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Motivating Example

Nonassociative magnetic translations



Observables in 2-form background

o Configuration space: M = R".

 Background field B € Q?(M),
e.g. B-field in string theory or EM field of monopole distribution.
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Observables in 2-form background

Configuration space: M = R".

Background field B € Q2(M),
e.g. B-field in string theory or EM field of monopole distribution.

Phase space T* M =~ R"™ x R™ carries a ‘Poisson bracket:

{d.dy=0, {d.pj}=0",  {pip;} = —Bi(q)

{pi: Apj oy} + {pj. (P> pi}} + {or {pis 0} ~ (AB)ijic -

Translations act non-commutatively and non-associatively.

Motivating question: Can we find a geometric explanation for this?
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Lifting translations to geometry A

B can be understood as a connection on a gerbe G on R™:

e ‘Categorification of a line bundle’.

e Heuristically, G is a bundle, whose fibre at each point g € R" is a

category G|, ~ Vect.
o (Vect,®,0,®,C) is a categorified ring, which replaces (C, +,0, x, 1).

e The linear automorphisms of C are multiplication by z € C*;
the linear automorphisms of Vect are multiplication by complex lines
L € Vect™. (The inverse of L is the dual line LV.)
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Gerbe holonomy .

A gerbe with connection on a manifold M has a parallel transport, and
hence has holonomies: [Gajer; MacKaay, Martins, Picken; Waldorf; SB, Miiller, Szabo]
For a loop 7y in M based at g, hol(G,) is an automorphism of G, i.e. a
complex line.

Example: For G a gerbe with connection on R™, any pair of translation

vectors v1, v2 € R™ gives rise to a holonomy:

g|q+v1+v2
t t i
P U1VL N w L., 0o @ complex line
q,v1,v2
Il
\
g|q ptvl 4 g|q+’Ul

Letting g vary, this yields a functor

L:R" x R" — LBun(R").
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2-groups and cocycles .

For any manifold M, the groupoid £LBun(M) has:

e a monoidal structure ®,

e every object invertible with respect to ® (with L=1 = LV).
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2-groups and cocycles .

For any manifold M, the groupoid LBun(M) has:

e a monoidal structure ®,

every object invertible with respect to ® (with L=1 = LV).

Definition

A monoidal groupoid with this property is called a 2-group.

Observation: the construction L: R™ x R" — LBun(R"™) from a

gerbe with connection on R™ is a categorified group cocycle.

This should equivalently be encoded in an extension of (R™, +) by the
2-group (LBun(R"),®) (we'll unravel this in a minute).
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2-group-valued cocycles .

e The 2-cocycle relation has additional data:
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e The 2-cocycle relation has additional data:
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3 » U3
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2-group-valued cocycles .

e The 2-cocycle relation has additional data:
given vy, v2,v3 € R™, we need to specify isomorphisms
®q,v1,v2,03 * Lq,v1+v2,’v3 ® LQ7U17U2 —> Lq,vl,v2+v3 ® Lq,v2,v3 ’
which have to be coherent.

o For the gerbe connection determined by B € Q%(R"), we have

Qq,v1,v2,03 = €XP (J dB) )
A3(g,v1,v2,v3)

where dB is the curvature of the gerbe connection.
e This is exactly the (exponentiated version of) the Jacobiator!

= Gerbe parallel transport explains nonassociative magnetic

translations [SB, Miiller, Szabo.
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Symmetries of gerbes

Smooth 2-group extensions



Bundle gerbes and their morphisms .

Bundle gerbes on general manifolds M:
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Bundle gerbes and their morphisms .

Bundle gerbes on general manifolds M:

e {Us}aca an open covering of M.

e Hermitean line bundle L on M is given by:

9ab: Uy — U(l) ) 9ab 9bc = Yac -

e Idea: Local functions give rise to bundles,

local bundles give rise to gerbes.
e A (hermitean) bundle gerbe G on M is given by:
Lay € J'CL‘Bun((]ab) ) Habe: Lap @ Lpe = L
plus 2-cocycle condition for figp -

Gerbes describe B-fields in string theory, twists in K-theory, smooth 2D
(invertible) field theories [Kapustin; BCMMS; BTW; Picken; SB, Waldorf], . ..
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Bundle gerbes and their morphisms .

e A morphism £: G — G’ is a twisted hermitean vector bundle:

(Requires common refinements of covers in general.)
E, € HVBun(U,), aap: Ly @ By —> E, ® L.,

where « is compatible with p and p/'.
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Bundle gerbes and their morphisms .

e A morphism £: G — G’ is a twisted hermitean vector bundle:

(Requires common refinements of covers in general.)
E, € HVBun(U,), aap: Ly @ By —> E, ® L.,
where « is compatible with p and p/'.

Bundle gerbes have an additional layer of structure:
T~

e A 2-morphism § ﬂw G’ is a family of bundle morphisms
N

Va: Eq — Fy, s.t. (¢a®1L;b)oaab:6abo(1Lab®¢b)~

One can also understand bundle gerbes as categorified principal
bundles with structure group BU(1)

[Baez, Huerta, Schreiber; MacKaay, Picken; Martins; Bullivant; Waldorf; .. .]
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The 2-category of bundle gerbes

Bundle gerbes define a stack of symmetric monoidal 2-categories

(9’["[), ®, I) on MIfd [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

There is an isomorphism my(Srb(M),®) = H3(M;Z).
There is an isomorphism 7 (GrbY (M), ®) = ﬁ3(M; 7).

9rbv(M)(g,g’) is enriched, tensored, and cotensored over
(FHVBunY (M), ®).

Isomg,(pr)(G,G’) a torsor over (HLBun(M),®).

In particular, (Isomg,s(ar)(G,G), — o —) is canonically equivalent
to (HLBun(M),®) as 2-groups.
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Gerbes and group actions—algebra

e Consider a connected Lie group H acting on M via a smooth group
homomorphism ®: H — Diff (M), and let G € Grb(M).
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Gerbes and group actions—algebra

e Consider a connected Lie group H acting on M via a smooth group
homomorphism ®: H — Diff (M), and let G € Grb(M).

Define a groupoid Sym(G) with:

e objects: (h, A), where he H and A: G — ®7G,

(an A exists for each h because H is connected)

o morphisms: (h,v): (h, A) — (h, A’) being 2-isomorphisms
v @FG

Sym(G) has a product:
ho A1
(h1, A1) ®(ho, Ao) = (h1ho, G 2o = o7 g o5 @5 G = @5 1, 9)

Extending this product to morphisms, Sym(G) becomes a 2-group!
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Gerbes and group actions—algebra
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7m: Sym(G) — H , (hyA) = h, (h,¢)— 1.
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Gerbes and group actions—algebra

e Sym(G) comes with a surjective monoidal projection
7m: Sym(G) — H , (hyA) = h, (h,¢)— 1.

e The (homotopy) fibre of 7 has:
objects: (em,.A), where A € Isomg,y(r)(G,G) ~ HLBun(M),
morphisms: (eg, ), where ¢: A — A" with A, A": G — G.

Equivalently, v is an isomorphism of hermitean line bundles.

In summary, there is an equivalence of 2-groups
7 Hey) = Isomg, a1y (G, G) ~ HLBun(M),
i.e. we have a 2-group extension

HLBun(M) — Sym(G) — H.
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Gerbes and group actions—geometry

So far, our 2-group extension does not see that H is smooth.

Let Cart be the category with objects {c € Mfd |3n e Ny : c = R"}

and whose morphisms are all smooth maps f: ¢ — (.

H defines a presheaf H: Cart®® — 8et, ¢ — Mfd(c, H).

— This fully encodes the smooth structure of H.

Smooth version of Sym(G): to c € Cart, assign groupoid Sym(G)).
with objects: (h: ¢ — H, A), where A is a smooth family of
morphisms A,.: G — @;(m)g, for each x € ¢. (Morphisms defined

analogously.)

There is a smooth version HLBun™ of HLBun(M): to ¢ € Cart,
assign the groupoid of hermitean line bundles on ¢ x M. This describes

smooth c-parameterised families of hermitean line bundles on M.
11/18
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Gerbes and group actions—smooth perspective *

e A smooth groupoid is a presheaf of groupoids H: Cart®® — SGrpd.
e A smooth 2-group is a presheaf of 2-groups on Cart.

e Example: Sym(G) and HLBun™ are smooth 2-groups.

12/18



UH

Gerbes and group actions—smooth perspective *

e A smooth groupoid is a presheaf of groupoids H: Cart®® — SGrpd.
e A smooth 2-group is a presheaf of 2-groups on Cart.

e Example: Sym(G) and HLBun™ are smooth 2-groups.

Theorem (SB, Miiller, Szabo)

Let H be a connected Lie group acting on M, let G € Grb(M).
There is an extension of smooth 2-groups

HLBun™ — Sym(G) — H .
Groupoid of H-equivariant structures on G (= smooth ho. fixed pt)

~ Groupoid of (smooth!) splittings of this extension.

12/18



UH

Gerbes and group actions—smooth perspective *
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e A smooth 2-group is a presheaf of 2-groups on Cart.

e Example: Sym(G) and HLBun™ are smooth 2-groups.

Theorem (SB, Miiller, Szabo)

Let H be a connected Lie group acting on M, let G € Grb(M).
There is an extension of smooth 2-groups

HLBun™ — Sym(G) — H .
Groupoid of H-equivariant structures on G (= smooth ho. fixed pt)

~ Groupoid of (smooth!) splittings of this extension.

Applications: Nonassociative magnetic translations, QFT anomalies, . ..
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such that 7;(p) is an isomorphism Vi # 3 and m3(String(H)) = 0, i.e.
e A is homotopy equivalent to BU(1) ~ K(Z;2), and

e the bundle String(H) — H represents a generator in H?(H;Z) = Z.
Variants: ambient (higher) category: top. groups, crossed modules,
smooth 2-groups, ..., smooth co-groups.

[Stolz; Baez, Crans, Schreiber, Stevenson, Nikolaus; Henriques; Schommer-Pries, .. .|

Relevance: Dirac operators on LM, TMF, Ms-brane theory, ...

[Witten, Killingback; Stolz, Teichner; Waldorf; ABGHR; Samann, Jurco; . ..]
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General framework n

o Generalise from presheaves of groupoids to presheaves of

oo-groupoids: Hy, := Fun(NCart®®, S); call these smooth spaces.
e H,, is an co-category, and even an co-topos [Joyal: Lurie; Rezk; .. .].
o Contains the 2-category of smooth groupoids.

A group object in an oo-category € with final object = is a simplicial
object G: °P — € s.t. Gy = * and for every S U " = [n] as finite sets
with § " S’ = {x}, the morphism G,, — G(S) x G(S') is an equivalence.

In particular, G,, ~ GY, hence set G := G.

Example: For X € S, a pointed space, 2X is a group object in S.
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Groups extensions and functors =

e One can define group actions, principal co-bundles, and group

extensions in any co-topos H [Nikolaus, Schreiber, Stevenson; SBJ.

o Essentially, a principal G-bundle is an effective epimorphism
m: P — X and a principal G-action on P that preserves 7 (up to
coherent homotopy). E.g. for X € S,, PhX — X is QX-bundle.

e One can then show: a group extension is a sequence A — G — H of

groups in H such that G- Hisa principal A-bundle.

Theorem [SB]

Let L: H — H’' be a functor of co-topoi preserving realisations of
simplicial objects and finite products. Then, L preserves groups,

principal co-bundles, and group extensions.
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Homotopy theory of smooth spaces

Goal: assign a homotopy type to a smooth space F' € H,.
o Let AF = {t e R¥1| Y% 4 = 1}, define A.:  — Cart and
A I=I
Se: Hyy —— Fun( °*,S) —— S.

o Example: M e Mfd induces M = Mfd(—, M) € Hq.

There is a canonical natural equivalence S; M ~ Sing(M). [SB]

Definition

We call the functor S.: H,, — S the smooth singular complex.
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Theorem [SB]

e S.: Hyy, — Sis a left adjoint and preserves finite products. Thus,

it preserves principal co-bundles and group extensions.
e S, sends smooth homotopy equivalences to equivalences.

o Let I = {pr.: ¢ x R — ¢|ce Cart}. We find that S, factors as

H,, 25 L,H, — S and induces equivalence L;H,, — S.

Definition—using above theorems

Let H be a compact, simple, simply connected Lie group. A smooth
string group extension of H is a group extension A-G— ﬁ in

H,, whose image under S, is a string group extension in S.
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String group models .

Theorem (SB, Miiller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let
G € Srb(H) represent a generator of H3(H;7Z) =~ Z. Then,

NHLBun — NSym(G) — H

is a smooth string group extension.

o HLBun® () ~ B(U(1)E)(c) for every ¢ e Cart, since H 2-connected.

e eve: U)E - U(1), g — g(e) is ho. equivalence, since H 1-connected,

S maps smooth homotopy equivalences to equivalences.

o Induces H*(H;U(1)) = H*(H;U(1)), under which Sym(G) — H is
represented by the same Cech cocycle as G. <
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Thank you for your attention!



