TQFT Seminar Instituto Superior Técnico, Lisbon, 29/01/2021

Universal Symmetries of Gerbes and Smooth Higher Group Extensions

Severin Bunk

 $[1804.08953^1,\ 2004.13395^1,\ 2007.06039,\ 2008.12263]$ 1 joint work with Lukas Müller and Richard J. Szabo

Motivating Example

Nonassociative magnetic translations

- Configuration space: $M = \mathbb{R}^n$.
- Background field $B\in\Omega^2(M)$, e.g. B-field in string theory or EM field of monopole distribution.

- Configuration space: $M = \mathbb{R}^n$.
- Background field $B \in \Omega^2(M)$, e.g. B-field in string theory or EM field of monopole distribution.
- Phase space $T^*M \cong \mathbb{R}^n \times \mathbb{R}^n$ carries a 'Poisson bracket':

$$\{q^i,q^j\} = 0, \qquad \{q^i,p_j\} = \delta^i_j, \qquad \{p_i,p_j\} = -B_{ij}(q)$$

- Configuration space: $M = \mathbb{R}^n$.
- Background field $B \in \Omega^2(M)$, e.g. B-field in string theory or EM field of monopole distribution.
- Phase space $T^*M \cong \mathbb{R}^n \times \mathbb{R}^n$ carries a 'Poisson bracket':

$$\{q^{i}, q^{j}\} = 0, \qquad \{q^{i}, p_{j}\} = \delta_{j}^{i}, \qquad \{p_{i}, p_{j}\} = -B_{ij}(q)$$
$$\{p_{i}, \{p_{j}, p_{k}\}\} + \{p_{j}, \{p_{k}, p_{i}\}\} + \{p_{k}, \{p_{i}, p_{j}\}\} \sim (dB)_{ijk}.$$

- Configuration space: $M = \mathbb{R}^n$.
- Background field $B \in \Omega^2(M)$, e.g. B-field in string theory or EM field of monopole distribution.
- Phase space $T^*M \cong \mathbb{R}^n \times \mathbb{R}^n$ carries a 'Poisson bracket':

$$\{q^{i}, q^{j}\} = 0, \qquad \{q^{i}, p_{j}\} = \delta_{j}^{i}, \qquad \{p_{i}, p_{j}\} = -B_{ij}(q)$$
$$\{p_{i}, \{p_{j}, p_{k}\}\} + \{p_{j}, \{p_{k}, p_{i}\}\} + \{p_{k}, \{p_{i}, p_{j}\}\} \sim (dB)_{ijk}.$$

- Translations act non-commutatively and non-associatively.
- Motivating question: Can we find a geometric explanation for this?

B can be understood as a connection on a gerbe \mathcal{G} on \mathbb{R}^n :

• 'Categorification of a line bundle'.

B can be understood as a connection on a gerbe \mathcal{G} on \mathbb{R}^n :

- 'Categorification of a line bundle'.
- Heuristically, \mathcal{G} is a bundle, whose fibre at each point $q \in \mathbb{R}^n$ is a category $\mathcal{G}_{|q} \simeq \mathcal{V}\mathrm{ect}$.

B can be understood as a connection on a gerbe \mathcal{G} on \mathbb{R}^n :

- 'Categorification of a line bundle'.
- Heuristically, \mathcal{G} is a bundle, whose fibre at each point $q \in \mathbb{R}^n$ is a category $\mathcal{G}_{|q} \simeq \mathcal{V}\text{ect}$.
- $(\text{Vect}, \oplus, 0, \otimes, \mathbb{C})$ is a categorified ring, which replaces $(\mathbb{C}, +, 0, \times, 1)$.

B can be understood as a connection on a gerbe \mathcal{G} on \mathbb{R}^n :

- 'Categorification of a line bundle'.
- Heuristically, $\mathcal G$ is a bundle, whose fibre at each point $q \in \mathbb R^n$ is a category $\mathcal G_{|q} \simeq \mathcal V\!\mathrm{ect}.$
- $(\mathcal{V}ect, \oplus, 0, \otimes, \mathbb{C})$ is a categorified ring, which replaces $(\mathbb{C}, +, 0, \times, 1)$.
- The linear automorphisms of $\mathbb C$ are multiplication by $z \in \mathbb C^\times$; the linear automorphisms of Vect are multiplication by complex lines $L \in \operatorname{Vect}^\times$. (The inverse of L is the dual line L^\vee .)

Gerbe holonomy

A gerbe with connection on a manifold M has a parallel transport, and hence has holonomies: [Gajer; MacKaay, Martins, Picken; Waldorf; SB, Müller, Szabo]

Gerbe holonomy

A gerbe with connection on a manifold M has a parallel transport, and hence has holonomies: [Gajer; MacKaay, Martins, Picken; Waldorf; SB, Müller, Szabo] For a loop γ in M based at q, $\mathsf{hol}(\mathcal{G},\gamma)$ is an automorphism of $\mathcal{G}_{|q}$, i.e. a complex line.

Gerbe holonomy

A gerbe with connection on a manifold M has a parallel transport, and hence has holonomies: [Gajer; MacKaay, Martins, Picken; Waldorf; SB, Müller, Szabo] For a loop γ in M based at q, $\mathsf{hol}(\mathcal{G},\gamma)$ is an automorphism of $\mathcal{G}_{|q}$, i.e. a complex line.

Example: For \mathcal{G} a gerbe with connection on \mathbb{R}^n , any pair of translation vectors $v_1, v_2 \in \mathbb{R}^n$ gives rise to a holonomy:

Letting q vary, this yields a functor

$$L: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathcal{L}\mathcal{B}\mathrm{un}(\mathbb{R}^n)$$
.

2-groups and cocycles

For any manifold M, the groupoid $\mathcal{LBun}(M)$ has:

- a monoidal structure ⊗,
- every object invertible with respect to \otimes (with $L^{-1} = L^{\vee}$).

2-groups and cocycles

For any manifold M, the groupoid $\mathcal{L}Bun(M)$ has:

- a monoidal structure ⊗,
- every object invertible with respect to \otimes (with $L^{-1} = L^{\vee}$).

Definition

A monoidal groupoid with this property is called a **2-group**.

2-groups and cocycles

For any manifold M, the groupoid $\mathcal{LBun}(M)$ has:

- a monoidal structure ⊗,
- every object invertible with respect to \otimes (with $L^{-1} = L^{\vee}$).

Definition

A monoidal groupoid with this property is called a **2-group**.

- Observation: the construction $L \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathcal{L}\mathcal{B}\mathrm{un}(\mathbb{R}^n)$ from a gerbe with connection on \mathbb{R}^n is a categorified group cocycle.
- This should equivalently be encoded in an extension of $(\mathbb{R}^n,+)$ by the 2-group $(\mathcal{L}\mathcal{B}\mathrm{un}(\mathbb{R}^n),\otimes)$ (we'll unravel this in a minute).

• The 2-cocycle relation has additional data:

The 2-cocycle relation has additional data:

given $v_1, v_2, v_3 \in \mathbb{R}^n$, we need to specify isomorphisms

$$\alpha_{q,v_1,v_2,v_3} \colon L_{q,v_1+v_2,v_3} \otimes L_{q,v_1,v_2} \stackrel{\cong}{\longrightarrow} L_{q,v_1,v_2+v_3} \otimes L_{q,v_2,v_3} \,,$$

which have to be coherent.

• The 2-cocycle relation has additional data:

given $v_1, v_2, v_3 \in \mathbb{R}^n$, we need to specify isomorphisms

$$\alpha_{q,v_1,v_2,v_3} \colon L_{q,v_1+v_2,v_3} \otimes L_{q,v_1,v_2} \stackrel{\cong}{\longrightarrow} L_{q,v_1,v_2+v_3} \otimes L_{q,v_2,v_3} \,,$$

which have to be coherent.

• For the gerbe connection determined by $B \in \Omega^2(\mathbb{R}^n)$, we have

$$\alpha_{q,v_1,v_2,v_3} = \exp\left(\int_{\Delta^3(q,v_1,v_2,v_3)} dB\right),\,$$

where dB is the curvature of the gerbe connection.

• The 2-cocycle relation has additional data:

given $v_1, v_2, v_3 \in \mathbb{R}^n$, we need to specify isomorphisms

$$\alpha_{q,v_1,v_2,v_3} \colon L_{q,v_1+v_2,v_3} \otimes L_{q,v_1,v_2} \stackrel{\cong}{\longrightarrow} L_{q,v_1,v_2+v_3} \otimes L_{q,v_2,v_3} \,,$$

which have to be coherent.

• For the gerbe connection determined by $B \in \Omega^2(\mathbb{R}^n)$, we have

$$\alpha_{q,v_1,v_2,v_3} = \exp\left(\int_{\Delta^3(q,v_1,v_2,v_3)} dB\right),\,$$

where dB is the curvature of the gerbe connection.

This is exactly the (exponentiated version of) the Jacobiator!

• The 2-cocycle relation has additional data: given $v_1, v_2, v_3 \in \mathbb{R}^n$, we need to specify isomorphisms

$$\alpha_{q,v_1,v_2,v_3} \colon L_{q,v_1+v_2,v_3} \otimes L_{q,v_1,v_2} \stackrel{\cong}{\longrightarrow} L_{q,v_1,v_2+v_3} \otimes L_{q,v_2,v_3} \,,$$

which have to be coherent.

• For the gerbe connection determined by $B \in \Omega^2(\mathbb{R}^n)$, we have

$$\alpha_{q,v_1,v_2,v_3} = \exp\left(\int_{\Delta^3(q,v_1,v_2,v_3)} dB\right),\,$$

where dB is the curvature of the gerbe connection.

- This is exactly the (exponentiated version of) the Jacobiator!
- ⇒ Gerbe parallel transport explains nonassociative magnetic translations [SB, Müller, Szabo].

Symmetries of gerbes

Smooth 2-group extensions

Bundle gerbes on general manifolds M:

Bundle gerbes on general manifolds M:

- $\{U_a\}_{a\in A}$ an open covering of M.
- Hermitean line bundle L on M is given by:

$$g_{ab}: U_{ab} \to \mathsf{U}(1), \qquad g_{ab} \, g_{bc} = g_{ac}.$$

Bundle gerbes on general manifolds M:

- $\{U_a\}_{a\in A}$ an open covering of M.
- Hermitean line bundle L on M is given by:

$$g_{ab} \colon U_{ab} \to \mathsf{U}(1) \,, \qquad g_{ab} \, g_{bc} = g_{ac} \,.$$

 Idea: Local functions give rise to bundles, local bundles give rise to gerbes.

Bundle gerbes on general manifolds M:

- $\{U_a\}_{a\in A}$ an open covering of M.
- Hermitean line bundle L on M is given by:

$$g_{ab} \colon U_{ab} \to \mathsf{U}(1) \,, \qquad g_{ab} \, g_{bc} = g_{ac} \,.$$

- Idea: Local functions give rise to bundles, local bundles give rise to gerbes.
- A (hermitean) bundle gerbe G on M is given by:

$$L_{ab} \in \mathcal{HLBun}(U_{ab}) \,, \qquad \mu_{abc} \colon L_{ab} \otimes L_{bc} \stackrel{\cong}{\longrightarrow} L_{ac}$$
 plus 2-cocycle condition for μ_{abc} .

Bundle gerbes on general manifolds M:

- $\{U_a\}_{a\in A}$ an open covering of M.
- Hermitean line bundle L on M is given by:

$$g_{ab} \colon U_{ab} \to \mathsf{U}(1) \,, \qquad g_{ab} \, g_{bc} = g_{ac} \,.$$

- Idea: Local functions give rise to bundles, local bundles give rise to gerbes.
- A (hermitean) bundle gerbe G on M is given by:

$$L_{ab} \in \mathcal{HLB}\mathrm{un}(U_{ab})\,, \qquad \mu_{abc} \colon L_{ab} \otimes L_{bc} \stackrel{\cong}{\longrightarrow} L_{ac}$$
 plus 2-cocycle condition for μ_{abc} .

Gerbes describe B-fields in string theory, twists in K-theory, smooth 2D (invertible) field theories [Kapustin; BCMMS; BTW; Picken; SB, Waldorf], ...

• A morphism $\mathcal{E}: \mathcal{G} \to \mathcal{G}'$ is a twisted hermitean vector bundle: (Requires common refinements of covers in general.)

$$E_a \in \mathcal{HVBun}(U_a)$$
, $\alpha_{ab} \colon L_{ab} \otimes E_b \xrightarrow{\cong} E_a \otimes L'_{ab}$

where α is compatible with μ and μ' .

• A morphism $\mathcal{E}: \mathcal{G} \to \mathcal{G}'$ is a twisted hermitean vector bundle: (Requires common refinements of covers in general.)

$$E_a \in \mathcal{HVBun}(U_a)$$
, $\alpha_{ab} \colon L_{ab} \otimes E_b \xrightarrow{\cong} E_a \otimes L'_{ab}$

where α is compatible with μ and μ' .

Bundle gerbes have an additional layer of structure:

• A morphism $\mathcal{E}:\mathcal{G}\to\mathcal{G}'$ is a twisted hermitean vector bundle: (Requires common refinements of covers in general.)

$$E_a \in \mathcal{HVBun}(U_a)$$
, $\alpha_{ab} : L_{ab} \otimes E_b \xrightarrow{\cong} E_a \otimes L'_{ab}$

where α is compatible with μ and μ' .

Bundle gerbes have an additional layer of structure:

• A 2-morphism \mathcal{G} ψ \mathcal{G}' is a family of bundle morphisms

$$\psi_a \colon E_a \to F_a \,, \qquad \text{s.t. } (\psi_a \otimes 1_{L'_{ab}}) \circ \alpha_{ab} = \beta_{ab} \circ (1_{L_{ab}} \otimes \psi_b) \,.$$

• A morphism $\mathcal{E}: \mathcal{G} \to \mathcal{G}'$ is a twisted hermitean vector bundle: (Requires common refinements of covers in general.)

$$E_a \in \mathcal{HVBun}(U_a)$$
, $\alpha_{ab} : L_{ab} \otimes E_b \xrightarrow{\cong} E_a \otimes L'_{ab}$

where α is compatible with μ and μ' .

Bundle gerbes have an additional layer of structure:

• A 2-morphism \mathcal{G} ψ \mathcal{G}' is a family of bundle morphisms

$$\psi_a \colon E_a \to F_a \,, \qquad \text{s.t. } (\psi_a \otimes 1_{L'_{ab}}) \circ \alpha_{ab} = \beta_{ab} \circ (1_{L_{ab}} \otimes \psi_b) \,.$$

One can also understand bundle gerbes as categorified principal bundles with structure group $\mathsf{BU}(1)$

[Baez, Huerta, Schreiber; MacKaay, Picken; Martins; Bullivant; Waldorf; . . .]

Bundle gerbes define a stack of symmetric monoidal 2-categories

 $(\Im rb, \otimes, \mathcal{I})$ on $\mathfrak{M}\mathrm{fd}$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Bundle gerbes define a stack of symmetric monoidal 2-categories $(\mathfrak{G}rb, \otimes, \mathcal{I})$ on $\mathfrak{M}fd$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

• There is an isomorphism $\pi_0(\mathfrak{G}rb(M), \otimes) \cong H^3(M; \mathbb{Z})$.

Bundle gerbes define a stack of symmetric monoidal 2-categories $(\mathfrak{G}rb, \otimes, \mathcal{I})$ on $\mathfrak{M}fd$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

- There is an isomorphism $\pi_0(\mathfrak{G}rb(M), \otimes) \cong H^3(M; \mathbb{Z})$.
- There is an isomorphism $\pi_0(\mathfrak{G}rb^{\nabla}(M), \otimes) \cong \widehat{H}^3(M; \mathbb{Z}).$

The 2-category of bundle gerbes

Bundle gerbes define a stack of symmetric monoidal 2-categories $(\mathfrak{G}rb, \otimes, \mathcal{I})$ on $\mathfrak{M}fd$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

- There is an isomorphism $\pi_0(\mathfrak{G}rb(M), \otimes) \cong H^3(M; \mathbb{Z})$.
- There is an isomorphism $\pi_0(\mathfrak{G}rb^{\nabla}(M), \otimes) \cong \widehat{H}^3(M; \mathbb{Z}).$
- $\mathfrak{G}rb^{\nabla}(M)(\mathcal{G},\mathcal{G}')$ is enriched, tensored, and cotensored over $(\mathcal{HVB}un^{\nabla}(M),\otimes).$

The 2-category of bundle gerbes

Bundle gerbes define a stack of symmetric monoidal 2-categories $(\mathfrak{G}rb, \otimes, \mathcal{I})$ on $\mathfrak{M}fd$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

- There is an isomorphism $\pi_0(\mathfrak{G}rb(M), \otimes) \cong H^3(M; \mathbb{Z})$.
- There is an isomorphism $\pi_0(\mathfrak{G}rb^{\nabla}(M), \otimes) \cong \widehat{H}^3(M; \mathbb{Z}).$
- $\mathfrak{G}rb^{\nabla}(M)(\mathcal{G},\mathcal{G}')$ is enriched, tensored, and cotensored over $(\mathcal{HVB}un^{\nabla}(M),\otimes).$
- $\operatorname{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G},\mathcal{G}')$ a torsor over $(\mathcal{HLBun}(M),\otimes)$.

The 2-category of bundle gerbes

Bundle gerbes define a stack of symmetric monoidal 2-categories $(\mathfrak{G}rb, \otimes, \mathcal{I})$ on $\mathfrak{M}fd$ [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

- There is an isomorphism $\pi_0(\mathfrak{G}rb(M), \otimes) \cong H^3(M; \mathbb{Z})$.
- There is an isomorphism $\pi_0(\mathfrak{G}rb^{\nabla}(M), \otimes) \cong \widehat{H}^3(M; \mathbb{Z}).$
- $\operatorname{Grb}^{\nabla}(M)(\mathcal{G},\mathcal{G}')$ is enriched, tensored, and cotensored over $(\mathcal{HVB}\mathrm{un}^{\nabla}(M),\otimes).$
- $\operatorname{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G},\mathcal{G}')$ a torsor over $(\mathcal{HLBun}(M),\otimes)$.
- In particular, $(\mathrm{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G},\mathcal{G}),-\circ-)$ is canonically equivalent to $(\mathcal{HLBun}(M),\otimes)$ as 2-groups.

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathfrak{G}rb(M)$.

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathcal{G}rb(M)$.

Define a groupoid $Sym(\mathcal{G})$ with:

• objects: (h, \mathcal{A}) , where $h \in H$ and $\mathcal{A} \colon \mathcal{G} \xrightarrow{\cong} \Phi_h^* \mathcal{G}$,

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathfrak{G}rb(M)$.

Define a groupoid $Sym(\mathcal{G})$ with:

• objects: (h, \mathcal{A}) , where $h \in H$ and $\mathcal{A} : \mathcal{G} \xrightarrow{\cong} \Phi_h^* \mathcal{G}$, (an \mathcal{A} exists for each h because H is connected)

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathfrak{G}rb(M)$.

Define a groupoid $Sym(\mathcal{G})$ with:

- objects: (h, \mathcal{A}) , where $h \in H$ and $\mathcal{A} : \mathcal{G} \xrightarrow{\cong} \Phi_h^* \mathcal{G}$, (an \mathcal{A} exists for each h because H is connected)
- morphisms: (h, ψ) : $(h, \mathcal{A}) \to (h, \mathcal{A}')$ being 2-isomorphisms

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathfrak{G}rb(M)$.

Define a groupoid $Sym(\mathcal{G})$ with:

- objects: (h, \mathcal{A}) , where $h \in H$ and $\mathcal{A} : \mathcal{G} \xrightarrow{\cong} \Phi_h^* \mathcal{G}$, (an \mathcal{A} exists for each h because H is connected)
- morphisms: (h, ψ) : $(h, \mathcal{A}) \to (h, \mathcal{A}')$ being 2-isomorphisms

$Sym(\mathcal{G})$ has a product:

$$(h_1, \mathcal{A}_1) \otimes (h_0, \mathcal{A}_0) := \left(h_1 h_0, \ \mathcal{G} \xrightarrow{\mathcal{A}_0} \Phi_{h_0}^* \mathcal{G} \xrightarrow{\Phi_{h_0}^* \mathcal{A}_1} \Phi_{h_0}^* \Phi_{h_1}^* \mathcal{G} = \Phi_{h_1 h_0}^* \mathcal{G}\right)$$

• Consider a connected Lie group H acting on M via a smooth group homomorphism $\Phi \colon H \to \mathrm{Diff}(M)$, and let $\mathcal{G} \in \mathcal{G}rb(M)$.

Define a groupoid $Sym(\mathcal{G})$ with:

- objects: (h, \mathcal{A}) , where $h \in H$ and $\mathcal{A} : \mathcal{G} \xrightarrow{\cong} \Phi_h^* \mathcal{G}$, (an \mathcal{A} exists for each h because H is connected)
- morphisms: (h, ψ) : $(h, \mathcal{A}) \to (h, \mathcal{A}')$ being 2-isomorphisms

$Sym(\mathcal{G})$ has a product:

$$(h_1, \mathcal{A}_1) \otimes (h_0, \mathcal{A}_0) := \left(h_1 h_0, \ \mathcal{G} \xrightarrow{\mathcal{A}_0} \Phi_{h_0}^* \mathcal{G} \xrightarrow{\Phi_{h_0}^* \mathcal{A}_1} \Phi_{h_0}^* \Phi_{h_1}^* \mathcal{G} = \Phi_{h_1 h_0}^* \mathcal{G}\right)$$

Extending this product to morphisms, Sym(G) becomes a 2-group!

ullet Sym (\mathcal{G}) comes with a surjective monoidal projection

$$\pi \colon \mathrm{Sym}(\mathcal{G}) \to H$$
, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.

- $\operatorname{Sym}(\mathcal{G})$ comes with a surjective monoidal projection $\pi \colon \operatorname{Sym}(\mathcal{G}) \to H$, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.
- The (homotopy) fibre of π has:

ullet Sym (\mathcal{G}) comes with a surjective monoidal projection

$$\pi : \operatorname{Sym}(\mathcal{G}) \to H$$
, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.

• The (homotopy) fibre of π has:

objects:
$$(e_H, \mathcal{A})$$
, where $\mathcal{A} \in \text{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathfrak{HLBun}(M)$,

- $\bullet \ \mathrm{Sym}(\mathcal{G})$ comes with a surjective monoidal projection
 - $\pi \colon \mathrm{Sym}(\mathcal{G}) \to H$, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.
- The (homotopy) fibre of π has:

objects:
$$(e_H, \mathcal{A})$$
, where $\mathcal{A} \in \text{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathcal{HLBun}(M)$,

morphisms: (e_H, ψ) , where $\psi \colon \mathcal{A} \to \mathcal{A}'$ with $\mathcal{A}, \mathcal{A}' \colon \mathcal{G} \to \mathcal{G}$.

Equivalently, ψ is an isomorphism of hermitean line bundles.

 $\bullet \ \operatorname{Sym}(\mathcal{G})$ comes with a surjective monoidal projection

$$\pi \colon \mathrm{Sym}(\mathcal{G}) \to H$$
, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.

• The (homotopy) fibre of π has:

objects:
$$(e_H, \mathcal{A})$$
, where $\mathcal{A} \in \mathrm{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathfrak{HLBun}(M)$,

morphisms: (e_H, ψ) , where $\psi \colon \mathcal{A} \to \mathcal{A}'$ with $\mathcal{A}, \mathcal{A}' \colon \mathcal{G} \to \mathcal{G}$.

Equivalently, ψ is an isomorphism of hermitean line bundles.

In summary, there is an equivalence of 2-groups

$$\pi^{-1}\{e_H\} = \operatorname{Isom}_{\operatorname{\mathfrak{G}rb}(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathcal{HLBun}(M),$$

 $\bullet \ \operatorname{Sym}(\mathcal{G})$ comes with a surjective monoidal projection

$$\pi \colon \mathrm{Sym}(\mathcal{G}) \to H$$
, $(h, \mathcal{A}) \mapsto h$, $(h, \psi) \mapsto 1_h$.

• The (homotopy) fibre of π has:

objects:
$$(e_H, \mathcal{A})$$
, where $\mathcal{A} \in \mathrm{Isom}_{\mathfrak{G}rb(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathfrak{HLBun}(M)$, morphisms: (e_H, ψ) , where $\psi \colon \mathcal{A} \to \mathcal{A}'$ with $\mathcal{A}, \mathcal{A}' \colon \mathcal{G} \to \mathcal{G}$.

Equivalently, ψ is an isomorphism of hermitean line bundles.

In summary, there is an equivalence of 2-groups

$$\pi^{-1}\{e_H\} = \operatorname{Isom}_{\operatorname{\mathfrak{G}rb}(M)}(\mathcal{G}, \mathcal{G}) \simeq \mathcal{HLBun}(M),$$

i.e. we have a 2-group extension

$$\mathcal{HLBun}(M) \longrightarrow \operatorname{Sym}(\mathcal{G}) \longrightarrow H$$
.

So far, our 2-group extension does not see that H is smooth.

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- H defines a presheaf $\underline{H} : \operatorname{Cart}^{\operatorname{op}} \to \operatorname{Set}, \ c \mapsto \operatorname{Mfd}(c, H)$.

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- H defines a presheaf $\underline{H} : \operatorname{Cart}^{\operatorname{op}} \to \operatorname{Set}, \ c \mapsto \operatorname{Mfd}(c, H)$.
 - \rightarrow This fully encodes the smooth structure of H.

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- H defines a presheaf $\underline{H} \colon \operatorname{Cart}^{\operatorname{op}} \to \operatorname{Set}$, $c \mapsto \operatorname{Mfd}(c, H)$.
 - \rightarrow This fully encodes the smooth structure of H.
- Smooth version of $\operatorname{Sym}(\mathcal{G})$: to $c \in \operatorname{Cart}$, assign groupoid $\operatorname{Sym}(\mathcal{G})_{|c}$

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- H defines a presheaf $\underline{H} \colon \operatorname{Cart}^{\operatorname{op}} \to \operatorname{Set}$, $c \mapsto \operatorname{Mfd}(c,H)$.
 - \rightarrow This fully encodes the smooth structure of H.
- Smooth version of $\operatorname{Sym}(\mathcal{G})$: to $c \in \operatorname{Cart}$, assign groupoid $\operatorname{Sym}(\mathcal{G})_{|c}$ with objects: $(h : c \to H, \mathcal{A})$, where \mathcal{A} is a smooth family of morphisms $\mathcal{A}_{|x} \colon \mathcal{G} \to \Phi_{h(x)}^* \mathcal{G}$, for each $x \in c$. (Morphisms defined analogously.)

- So far, our 2-group extension does not see that H is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- H defines a presheaf $\underline{H} \colon \operatorname{Cart}^{\operatorname{op}} \to \operatorname{Set}$, $c \mapsto \operatorname{Mfd}(c, H)$.
 - \rightarrow This fully encodes the smooth structure of H.
- Smooth version of $\operatorname{Sym}(\mathcal{G})$: to $c \in \operatorname{Cart}$, assign groupoid $\operatorname{Sym}(\mathcal{G})_{|c}$ with objects: $(h \colon c \to H, \mathcal{A})$, where \mathcal{A} is a smooth family of morphisms $\mathcal{A}_{|x} \colon \mathcal{G} \to \Phi_{h(x)}^* \mathcal{G}$, for each $x \in c$. (Morphisms defined analogously.)
- There is a smooth version \mathcal{HLBun}^M of $\mathcal{HLBun}(M)$:

- So far, our 2-group extension does not see that *H* is smooth.
- Let Cart be the category with objects $\{c \in \operatorname{Mfd} \mid \exists \ n \in \mathbb{N}_0 : c \cong \mathbb{R}^n\}$ and whose morphisms are all smooth maps $f : c \to c'$.
- $\bullet \ \ H \ \ \text{defines a presheaf} \ \underline{H} \colon \mathbb{C}\mathrm{art}^\mathrm{op} \to \mathbb{S}\mathrm{et}, \ c \mapsto \mathbb{M}\mathrm{fd}(c,H).$
 - \rightarrow This fully encodes the smooth structure of H.
- Smooth version of $\operatorname{Sym}(\mathcal{G})$: to $c \in \operatorname{Cart}$, assign groupoid $\operatorname{Sym}(\mathcal{G})_{|c}$ with objects: $(h : c \to H, \mathcal{A})$, where \mathcal{A} is a smooth family of morphisms $\mathcal{A}_{|x} : \mathcal{G} \to \Phi_{h(x)}^* \mathcal{G}$, for each $x \in c$. (Morphisms defined analogously.)
- There is a smooth version $\mathcal{HLB}un^M$ of $\mathcal{HLB}un(M)$: to $c \in Cart$, assign the groupoid of hermitean line bundles on $c \times M$. This describes smooth c-parameterised families of hermitean line bundles on M.

Gerbes and group actions—smooth perspective

- A smooth groupoid is a presheaf of groupoids $\mathcal{H} \colon \operatorname{Cart}^{\operatorname{op}} \to \operatorname{\mathcal{G}rpd}$.
- A smooth 2-group is a presheaf of 2-groups on Cart.
- Example: $\operatorname{Sym}(\mathcal{G})$ and \mathcal{HLBun}^M are smooth 2-groups.

Gerbes and group actions—smooth perspective

- A smooth groupoid is a presheaf of groupoids $\mathcal{H} \colon \mathbf{Cart}^{\mathrm{op}} \to \mathbf{Grpd}$.
- A smooth 2-group is a presheaf of 2-groups on Cart.
- Example: $\mathrm{Sym}(\mathcal{G})$ and \mathcal{HLBun}^M are smooth 2-groups.

Theorem (SB, Müller, Szabo)

Let H be a connected Lie group acting on M, let $\mathcal{G} \in \mathfrak{G}rb(M)$.

There is an extension of smooth 2-groups

$$\mathcal{HLBun}^M \longrightarrow \operatorname{Sym}(\mathcal{G}) \longrightarrow H$$
.

Groupoid of H-equivariant structures on \mathcal{G} (= smooth ho. fixed pt)

≃ Groupoid of (smooth!) splittings of this extension.

Gerbes and group actions—smooth perspective

- A smooth groupoid is a presheaf of groupoids $\mathcal{H} \colon \mathbf{Cart}^{\mathrm{op}} \to \mathbf{Grpd}$.
- A smooth 2-group is a presheaf of 2-groups on Cart.
- Example: $\mathrm{Sym}(\mathcal{G})$ and \mathcal{HLBun}^M are smooth 2-groups.

Theorem (SB, Müller, Szabo)

Let H be a connected Lie group acting on M, let $\mathcal{G} \in \mathfrak{G}rb(M)$.

There is an extension of smooth 2-groups

$$\mathcal{HLBun}^M \longrightarrow \operatorname{Sym}(\mathcal{G}) \longrightarrow H$$
.

Groupoid of H-equivariant structures on \mathcal{G} (= smooth ho. fixed pt)

 \simeq Groupoid of (smooth!) splittings of this extension.

Applications: Nonassociative magnetic translations, QFT anomalies, ...

Smooth extensions of ∞ -groups

Smooth String group models

Let ${\cal H}$ be a compact, simple, simply-connected Lie group.

Let H be a compact, simple, simply-connected Lie group.

Then,
$$\pi_i(H) \cong H^i(H; \mathbb{Z}) = 0$$
, for $i = 1, 2$, and $\pi_3(H) \cong H^3(H; \mathbb{Z}) = \mathbb{Z}$.

Let H be a compact, simple, simply-connected Lie group.

Then,
$$\pi_i(H) \cong \mathrm{H}^i(H;\mathbb{Z}) = 0$$
, for $i = 1, 2$, and $\pi_3(H) \cong \mathrm{H}^3(H;\mathbb{Z}) = \mathbb{Z}$.

A string group extension of H is an extension

$$A \longrightarrow \operatorname{String}(H) \xrightarrow{\pi} H$$

such that $\pi_i(p)$ is an isomorphism $\forall i \neq 3$ and $\pi_3(\operatorname{String}(H)) = 0$, i.e.

- A is homotopy equivalent to $BU(1) \simeq K(\mathbb{Z}; 2)$, and
- the bundle $String(H) \to H$ represents a generator in $H^3(H; \mathbb{Z}) \cong \mathbb{Z}$.

Let H be a compact, simple, simply-connected Lie group.

Then,
$$\pi_i(H) \cong \mathrm{H}^i(H;\mathbb{Z}) = 0$$
, for $i = 1, 2$, and $\pi_3(H) \cong \mathrm{H}^3(H;\mathbb{Z}) = \mathbb{Z}$.

A string group extension of H is an extension

$$A \longrightarrow \operatorname{String}(H) \xrightarrow{\pi} H$$

such that $\pi_i(p)$ is an isomorphism $\forall i \neq 3$ and $\pi_3(\operatorname{String}(H)) = 0$, i.e.

- A is homotopy equivalent to $\mathsf{BU}(1) \simeq K(\mathbb{Z};2)$, and
- the bundle $String(H) \to H$ represents a generator in $H^3(H; \mathbb{Z}) \cong \mathbb{Z}$.

Variants: ambient (higher) category: top. groups, crossed modules, smooth 2-groups, ..., smooth ∞ -groups.

[Stolz; Baez, Crans, Schreiber, Stevenson, Nikolaus; Henriques; Schommer-Pries, ...]

Let H be a compact, simple, simply-connected Lie group.

Then,
$$\pi_i(H) \cong H^i(H; \mathbb{Z}) = 0$$
, for $i = 1, 2$, and $\pi_3(H) \cong H^3(H; \mathbb{Z}) = \mathbb{Z}$.

A string group extension of H is an extension

$$A \longrightarrow \operatorname{String}(H) \xrightarrow{\pi} H$$

such that $\pi_i(p)$ is an isomorphism $\forall i \neq 3$ and $\pi_3(\operatorname{String}(H)) = 0$, i.e.

- A is homotopy equivalent to $\mathsf{BU}(1) \simeq K(\mathbb{Z};2)$, and
- the bundle $String(H) \to H$ represents a generator in $H^3(H; \mathbb{Z}) \cong \mathbb{Z}$.

Variants: ambient (higher) category: top. groups, crossed modules, smooth 2-groups, ..., smooth ∞ -groups.

[Stolz; Baez, Crans, Schreiber, Stevenson, Nikolaus; Henriques; Schommer-Pries, $\dots]$

Relevance: Dirac operators on LM, TMF, M_5 -brane theory, ...

[Witten, Killingback; Stolz, Teichner; Waldorf; ABGHR; Sämann, Jurco; ...]

General framework

Generalise from presheaves of groupoids to presheaves of

 ∞ -groupoids: $\mathbf{H}_{\infty} := \mathfrak{F}\mathrm{un}(N\mathfrak{C}\mathrm{art}^{\mathrm{op}}, \mathbf{S})$; call these smooth spaces.

General framework

- Generalise from presheaves of groupoids to presheaves of ∞ -groupoids: $\mathbf{H}_{\infty} := \mathcal{F}\mathrm{un}(N\mathcal{C}\mathrm{art}^{\mathrm{op}}, \mathbf{S})$; call these smooth spaces.
- \mathbf{H}_{∞} is an ∞ -category, and even an ∞ -topos [Joyal; Lurie; Rezk; ...].
- Contains the 2-category of smooth groupoids.

General framework

- Generalise from presheaves of groupoids to presheaves of ∞ -groupoids: $\mathbf{H}_{\infty} := \mathcal{F}\mathrm{un}(N\mathcal{C}\mathrm{art}^{\mathrm{op}}, \mathbf{S})$; call these smooth spaces.
- $\bullet~H_{\infty}$ is an $\infty\text{-category,}$ and even an $\infty\text{-topos}$ [Joyal; Lurie; Rezk; \ldots].
- Contains the 2-category of smooth groupoids.

A group object in an ∞ -category $\mathcal C$ with final object * is a simplicial object $\hat G\colon \mathbb \Delta^\mathrm{op} \to \mathcal C$

- Generalise from presheaves of groupoids to presheaves of
 ∞-groupoids: H_∞ := Fun(NCart^{op}, S); call these smooth spaces.
- \mathbf{H}_{∞} is an ∞ -category, and even an ∞ -topos [Joyal; Lurie; Rezk; ...].
- Contains the 2-category of smooth groupoids.

A group object in an ∞ -category $\mathcal C$ with final object * is a simplicial object $\widehat G\colon \mathbb \Delta^\mathrm{op} \to \mathcal C$ s.t. $\widehat G_0=*$

- Generalise from presheaves of groupoids to presheaves of ∞ -groupoids: $\mathbf{H}_{\infty} := \mathcal{F}\mathrm{un}(N\mathcal{C}\mathrm{art}^{\mathrm{op}}, \mathbf{S})$; call these smooth spaces.
- \mathbf{H}_{∞} is an ∞ -category, and even an ∞ -topos [Joyal; Lurie; Rezk; ...].
- Contains the 2-category of smooth groupoids.

A group object in an ∞ -category $\mathcal C$ with final object * is a simplicial object $\widehat G\colon \mathbb A^\mathrm{op} \to \mathcal C$ s.t. $\widehat G_0=*$ and for every $S\cup S'=[n]$ as finite sets with $S\cap S'=\{*\}$, the morphism $\widehat G_n\to \widehat G(S)\times \widehat G(S')$ is an equivalence.

- Generalise from presheaves of groupoids to presheaves of
 ∞-groupoids: H_∞ := Fun(NCart^{op}, S); call these smooth spaces.
- \mathbf{H}_{∞} is an ∞ -category, and even an ∞ -topos [Joyal; Lurie; Rezk; ...].
- Contains the 2-category of smooth groupoids.

A group object in an ∞ -category $\mathfrak C$ with final object * is a simplicial object $\hat G\colon \mathbb \Delta^{\mathrm{op}} \to \mathfrak C$ s.t. $\hat G_0=*$ and for every $S\cup S'=[n]$ as finite sets with $S\cap S'=\{*\}$, the morphism $\hat G_n\to \hat G(S)\times \hat G(S')$ is an equivalence. In particular, $\hat G_n\simeq \hat G_1^n$, hence set $G:=\hat G_1$.

- Generalise from presheaves of groupoids to presheaves of
 ∞-groupoids: H_∞ := Fun(NCart^{op}, S); call these smooth spaces.
- $\bullet~H_{\infty}$ is an $\infty\text{-category,}$ and even an $\infty\text{-topos}$ [Joyal; Lurie; Rezk; \ldots].
- Contains the 2-category of smooth groupoids.

A group object in an ∞ -category $\mathfrak C$ with final object * is a simplicial object $\hat G\colon \mathbb \Delta^{\mathrm{op}} \to \mathfrak C$ s.t. $\hat G_0=*$ and for every $S\cup S'=[n]$ as finite sets with $S\cap S'=\{*\}$, the morphism $\hat G_n\to \hat G(S)\times \hat G(S')$ is an equivalence. In particular, $\hat G_n\simeq \hat G_1^n$, hence set $G:=\hat G_1$.

Example: For $X \in \mathbf{S}_*$ a pointed space, ΩX is a group object in \mathbf{S} .

 One can define group actions, principal ∞-bundles, and group extensions in any ∞-topos H [Nikolaus, Schreiber, Stevenson; SB].

- One can define group actions, principal ∞-bundles, and group extensions in any ∞-topos **H** [Nikolaus, Schreiber, Stevenson; SB].
- Essentially, a principal Ĝ-bundle is an effective epimorphism
 π: P → X and a principal Ĝ-action on P that preserves π (up to coherent homotopy). E.g. for X ∈ S*, P0X → X is ΩX-bundle.

- One can define group actions, principal ∞-bundles, and group extensions in any ∞-topos **H** [Nikolaus, Schreiber, Stevenson; SB].
- Essentially, a principal G

 -bundle is an effective epimorphism

 π: P → X and a principal G

 -action on P that preserves π (up to coherent homotopy). E.g. for X ∈ S*, P0X → X is ΩX-bundle.
- One can then show: a group extension is a sequence $\hat{A} \to \hat{G} \to \hat{H}$ of groups in ${\bf H}$ such that . . .

- One can define group actions, principal ∞-bundles, and group extensions in any ∞-topos **H** [Nikolaus, Schreiber, Stevenson; SB].
- Essentially, a principal G

 -bundle is an effective epimorphism

 π: P → X and a principal G

 -action on P that preserves π (up to coherent homotopy). E.g. for X ∈ S*, P0X → X is ΩX-bundle.
- One can then show: a group extension is a sequence $\hat{A} \to \hat{G} \to \hat{H}$ of groups in \mathbf{H} such that $\hat{G} \to \hat{H}$ is a principal \hat{A} -bundle.

- One can define group actions, principal ∞-bundles, and group extensions in any ∞-topos **H** [Nikolaus, Schreiber, Stevenson; SB].
- Essentially, a principal G-bundle is an effective epimorphism
 π: P → X and a principal G-action on P that preserves π (up to coherent homotopy). E.g. for X ∈ S*, P₀X → X is ΩX-bundle.
- One can then show: a group extension is a sequence $\hat{A} \to \hat{G} \to \hat{H}$ of groups in \mathbf{H} such that $\hat{G} \to \hat{H}$ is a principal \hat{A} -bundle.

Theorem [SB]

Let $L\colon \mathbf{H}\to \mathbf{H}'$ be a functor of ∞ -topoi preserving realisations of simplicial objects and finite products. Then, L preserves groups, principal ∞ -bundles, and group extensions.

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

• Let $\Delta_e^k = \{t \in \mathbb{R}^{k+1} \mid \sum_{i=0}^k t^i = 1\}$, define $\Delta_e \colon \Delta \to \operatorname{Cart}$ and

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

• Let $\Delta_e^k=\{t\in\mathbb{R}^{k+1}\,|\,\sum_{i=0}^kt^i=1\}$, define $\Delta_e\colon\mathbb{\Delta}\to\operatorname{Cart}$ and

$$S_e \colon \mathbf{H}_{\infty} \xrightarrow{\Delta_e^*} \mathfrak{F}un(\mathbb{A}^{op}, \mathbf{S}) \xrightarrow{|-|} \mathbf{S}.$$

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

• Let $\Delta_e^k = \{t \in \mathbb{R}^{k+1} \mid \sum_{i=0}^k t^i = 1\}$, define $\Delta_e \colon \Delta \to \operatorname{Cart}$ and

$$S_e \colon \mathbf{H}_{\infty} \xrightarrow{\Delta_e^*} \mathfrak{F}un(\mathbb{A}^{op}, \mathbf{S}) \xrightarrow{|-|} \mathbf{S}.$$

• Example: $M \in \mathcal{M}fd$ induces $\underline{M} = \mathcal{M}fd(-, M) \in \mathbf{H}_{\infty}$.

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

• Let $\Delta_e^k = \{t \in \mathbb{R}^{k+1} \mid \sum_{i=0}^k t^i = 1\}$, define $\Delta_e \colon \Delta \to \operatorname{Cart}$ and

$$S_e \colon \mathbf{H}_{\infty} \xrightarrow{\Delta_e^*} \mathfrak{F}un(\mathbb{A}^{op}, \mathbf{S}) \xrightarrow{|-|} \mathbf{S}.$$

• Example: $M \in \mathcal{M}\mathrm{fd}$ induces $\underline{M} = \mathcal{M}\mathrm{fd}(-,M) \in \mathbf{H}_{\infty}$. There is a canonical natural equivalence $\mathrm{S}_e\underline{M} \simeq \mathrm{Sing}(M)$. [SB]

Goal: assign a homotopy type to a smooth space $F \in \mathbf{H}_{\infty}$.

• Let $\Delta_e^k=\{t\in\mathbb{R}^{k+1}\,|\,\sum_{i=0}^kt^i=1\}$, define $\Delta_e\colon\mathbb{\Delta}\to\operatorname{Cart}$ and

$$S_e \colon \mathbf{H}_{\infty} \xrightarrow{\Delta_e^*} \mathfrak{F}un(\mathbb{A}^{op}, \mathbf{S}) \xrightarrow{|-|} \mathbf{S}.$$

• Example: $M \in \mathcal{M}\mathrm{fd}$ induces $\underline{M} = \mathcal{M}\mathrm{fd}(-,M) \in \mathbf{H}_{\infty}$. There is a canonical natural equivalence $\mathrm{S}_e \underline{M} \simeq \mathrm{Sing}(M)$. [SB]

Definition

We call the functor $S_e : \mathbf{H}_{\infty} \to \mathbf{S}$ the smooth singular complex.

Theorem [SB]

S_e: H_∞ → S is a left adjoint and preserves finite products. Thus, it preserves principal ∞-bundles and group extensions.

Theorem [SB]

- S_e: H_∞ → S is a left adjoint and preserves finite products. Thus, it preserves principal ∞-bundles and group extensions.
- ullet S_e sends smooth homotopy equivalences to equivalences.

Theorem [SB]

- S_e: H_∞ → S is a left adjoint and preserves finite products. Thus, it preserves principal ∞-bundles and group extensions.
- ullet S_e sends smooth homotopy equivalences to equivalences.
- Let $I = \{ \operatorname{pr}_c \colon c \times \mathbb{R} \to c \, | \, c \in \operatorname{Cart} \}$. We find that S_e factors as $\mathbf{H}_{\infty} \xrightarrow{\operatorname{Loc}} L_I \mathbf{H}_{\infty} \to \mathbf{S}$ and induces equivalence $L_I \mathbf{H}_{\infty} \xrightarrow{\simeq} \mathbf{S}$.

Theorem [SB]

- S_e: H_∞ → S is a left adjoint and preserves finite products. Thus, it preserves principal ∞-bundles and group extensions.
- ullet S_e sends smooth homotopy equivalences to equivalences.
- Let $I = \{ \operatorname{pr}_c \colon c \times \mathbb{R} \to c \mid c \in \operatorname{Cart} \}$. We find that S_e factors as $\mathbf{H}_{\infty} \xrightarrow{\operatorname{Loc}} L_I \mathbf{H}_{\infty} \to \mathbf{S}$ and induces equivalence $L_I \mathbf{H}_{\infty} \xrightarrow{\simeq} \mathbf{S}$.

Definition—using above theorems

Let H be a compact, simple, simply connected Lie group. A smooth string group extension of \underline{H} is a group extension $\hat{A} \to \hat{G} \to \underline{\hat{H}}$ in \mathbf{H}_{∞}

Theorem [SB]

- S_e: H_∞ → S is a left adjoint and preserves finite products. Thus, it preserves principal ∞-bundles and group extensions.
- ullet S_e sends smooth homotopy equivalences to equivalences.
- Let $I = \{ \operatorname{pr}_c \colon c \times \mathbb{R} \to c \mid c \in \operatorname{Cart} \}$. We find that S_e factors as $\mathbf{H}_{\infty} \xrightarrow{\operatorname{Loc}} L_I \mathbf{H}_{\infty} \to \mathbf{S}$ and induces equivalence $L_I \mathbf{H}_{\infty} \xrightarrow{\simeq} \mathbf{S}$.

Definition—using above theorems

Let H be a compact, simple, simply connected Lie group. A smooth string group extension of \underline{H} is a group extension $\widehat{A} \to \widehat{G} \to \underline{\widehat{H}}$ in \mathbf{H}_{∞} whose image under S_e is a string group extension in \mathbf{S} .

Theorem (SB, Müller, Szabo; SB)

Theorem (SB, Müller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let $\mathcal{G}\in \operatorname{\mathcal{G}\!\it{r}\it{b}}(H)$ represent a generator of $\mathrm{H}^3(H;\mathbb{Z})\cong \mathbb{Z}.$ Then,

$$N\mathcal{HLBun}^H \longrightarrow N\mathrm{Sym}(\mathcal{G}) \longrightarrow \underline{\widehat{H}}$$

is a smooth string group extension.

Theorem (SB, Müller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let $\mathcal{G}\in \operatorname{\mathcal{G}\!\it{r}\it{b}}(H)$ represent a generator of $\mathrm{H}^3(H;\mathbb{Z})\cong \mathbb{Z}.$ Then,

$$N\mathcal{HLBun}^H \longrightarrow N\mathrm{Sym}(\mathcal{G}) \longrightarrow \underline{\widehat{H}}$$

is a smooth string group extension.

• $\mathcal{HLBun}^H(c) \simeq \mathsf{B}(\underline{\mathsf{U}(1)}^{\underline{H}})(c)$ for every $c \in \mathsf{Cart}$, since H 2-connected.

Theorem (SB, Müller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let $\mathcal{G}\in \mathfrak{G}rb(H)$ represent a generator of $\mathrm{H}^3(H;\mathbb{Z})\cong \mathbb{Z}$. Then,

$$N\mathcal{HLBun}^H \longrightarrow N\mathrm{Sym}(\mathcal{G}) \longrightarrow \underline{\hat{H}}$$

is a smooth string group extension.

- $\mathcal{HLBun}^H(c) \simeq \mathsf{B}(\underline{\mathsf{U}(1)}^{\underline{H}})(c)$ for every $c \in \mathsf{Cart}$, since H 2-connected.
- $\operatorname{ev}_e \colon \underline{\mathsf{U}(1)}^{\underline{H}} \to \underline{\mathsf{U}(1)}, \ g \mapsto g(e)$ is ho. equivalence, since H 1-connected, S_e maps smooth homotopy equivalences to equivalences.

Theorem (SB, Müller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let $\mathcal{G}\in \mathfrak{G}rb(H)$ represent a generator of $\mathrm{H}^3(H;\mathbb{Z})\cong \mathbb{Z}$. Then,

$$N\mathcal{HLBun}^H \longrightarrow N\mathrm{Sym}(\mathcal{G}) \longrightarrow \underline{\hat{H}}$$

is a smooth string group extension.

- $\mathcal{HLBun}^H(c) \simeq \mathsf{B}(\mathsf{U}(1)^{\underline{H}})(c)$ for every $c \in \mathsf{Cart}$, since H 2-connected.
- $\operatorname{ev}_e \colon \underline{\mathsf{U}(1)}^{\underline{H}} \to \underline{\mathsf{U}(1)}, \ g \mapsto g(e)$ is ho. equivalence, since H 1-connected, S_e maps smooth homotopy equivalences to equivalences.
- Induces $H^k(H; U(1)^H) \cong H^k(H; U(1))$, under which $Sym(\mathcal{G}) \to H$ is represented by the same Čech cocycle as \mathcal{G} .

