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Motivating Example

Nonassociative magnetic translations



Observables in 2-form background

‚ Configuration space: M “ Rn.

‚ Background field B P Ω2pMq,

e.g. B-field in string theory or EM field of monopole distribution.

‚ Phase space T ˚M – Rn ˆ Rn carries a ‘Poisson bracket’:

tqi, qju “ 0 , tqi, pju “ δij , tpi, pju “ ´Bijpqq

 

pi, tpj , pku
(

`
 

pj , tpk, piu
(

`
 

pk, tpi, pju
(

„ pdBqijk .

‚ Translations act non-commutatively and non-associatively.

‚ Motivating question: Can we find a geometric explanation for this?
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Lifting translations to geometry

B can be understood as a connection on a gerbe G on Rn:

‚ ‘Categorification of a line bundle’.

‚ Heuristically, G is a bundle, whose fibre at each point q P Rn is a

category G|q » Vect.

‚ pVect,‘, 0,b,Cq is a categorified ring, which replaces pC,`, 0,ˆ, 1q.

‚ The linear automorphisms of C are multiplication by z P Cˆ;
the linear automorphisms of Vect are multiplication by complex lines

L P Vectˆ. (The inverse of L is the dual line L_.)
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Gerbe holonomy

A gerbe with connection on a manifold M has a parallel transport, and

hence has holonomies: [Gajer; MacKaay, Martins, Picken; Waldorf; SB, Müller, Szabo]

For a loop γ in M based at q, holpG, γq is an automorphism of G|q, i.e. a
complex line.

Example: For G a gerbe with connection on Rn, any pair of translation

vectors v1, v2 P Rn gives rise to a holonomy:

G|q`v1`v2

G|q G|q`v1ptv1

ptv1`v2 ptv2
Lq,v1,v2

Lq,v1,v2 a complex line

Letting q vary, this yields a functor

L : Rn ˆ Rn ÝÑ LBunpRnq .
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2-groups and cocycles

For any manifold M , the groupoid LBunpMq has:

‚ a monoidal structure b,

‚ every object invertible with respect to b (with L´1 “ L_).

Definition

A monoidal groupoid with this property is called a 2-group.

‚ Observation: the construction L : Rn ˆ Rn Ñ LBunpRnq from a

gerbe with connection on Rn is a categorified group cocycle.

‚ This should equivalently be encoded in an extension of pRn,`q by the

2-group pLBunpRnq,bq (we’ll unravel this in a minute).
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2-group-valued cocycles

‚ The 2-cocycle relation has additional data:

given v1, v2, v3 P Rn, we need to specify isomorphisms

αq,v1,v2,v3 : Lq,v1`v2,v3 b Lq,v1,v2
–
ÝÑ Lq,v1,v2`v3 b Lq,v2,v3 ,

which have to be coherent.

‚ For the gerbe connection determined by B P Ω2pRnq, we have

αq,v1,v2,v3 “ exp

ˆ
ż

∆3pq,v1,v2,v3q
dB

˙

,

where dB is the curvature of the gerbe connection.

‚ This is exactly the (exponentiated version of) the Jacobiator!

ñ Gerbe parallel transport explains nonassociative magnetic

translations [SB, Müller, Szabo].
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Symmetries of gerbes

Smooth 2-group extensions



Bundle gerbes and their morphisms

Bundle gerbes on general manifolds M :

‚ tUauaPA an open covering of M .

‚ Hermitean line bundle L on M is given by:

gab : Uab Ñ Up1q , gab gbc “ gac .

‚ Idea: Local functions give rise to bundles,

local bundles give rise to gerbes.

‚ A (hermitean) bundle gerbe G on M is given by:

Lab P HLBunpUabq , µabc : Lab b Lbc
–
ÝÑ Lac

plus 2-cocycle condition for µabc .

Gerbes describe B-fields in string theory, twists in K-theory, smooth 2D

(invertible) field theories [Kapustin; BCMMS; BTW; Picken; SB, Waldorf], . . .
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Bundle gerbes and their morphisms

‚ A morphism E : G Ñ G 1 is a twisted hermitean vector bundle:

(Requires common refinements of covers in general.)

Ea P HVBunpUaq , αab : Lab b Eb
–
ÝÑ Ea b L

1
ab

where α is compatible with µ and µ1.

Bundle gerbes have an additional layer of structure:

‚ A 2-morphism G G 1
E

F
ψ is a family of bundle morphisms

ψa : Ea Ñ Fa , s.t. pψa b 1L1abq ˝ αab “ βab ˝ p1Lab
b ψbq .

One can also understand bundle gerbes as categorified principal

bundles with structure group BUp1q

[Baez, Huerta, Schreiber; MacKaay, Picken; Martins; Bullivant; Waldorf; . . . ]
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The 2-category of bundle gerbes

Bundle gerbes define a stack of symmetric monoidal 2-categories

pGrb,b, Iq on Mfd [Murray, Stevenson; Waldorf; Nikolaus, Schweigert].

Theorem [Murray, Stevenson; Waldorf; SB]

‚ There is an isomorphism π0pGrbpMq,bq – H3pM ;Zq.

‚ There is an isomorphism π0pGrb
∇pMq,bq – pH3pM ;Zq.

‚ Grb∇pMqpG,G 1q is enriched, tensored, and cotensored over

pHVBun∇pMq,bq.

‚ IsomGrbpMqpG,G 1q a torsor over pHLBunpMq,bq.

‚ In particular, pIsomGrbpMqpG,Gq,´˝´q is canonically equivalent

to pHLBunpMq,bq as 2-groups.
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Gerbes and group actions—algebra

‚ Consider a connected Lie group H acting on M via a smooth group

homomorphism Φ: H Ñ DiffpMq, and let G P GrbpMq.

Define a groupoid SympGq with:
‚ objects: ph,Aq, where h P H and A : G –

ÝÑ Φ˚hG,
(an A exists for each h because H is connected)

‚ morphisms: ph, ψq : ph,Aq Ñ ph,A1q being 2-isomorphisms

G Φ˚hG
A1

A

ψ

SympGq has a product:

ph1,A1qbph0,A0q :“
`

h1h0, G A0
ÝÑ Φ˚h0G

Φ˚h0
A1

ÝÑ Φ˚h0Φ˚h1G “ Φ˚h1h0G
˘

Extending this product to morphisms, SympGq becomes a 2-group!
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Gerbes and group actions—algebra

‚ SympGq comes with a surjective monoidal projection

π : SympGq Ñ H , ph,Aq ÞÑ h , ph, ψq ÞÑ 1h.

‚ The (homotopy) fibre of π has:

objects: peH ,Aq, where A P IsomGrbpMqpG,Gq » HLBunpMq,

morphisms: peH , ψq, where ψ : AÑ A1 with A,A1 : G Ñ G.
Equivalently, ψ is an isomorphism of hermitean line bundles.

In summary, there is an equivalence of 2-groups

π´1teHu “ IsomGrbpMqpG,Gq » HLBunpMq ,

i.e. we have a 2-group extension

HLBunpMq ÝÑ SympGq ÝÑ H .
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Gerbes and group actions—geometry

‚ So far, our 2-group extension does not see that H is smooth.

‚ Let Cart be the category with objects tc PMfd | Dn P N0 : c – Rnu
and whose morphisms are all smooth maps f : cÑ c1.

‚ H defines a presheaf H : Cartop Ñ Set, c ÞÑMfdpc,Hq.

Ñ This fully encodes the smooth structure of H.

‚ Smooth version of SympGq: to c P Cart, assign groupoid SympGq|c
with objects: ph : cÑ H,Aq, where A is a smooth family of

morphisms A|x : G Ñ Φ˚hpxqG, for each x P c. (Morphisms defined

analogously.)

‚ There is a smooth version HLBunM of HLBunpMq: to c P Cart,

assign the groupoid of hermitean line bundles on cˆM . This describes

smooth c-parameterised families of hermitean line bundles on M .
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Gerbes and group actions—smooth perspective

‚ A smooth groupoid is a presheaf of groupoids H : Cartop Ñ Grpd.

‚ A smooth 2-group is a presheaf of 2-groups on Cart.

‚ Example: SympGq and HLBunM are smooth 2-groups.

Theorem (SB, Müller, Szabo)

Let H be a connected Lie group acting on M , let G P GrbpMq.

There is an extension of smooth 2-groups

HLBunM ÝÑ SympGq ÝÑ H .

Groupoid of H-equivariant structures on G (= smooth ho. fixed pt)

» Groupoid of (smooth!) splittings of this extension.

Applications: Nonassociative magnetic translations, QFT anomalies, . . .
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Smooth extensions of 8-groups

Smooth String group models



String group models

Let H be a compact, simple, simply-connected Lie group.

Then, πipHq – HipH;Zq “ 0, for i “ 1, 2, and π3pHq – H3pH;Zq “ Z.
A string group extension of H is an extension

A ÝÑ StringpHq
π
ÝÑ H

such that πippq is an isomorphism @ i ‰ 3 and π3pStringpHqq “ 0, i.e.

‚ A is homotopy equivalent to BUp1q » KpZ; 2q, and

‚ the bundle StringpHq Ñ H represents a generator in H3pH;Zq – Z.

Variants: ambient (higher) category: top. groups, crossed modules,

smooth 2-groups, . . . , smooth 8-groups.
[Stolz; Baez, Crans, Schreiber, Stevenson, Nikolaus; Henriques; Schommer-Pries, . . . ]

Relevance: Dirac operators on LM , TMF, M5-brane theory, . . .

[Witten, Killingback; Stolz, Teichner; Waldorf; ABGHR; Sämann, Jurco; . . . ]
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General framework

‚ Generalise from presheaves of groupoids to presheaves of

8-groupoids: H8 :“ FunpNCartop,Sq; call these smooth spaces.

‚ H8 is an 8-category, and even an 8-topos [Joyal; Lurie; Rezk; . . . ].

‚ Contains the 2-category of smooth groupoids.

A group object in an 8-category C with final object ˚ is a simplicial

object pG : �op Ñ C s.t. pG0 “ ˚ and for every S Y S1 “ rns as finite sets

with S X S1 “ t˚u, the morphism pGn Ñ pGpSq ˆ pGpS1q is an equivalence.

In particular, pGn » pGn1 , hence set G :“ pG1.

Example: For X P S˚ a pointed space, ΩX is a group object in S.
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Example: For X P S˚ a pointed space, ΩX is a group object in S.

14 / 18



General framework

‚ Generalise from presheaves of groupoids to presheaves of

8-groupoids: H8 :“ FunpNCartop,Sq; call these smooth spaces.

‚ H8 is an 8-category, and even an 8-topos [Joyal; Lurie; Rezk; . . . ].

‚ Contains the 2-category of smooth groupoids.

A group object in an 8-category C with final object ˚ is a simplicial

object pG : �op Ñ C s.t. pG0 “ ˚

and for every S Y S1 “ rns as finite sets

with S X S1 “ t˚u, the morphism pGn Ñ pGpSq ˆ pGpS1q is an equivalence.

In particular, pGn » pGn1 , hence set G :“ pG1.

Example: For X P S˚ a pointed space, ΩX is a group object in S.

14 / 18



General framework

‚ Generalise from presheaves of groupoids to presheaves of

8-groupoids: H8 :“ FunpNCartop,Sq; call these smooth spaces.

‚ H8 is an 8-category, and even an 8-topos [Joyal; Lurie; Rezk; . . . ].

‚ Contains the 2-category of smooth groupoids.

A group object in an 8-category C with final object ˚ is a simplicial

object pG : �op Ñ C s.t. pG0 “ ˚ and for every S Y S1 “ rns as finite sets

with S X S1 “ t˚u, the morphism pGn Ñ pGpSq ˆ pGpS1q is an equivalence.

In particular, pGn » pGn1 , hence set G :“ pG1.

Example: For X P S˚ a pointed space, ΩX is a group object in S.

14 / 18



General framework

‚ Generalise from presheaves of groupoids to presheaves of

8-groupoids: H8 :“ FunpNCartop,Sq; call these smooth spaces.

‚ H8 is an 8-category, and even an 8-topos [Joyal; Lurie; Rezk; . . . ].

‚ Contains the 2-category of smooth groupoids.

A group object in an 8-category C with final object ˚ is a simplicial

object pG : �op Ñ C s.t. pG0 “ ˚ and for every S Y S1 “ rns as finite sets

with S X S1 “ t˚u, the morphism pGn Ñ pGpSq ˆ pGpS1q is an equivalence.

In particular, pGn » pGn1 , hence set G :“ pG1.

Example: For X P S˚ a pointed space, ΩX is a group object in S.

14 / 18



General framework

‚ Generalise from presheaves of groupoids to presheaves of

8-groupoids: H8 :“ FunpNCartop,Sq; call these smooth spaces.

‚ H8 is an 8-category, and even an 8-topos [Joyal; Lurie; Rezk; . . . ].

‚ Contains the 2-category of smooth groupoids.

A group object in an 8-category C with final object ˚ is a simplicial

object pG : �op Ñ C s.t. pG0 “ ˚ and for every S Y S1 “ rns as finite sets

with S X S1 “ t˚u, the morphism pGn Ñ pGpSq ˆ pGpS1q is an equivalence.

In particular, pGn » pGn1 , hence set G :“ pG1.

Example: For X P S˚ a pointed space, ΩX is a group object in S.

14 / 18



Groups extensions and functors

‚ One can define group actions, principal 8-bundles, and group

extensions in any 8-topos H [Nikolaus, Schreiber, Stevenson; SB].

‚ Essentially, a principal pG-bundle is an effective epimorphism

π : P Ñ X and a principal pG-action on P that preserves π (up to

coherent homotopy). E.g. for X P S˚, P0X Ñ X is ΩX-bundle.

‚ One can then show: a group extension is a sequence pAÑ pGÑ pH of

groups in H such that

Theorem [SB]

Let L: H Ñ H1 be a functor of 8-topoi preserving realisations of

simplicial objects and finite products. Then, L preserves groups,

principal 8-bundles, and group extensions.
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Homotopy theory of smooth spaces

Goal: assign a homotopy type to a smooth space F P H8.

‚ Let ∆k
e “ tt P Rk`1 |

řk
i“0 t

i “ 1u, define ∆e : � Ñ Cart and

Se : H8 Funp�op,Sq S .
∆˚e |´|

‚ Example: M PMfd induces M “Mfdp´,Mq P H8.

There is a canonical natural equivalence SeM » SingpMq. [SB]

Definition

We call the functor Se : H8 Ñ S the smooth singular complex.
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The smooth singular complex

Theorem [SB]

‚ Se : H8 Ñ S is a left adjoint and preserves finite products. Thus,

it preserves principal 8-bundles and group extensions.

‚ Se sends smooth homotopy equivalences to equivalences.

‚ Let I “ tprc : c ˆ R Ñ c | c P Cartu. We find that Se factors as

H8
Loc
ÝÑ LIH8 Ñ S and induces equivalence LIH8

»
ÝÑ S.

Definition—using above theorems

LetH be a compact, simple, simply connected Lie group. A smooth

string group extension of H is a group extension pAÑ pGÑ pH in

H8

whose image under Se is a string group extension in S.
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String group models

Theorem (SB, Müller, Szabo; SB)

Let H be as above, acting on itself via left multiplication. Let

G P GrbpHq represent a generator of H3pH;Zq – Z. Then,

NHLBunH ÝÑ NSympGq ÝÑ pH

is a smooth string group extension.

‚ HLBunHpcq » BpUp1qHqpcq for every c P Cart, since H 2-connected.

‚ eve : Up1qH Ñ Up1q, g ÞÑ gpeq is ho. equivalence, since H 1-connected,

Se maps smooth homotopy equivalences to equivalences.

‚ Induces HkpH;Up1qHq – HkpH;Up1qq, under which SympGq Ñ H is

represented by the same Čech cocycle as G. Ÿ
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Thank you for your attention!


