot CK is the complement in S3 of a
tubular neighbourhood of the image K of k . It is a 3-manifold
with boundary the 2-torus.

The knot group is the fundamental group π1 of the knot
complement, and is an invariant of knots (but not a complete
invariant, since inequivalent knots may have isomorphic knot
groups, e.g. the trefoil and its mirror image).



Introduction: the peripheral system

However, if we include two generators of π1 of the boundary torus,

the meridian m (goes the short way round) and

the longitude ` (goes the long way round and has winding number
zero with the knot itself),

then this so-called peripheral system of (knotgroup, meridian,
longitude) is a complete invariant.



Introduction: the Eisermann invariant

The Eisermann invariant of knots (to be described soon) captures
information about the peripheral system, and in particular, is able
to distinguish a knot and its mirror image (m goes to m−1), or a
change in the orientation of the knot (both ` and m go to their
inverses), amongst many other impressive feats.

Loosely speaking it does this by colouring the arcs of a knot
diagram with elements of a finite group G , following certain rules
which depend on a choice of x ∈ G associated with the meridian,
and then registering the values associated with the longitude.
More precisely we have the following formula for E (K ):

E (K ) =
∑

{
f : π1(CK )→G

f (m)=x

} f (`),

taking values in the group algebra Z[G ] of G .



Motivation for this research

There are deeper ways of probing the knot complement CK , using
not just the loops of the fundamental group, but surfaces as well.

More precisely, we will be introducing the fundamental 2-group, or
fundamental crossed module, Π2, of a natural topological pair
associated to a knot diagram.

The main point of this talk is to describe this construction,
leading, in particular, to a lifting of the Eisermann invariant.



Knot diagrams

A knot diagram is a (regular) 2D representation of the image of
the knot in 3D:

a) unknot, b) trefoil, c) mirror trefoil, d) Figure 8, e) Hopf link

The knot diagram consists of arcs and crossings.



Reidemeister moves

Of course, there are many different diagrams for the same knot.
They are related by the famous Reidemeister moves:

i.e. three types of local moves which change a detail of the knot
diagram as shown.



Quandles

A quandle is a set Q with a binary operation ∗, and axioms such
that arc colourings obeying

K 

a *A 

are in one-to-one correspondence for Reidemeister equivalent
diagrams.
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Knot diagrams and presentations of the knot group

Each knot diagram gives rise to a presentation of the knot group,
with one generator for each arc and one relation for each crossing:

Relation for this crossing: b = c−1ac

This is called the Wirtinger presentation of the knot group.



A knot invariant from a finite group G

Pick a finite group G and colour the arcs of a diagram with
elements X ,Y ,Z , · · · ∈ G such that at each crossing the relation

Y = Z−1XZ

holds (same conventions as for the Wirtinger presentation).

Count the number of such colourings. This number is a knot
invariant, since it counts the number of group homomorphisms
from the, intrinsically defined, knot group π1(CK ) to G .

Our construction is somewhat similar, but involves 2-groups, also
known as crossed modules of groups or categorical groups.



II Crossed modules of groups

Definition
A crossed module (of groups) is given by

∂ : E → G (homomorphism of groups)

. : G × E → E (left action of G onE by automorphisms∗)

such that

1. ∂(X . e) = X∂(e)X−1 for each X ∈ G , e ∈ E ,

2. ∂(e) . f = efe−1 for each e, f ∈ E .

∗ i.e. g . (e1e2) = (g . e1)(g . e2) and g . 1 = 1



Examples of crossed modules

Crossed module recap: ∂ : E → G and . : G × E → E
such that ∂(X . e) = X∂(e)X−1 and ∂(e) . f = efe−1

1. (obvious example) E = G , ∂ = id, X . Y = XYX−1

2. (just G ) 1
∂−→ G , . trivial

3. (just abelian E ) E
∂−→ 1, 1 . e = e

Note that ker ∂ is contained in the centre of E , hence is
abelian (for e ∈ ker ∂: efe−1 = ∂(e) . f = 1 . f = f ).

4. (”independent”G and abelian E ) ∂(E ) = 1, g . e = e.

We will also look at some examples with E 6= G and ”interacting”.



Central extensions

A central extension of groups is an exact sequence

1→ A→ E → G → 1

with the image of A central in E .

E.g. A = Z2, E = SU(2), G = SO(3)



Crossed modules from central extensions

Given any central extension:

1→ A→ E
∂−→ G → 1

we get a crossed module of groups

E
∂−→ G ,

with lifted action

g . e = ẽ e ẽ−1

where ẽ ∈ E is any element such that ∂(ẽ) = g (this is
well-defined since A = ker ∂ is central in E ).



The fundamental crossed module of a topological pair 1

Given a pair of path-connected topological spaces (X ,Y ), with
Y ⊂ X , and a basepoint ∗ ∈ Y , we consider homotopy classes of
maps from the square [0, 1]2 into X such that the image of the top
edge is contained in Y and the image of the remaining 3 edges is ∗.



The fundamental crossed module of a topological pair 2

There is a well-defined horizontal multiplication of such squares, up
to homotopy, like in the second homotopy group, giving rise to a
group π2(X ,Y ).
We have an obvious group homomorphism ∂ from π2(X ,Y ) to
π1(Y ) given by restricting the map to the upper edge of the
square, and π1(Y ) acts on π2(X ,Y ) as follows:

This gives the fundamental crossed module of the pair (X ,Y ):

Π2(X ,Y ) = (∂ : π2(X ,Y )→ π1(Y ), .),



Crossed modules and multiplication of squares
Consider squares of the form

where X ,Y ,Z ,W ∈ G and e ∈ E , such that ∂(e) = XYW−1Z−1.

Define horizontal and vertical multiplication of squares:



Interchange law

These multiplications satisfy the interchange law:

so that we can evaluate consistently the product of a 2D array of
squares.



Categorical groups

2-groups can also be thought of as categorical groups, i.e.
categories where both objects and morphisms are groups in a
compatible way. The product of morphisms ⊗ is given by:

U

(U,e)

y
V

⊗
W

(W ,f )

y
X

=

UW
y
(
UW ,(V .f ) e

)

VX

.

and can be thought of as horizontal multiplication of squares with
1G on the left and right edges:

The composition of morphisms corresponds to vertical
multiplication of such squares.



III A tangle invariant from finite crossed modules



A topological pair from a knot diagram D

Put the arcs all at the same height and above the “water level”, so
that only the lowest parts of the undercrossings are below water.
XD is the knot complement, and YD ⊂ XD is the part above water.
The square loop, which is homotopic to a product of generators of
π1(Y ) of the form b−1c−1ac, is trivial in XD , but not in YD , since
to contract it one must go under water. We have a generator of
π2(XD ,YD) given by the dark surface, partly under water.



A knot invariant from a finite crossed module 1

The basic idea is to use a finite 2-group and colour the arcs of the
diagram with G -elements, and the crossings of the diagram with
E -elements to be compatible with the relations:

X+ : ∂(e) = XYX−1Z−1 (1)

X− : ∂(e) = YXZ−1X−1 (2)

Each colouring describes a homomorphism from the fundamental
crossed module Π2(XD ,YD) to the finite crossed module.
But counting these only gives an invariant depending on the
homotopy type of the knot complement [FM].



A knot invariant from a finite crossed module 2

We get a much more refined invariant if we restrict the colourings
by making the colourings of two of the arcs determine the
colouring of the crossing. To this end we introduce two functions:

ψ : G × G → E , φ : G × G → E ,

which determine the E -colouring of the two types of crossing, and
hence the colouring of the remaining arc.

e.g. ∂ψ(X ,Y ) = XY (ZX )−1, hence Z = ∂ψ(X ,Y )−1XYX−1.



Invariance conditions on ψ and φ - Reidemeister 2

We study the conditions on ψ and φ for Reidemeister invariance,
starting with Reidemeister 2:∼= ∼=

∼=

W

X

X X

Y

W X

Y

Z

X

Y X

X W X

φ(X ,Y )ψ(X ,Z )
R2
= 1

(where Z is given as a function of X and Y , via φ).



Invariance conditions on ψ and φ - Reidemeister 1

∼= ∼=

∼=

W

X

X X

Y

W X

Y

Z

X

Y X

X W X

ψ(X ,X )
R1
= 1



Invariance conditions on ψ and φ - Reidemeister 3

T V 

W V 

T 

Vu TV 
p(Vw) pCTY) 

T w y- 

p(T) 
L V 

x) p(T) 

T T 

φ(Y ,X ) .Y . φ(T ,Z ) . φ(T ,Y )
R3
=

X . φ(T ,Y ) . φ(T ,X ) .T . φ(V ,W )

Note that the action . of G on E enters the equation!



A tangle invariant

Theorem (Faria Martins + P)

Given a finite crossed module G and a pair of functions Φ = (ψ, φ)
satisfying (R1-3), let D be a tangle diagram, and fix a G-colouring
of the top and bottom strands, given by words ω, ω′.

Let CΦ(D, ω, ω′) denote the set of G-colourings of the arcs and
crossings of D, using Φ, and compatible with ω, ω′. Then we have
a tangle invariant given by

IΦ(D, ω, ω′)
.

=
∑

F∈CΦ(D,ω,ω′)

where X = X1 . . .Xn, Y = Y1 . . .Ym, and e(F ) ∈ E is the
evaluation of the corresponding array of squares.



A tangle invariant 2

Regarding as a morphism in the categorical group C(G),

we see that the invariant takes values in N
[
HomC(G)

(
X ,Y

)]
.

The proof involves checking invariance under a fairly long list of
tangle moves, similar to the ones that gave rise to equations
(R1-3).



A tangle invariant 3

We call ψ and φ an unframed Reidemeister pair, and there is an
analogous theorem for framed Reidemeister pairs with a modified
Reidemeister 1 move:

∼= ∼=

R0D

R1′

Z X

Z W

V

Z

V U T V Z

This invariant includes, as special cases, all rack and quandle
cohomology invariants.

It also includes the Eisermann invariant, and a lifted version
thereof, as we shall see.



IV The Eisermann invariant and its lifting



The Eisermann invariant and partial longitudes

Following Eisermann we introduce partial longitudes `i which
follow the knot only beyond the ith undercrossing:



The Eisermann quandle and its Reidemeister pair

The relation between successive partial longitudes can be expressed
using the arc generators xi , where x0 = x , the meridian [Eis2]:
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li+1
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li+1

li+1 = x−1 li l
−1
j x lj

li+1 = li xi
−1 xj

li+1 = x li l
−1
j x−1 lj

li+1 = li xi xj
−1

or or

Figure 16. Rules for partial longitudes at crossings.

the complement by ga. Then clearly we have

gai = l−1
i ga1 li.

The way to pass from li to li+1 appears in figure 16 for the positive and negative crossing.

Given i, let ji be the number of the arc separating ai from ai+1. Let θi be the sign of the i-th
crosssing. Then:

l =
n−1Y

i=1

g−θi
ai

gθi
aji

=
n−1Y

i=1

l−1
i g−θi

a1
lil

−1
ji

gθi
a1

lji =
n−1Y

i=1

[l−1
i , g−θi

a1
] [g−θi

a1
, l−1

ji
]; (4.5)

more generally, if k ∈ {2, . . . , n}:

lk =
k−1Y

i=1

g−θi
ai

gθi
aji

=
k−1Y

i=1

l−1
i g−θi

a1
lil

−1
ji

gθi
a1

lji =
k−1Y

i=1

[l−1
i , g−θi

a1
] [g−θi

a1
, l−1

ji
]. (4.6)

Therefore both the longitude l and any partial longitude lk are elements of the commutator
subgroup of the fundamental group of the complement of K. Also:

li+1 = li[l
−1
i , g−θi

a1
] [g−θi

a1
, l−1

ji
].

Later on we will present another formula for a knot longitude.

4.2.2 The Eisermann invariant of knots Let K be a knot in S3. Consider the fundamental
group of the complement CK = S3 \ n(K) of the knot K. Here n(K) is an open regular neigh-
bourhood of K. Choose a base point p of K. Let the associated meridian and longitude of K in
π1(CK) be denoted by mp and lp, respectively. Note that [mp, lp] = 1.

Let f : π1(CK) → G be a group morphism. Therefore: f(lp) ∈ G′ .
= [G, G], the derived

(commutator) group of G, generated by the commutators [g, h] = ghg−1h−1, where g, h ∈ G.
Moreover [f(lp), f(mp)] = 1G. Then

f(lp) ∈ Λ
.
= [G, G] ∩ C(x),

where x = f(mp) and C(x) is the set of elements of G commuting with x.

Let G be a finite group. Let x be an element of G. The Eisermann invariant [15] (also called

21

The corresponding unframed Reidemeister pair is given by [FMP]:

φx(g , h) = [hx−1, gx−1]

ψx(g , h) = [g , h][hg−1, x ]

where [g , h] denotes the group commutator ghg−1h−1, and the
crossed module here has E = G and ∂ = id.



Example of the Eisermann invariant

Using the Eisermann quandle and the zero’th partial longitude
`0 = 1, we obtain an expression for the final partial longitude, i.e.
the longitude, `, e.g. for the trefoil and its mirror:

Link invariants from finite categorical groups

h

1

xhx−1

x2h−1x−1hx−1

x3hx−1h−1x−1hx−1

Figure 18. Calculation of the Eisermann polynomial for the positive trefoil knot K+

1

g

x−1g−1xg

x−2gxg−1xg

x−3g−1xgxg−1xg

Figure 19. Calculation of the Eisermann polynomial for the negative trefoil knot K−

module (id : G → G, ad). Let x be the element of G given by the top strand a of L. Let b be the
bottom strand of L. Consider the Reidemeister pair Φ̄x in (4.9), thus

φ̄x(L, M) = [Mx−1, Lx−1] and ψ̄x(L, M) = [xML−1x−1Lx−1, Lx−1]−1. (4.10)

Consider a diagram D of L. Colour each arc c of the diagram D with the corresponding partial
longitude lc, as defined in 4.2.1. Therefore la = 1 and lb = l. Then by the proof of Theorem
4.11 one has a Reidemeister colouring F . If we evaluate F (definitions 3.9 and 3.11), we have a

morphism la
e(F )
−−−→ lb, hence e(F ) = l = lp. The form of e(F ) thus yields an alternative formula

for the knot longitude, which will be crucial later in generalising the Eisermann invariant.

4.2.3 One example of Eisermann invariants Let G be a group with a base point x. The
explicit calculation of the invariant ha|IΦ̄x(K+)|bi and ha|IΦ̄x(K−)|bi for the trefoil knot K+ and
its mirror image K− (the positive and negative trefoils), converted to string knots, appears in
figures 18 and 19. In particular, given a ∈ G, we have:

ha|IΦ̄x(K+)|gi =

#
�
h ∈ G : x3hg−1x−1gh−1x−1hg−1x−1g = a and x2gh−1x−1hg−1x−1g = h

	
, g ∈ G;

ha|IΦ̄x(K−)|hi = #
�
g ∈ G : x−3hg−1xgh−1xhg−1xg = g and x−2gh−1xhg−1xg = a

	
, h ∈ G.

Consider from now on G = S5. We refer to table 1, displaying the values of h1|IΦ̄x(K−)|ai
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Representing this in G = S5, with x = (12345), the longitude
values for valid colourings distinguish the two knots [Eis1]:

idS5 + 5(15432) versus idS5 + 5(12345)



The lifted Eisermann invariant

For a crossed module obtained from a central extension of groups,

1→ A→ E
∂−→ G → 1

there is a natural construction of an unframed Reidemeister pair,
lifting the previous one for the Eisermann invariant:

φ̂x(g , h) = {hx−1, gx−1}
ψ̂x(g , h) = {g , h}{hg−1, x}

where { , } : G × G → E is defined by

{g , h} = [s(g), s(h)]

for an arbitrary section s : G → E .

More generally, use the Peiffer lifting { , } of a 2-crossed module.



The lifted Eisermann invariant 2

Since ∂{g , h} = [g , h], the relation between the unlifted and lifted
Eisermann invariants is:

E (K ) =
∑

{
f : π1(CK )→G

f (m)=x

} f (`),

Ê (K ) =
∑

{
f : π1(CK )→G

f (m)=x

}

where f̂ (`) is the evaluation of the array of squares using the lifted
Reidemeister pair (ψ̂x , ψ̂x).



The lifted Eisermann invariant 3

Let GL(n, k) denote the invertible n by n matrices with entries in
Zk , and PGL(n, k) the corresponding projective linear group.

In [FMP] we showed for the choice GL(2, 5)
∂−→ PGL(2, 5) ∼= S5

that the lifted invariant distinguishes the trefoil and its mirror for
two different choices of x (as opposed to just a single choice).

In a student project, Sofia Brito showed that the lifted invariant for

the choice GL(2, 3)
∂−→ PGL(2, 3) distinguished the trefoil and its

mirror for various choices of x , whereas the ordinary Eisermann
invariant doesn’t distinguish for any choice of x .



Recent work: longitude expressions

Consider again the colourings of the trefoil and its mirror using the
Eisermann quandle.
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Instead of choosing a specific group, one could look at the
expression obtained for the longitude in terms of x (the meridian)
and one or more auxiliary partial longitudes, subject to
constraint(s).



Recent work: longitude expressions 2

This is based on student projects with Maria Madrugo and João
Tavares.

As a simpler example

for the figure eight knot: we get:

`(h) = hx−1h−1xhxh−1x−1h (expression)

1 = h−1x−1hxh−1xhx−1h−1 (constraint)

Via a simple substitution, h 7→ x−1gx , we get a new expression
`(g) and constraint for the mirror figure eight.



Recent work: longitude expressions 3

João Tavares and I are trying a systematic study of expressions and
constraints using long braids.

W 

W Wn 

B 

Y2 Yn 

Presentation in terms of x , y2, . . . , yn, with expressions w1, . . . ,wn

coming fom using the Eisermann quandle, and constraints
wiy

−1
i = 1, i = 2, . . . , n.
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Theorem (Sofia Lambropoulou, using L-equivalence) Long knots
are isotopic iff any corresponding long braids differ by

I conjugation by σ
(−1)
2 , . . . σ

(−1)
n−1 ,

I conjugation by σ2
1 or σ−2

1 ,

I Markov stabilization B ↔ Bσ
(−1)
n

The second move keeps the long strand on the left hand side of
the braid.

Using programmes developed by João Tavares we are looking for
stable patterns under these moves in the expressions for the
longitude w1 = ` and the partial longitudes wj , j = 2, . . . , n,
emerging at the top of the braid.



Final considerations

Returning to a generic crossed module and the lifted Eisermann
invariant, it would be interesting to identify an intrinsic global
surface associated with the knot (i.e. a 3D viewpoint) . . .

. . . as opposed to the locally defined mini-surfaces under each
crossing, which collectively produce the invariant from a particular
long knot diagram (i.e. a 2D diagrammatic viewpoint).



Final considerations 2

The following torus should play a significant role:

Cutting this torus along x and ` gives a square:

Since ` and x commute, e belongs to ker ∂, and should, in some
sense, capture the extra abelian information in the lifting.
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