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Topology N RT N Verma modules ()

Verma modules are fundamental objects in rep. theory of Lie algebras (e.g.
every f.d. irreducible of a Lie algebra is a quotient of a Verma).

v

> Beyond its interest in RT, there were recently found to have
applications to topology :

e braid grp reps: Burau, Lawrence-Krammer—Bigelow (Jackson—Kerler
'11),

e HOMFLYPT invariants (Naisse-V. '17),

e annular Jones invariants (lohara—Lehrer—Zhang 18'),
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This is the first mathematical slide

Suppose you have a link in a solid torus

e

This gives rise to three different kinds of link diagrams :

—
C|J
e
annular pole cylinder



Extending invariants like Jones's sl-link polynomial from S2 to the solid
torus results in the Jones poly. of type B (Geck—Lambropoulou '97).

This (and similar invs) generalizes to higher genus handlebodies : just
think of link diagrams on a disk with g-punctures, or wiggling around g
poles (the cylinder is a particular case that only seems to work for g = 1).

GO
| 7O

7 This is where things get different! If you want to do braids/tangles you
need to use poles (how do you compose tangles in disk with g > 1
punctures ?) If you plan to think of more general 3-manifolds it is perhaps
useful to use tangles...
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Jones (sly) invariant

disc\ {9 points} pole
g=>1 g=1 g>1
WRT ? Iohara—Lehrer—Zhang'/ ?
'18

Categorification Asaeda—Przytycki—Sikora'/ Lacabanne—Naisse—V'./ ?
'04 '20

7 7 interesting categorification for the cylinder by Ehrig and Tubbenhauer '17.
> For WRT(g = 1,9 = gli.,p C g) : Lacabanne-V. '20.
Goal of this talk

7 explain a categorification of the Jones polynomial for links in the solid
torus in the pole picture via a categorification of the blob algebra.




ILZ’s blob algebra and the pole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 0+1
TQFT. Consider (quantum) sly and its 2-dim irrep V' = C?(q). Since sly is
a Hopf algebra its category of f.d. reps is monoidal. It is even braided...
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ILZ’s blob algebra and the pole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 1+1
TQFT. Consider (quantum) sly and its 2-dim irrep V' = C?(q). Since sly is
a Hopf algebra its category of f.d. reps is monoidal. It is even braided...

C(q) N\ C(q)

/)
\' \%
! /’\: Vevevev X i (q)

C(a) W C(a)

> Operator-invariant of tangles! J




The Temperlery—Lieb algebra
Pick your favorite natural number d. Then

End,, (V) = TLg

is generated by (d strands)

| | and |X| (d — 1 of them)
modulo planar isotopies and the local relation O = —(q + ¢~ !).

v

If one wants to extend WRT to links in a solid torus, one has do deal with
the pole. Note that we had pushed the diagram to the right...

8]
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v

If one wants to extend WRT to links in a solid torus, one has do deal with
the pole. Note that we had pushed the diagram to the right...

R, R




The solution is ... Verma modules !

Verma modules are certain infinite-dimensional representations that have

several remarkable properties. For example, every f.d. irrep is a quotient of

a Verma module.

v

[k+2] [k+1] [2] (1] F

. MEk+1 mg mo my K
NE+1] [AE] — A1) \:> E
)\q*k o Aflqk qn o qfn K— Kfl

)\, k = — n=-——-m-, E,F -
A q—q! i q—q! [, F] q—q!

This is the universal Verma module for sly, irred. over the field k(A, q).
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M(X)

The blob algebra (Martin—Saleur ’94)

lohara—Lehrer—Zhang '18 : End, (M (\) ® V4) = By(\, q)

‘ p Cr (g, )
| MM VeV

M()N)

M()N)

> Note that the Verma appears at the left (we have pushed our link

diagram to the right).

A The double braiding ¢ is not a composite of two crossings.
~
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The blob algebra
The blob algebra

is defined by generators (one blue and d red strands)

( || and | |X|

~

together with the identity, modulo planar isotopies and the local relations
O=—(¢g+q¢7") and

=o' *>|




It sounds like a plan!

Recall that we want to see ...
... a categorification of the Jones polynomial for links in the solid torus in
the pole picture via a categorification of the blob algebra.

e The main tool is a categorification of a ® of a Verma module and several
irreps of dim = 2, which is realized as derived category of a certain DGA.

e The commuting 2-actions of sly and of the blob algebra are then realized
via DG-functors.

v

_ C(M(N))
d) F(Cr(a,N)

—_— C(MAN)®VRV)

—t c(M(X)) c(M(N))
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\begin{Advertising Higher Representation Theory}



Actions on categories ¢ HRT'! ()

7 Actions of groups, algebras ..., on categories rather than vector spaces.J

e Categorical actions of Lie algebras : first developed by Chuang and
Rouquier (2004) to solve a conjecture on modular rep. theory of the
symmetric group called the Broué conjecture (parallel ideas by Frenkel,
Khovanov and Stroppel based on earlier work of Khovanov and cols).

e This was boosted by the categorification of quantum groups by Lauda,
Khovanov—Lauda and Rouquier. Converged to what is called nowadays
Higher Representation Theory.

e Usual basic structures of rep. theory (v. spaces and linear maps) get
replaced by category theory analogs (categories and functors) = richer
(higher) structure invisible to traditional rep.theory.
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Higher Representation Theory

Broué Conjecture

Khovanov Homology
Kahzdan-Luzstig conjectures
5-Branes

HF theory

P. VAZ

Topology
Higher
Physics <= Rep.
Theory
Geometry
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cyclotomic KLRW algebras

Khovanov-Lauda—Rouquier—Webster '08-"10

Categorifications of tensor products of f.d. irreps are given through
cyclotomic KLRW algebras.

These are algebraic categorifications : We work with (certain) categories
of modules over certain k-algebras where g acts via (certain) endofunctors.

? The approach consists of :
® replacing weight spaces by categories,
and

® defining functors E and F that

® move between the weight spaces and
® satisfy the sly-relations.
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Khovanov—Lauda, Rouquier € Webster’s catg’s

Fix a field k.
? The following exists equally for g of symmetrizable type and with the
red strands labelled by dominant integral g-weights.

Definition
The KLRW algebra T, is the graded, associative, unital k-algebra
generated by isotopy classes of braid-like diagrams

e Strands can either be black or red

® there are d + 1 red strands, which cannot intersect each other.
® black strands can cross red strands and each other and they can carry
dots.

® Multiplication is concatenation.

%

For example,




Generators are required to satisfy local relations. For example :

oSS I = IR &
=R t+11¢

| || =0 < Cyclotomic

v

? The cyclotomic condition makes T,;,1 f.d. Without it we have an affine
algebra : call it T;fl.
Write Ty (v) for the subalgebra of all diagrams having v black strands.

We have @, Tu+1(v) = Tut1- J




Categorical sla-action

Define
F (v): Tyyq(v)-modg — Tyiq (v + 1)-mody

as the functor of induction for the map that adds a black strand at the
right of a diagram from Tjz,1(v), and let EZ*!(v) be its right adjoint ().

These functors have very nice properties...
Theorem (Webster '10) :

> The functors E4*! and F4¢+! are biadjoint and

> the composites ETH F4+1(v) and FHE ! (v) satisfy a direct sum
decomposition lifting the commutator relation.

ETFH (1) ~ FHE (1) @pg11-2, 1d(v) ifd+1>v,

FHIE () = ETHF (1) @, —g-1) 1d(v) ifd+1<u.

> Moreover, Ko(Ty11) = y®(d+1) (as sly)-modules)
2-VERMAS IN TOPOLOGY 197/ 33J




Categorification of tensor products with a Verma M3

@ The idea is to see Ty 1 as a dg-algebra with zero differential and
“integrate” the cyclotomic condition

into a dg-algebra (71 q),0), together with a quasi-isomorphism

I
o

(Tw,a)5 9) = (T41,0).

e To construct such an algebra we note that Tjj_fl acts on Ty41 (the first
is oo-dim while the second is f.d.).

e Writing a free resolution of T;;11 as a module over Tjjfl one gets a DGA
(T(1,4), @) whose homology is Ty (this is nontrivial).

v
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Will it work ¢

o o q 5 . —k_ -1,k
Basically, we intend to categorify the rational fraction %i.

e We know that a categorification of multiplication by [n] is Q[X]/X™"
(secretly this is H(G1(n)) via grading shifts of some id. functor @) Id

e But Q[X]/X™ is a module over Q[X] (secretly this is H(G1(o0)) for
which
QIX]/X™ — QIX] +*— QIX]

gives as a free resolution (grading shifts involved!).

e We can write this as a DGA (Q[X, w]/w?,d) with 0X =0, w = X",
which has homology Q[X]/X™.

e Tensoring M with Q[X,w]/w? gives ...
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e But Q[X]/X™ is a module over Q[X] (secretly this is H(G1(o0)) for
which
QIX]/X™ — QIX] +*— QIX]

gives as a free resolution (grading shifts involved!).

e We can write this as a DGA (Q[X, w]/w?,d) with 0X =0, w = X",
which has homology Q[X]/X™.

e Tensoring M with Q[X,w]/w? gives ... %[M] (© hooray!) in

(an appropr. defined) K.
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One can give a presentation of (T q),0)

dg-enhancement of cyclotomic KLRW algebras
© Replace the first red strand in the diagrams from 7;,; by a blue

strand (secretelly labeled X).

&m

@ Black strands can be pinned to the blue strand, which we depict as
< New generator !
(homological degree 1)

o 8<#<) = || +2 9(all other generators) =0

+ gr.Leibniz rule w.r.t. the hom. grading.
€2 When no diff. : new \-grading.
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Categorification of tensor products with a Verma

@ The generators are required to satisfy the local relations of 7y,; and

o R KK

The (super)algebra 7y q) is free, acts faithfully on a supercommutative ring. For
g = sl,. it is isomorphic to a (higher level) Hecke algebra of type A (Rizzo : this
generalizes Maksimau—Stroppel '18 and Maksimau-V. '19).

Theorem (Lacabanne—Naisse—V. ’20)
The dg-algebra (7(; 4y, 0) is formal with

H (T4, 0) = Typr.




@ Now just forget there is a differential on T(1,9)-

To define an sly-categorical action we use the map that adds a vertical
black strand at the right of a diagram from 7 g :

-1 u---nf---1uwij---1 my---1um---nf---1uij---1
D |H| D
Toh-—— 0T - ThoT T 0T - Thr

Writing 7(1,q) = @uzo T(1,a)(v), this gives rise to a functor of induction
FOD () Tiy,g)(v)-modg — Ti1,a)(v + 1)-modg

between (suitable !) categories of modules.
We also set E(19 () as its right adjoint (/shift).
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Theorem (Lacabanne—Naisse=V. '20)
These functors fit in a SES

)\iqu o )‘1_qu
q—q!

Here, for N € Z, [\i, N] =

In the sequel it is better to work in the derived category.
Let Dyy(7(1,4),0) be the derived dg-category of dg-modules over (7(; 4),0).
? The previous theorem can be restated as a quasi-isomorphism

Cone(E(l’d)F(l’d)(V) — F(l’d)E(l’d)(V)) = Sy ld(v),

of dg-functors.




Bringing the differential 0 into the picture we can define analogous of the
functors F(14) and E(19) on Day(T1,4),0)-

The previous q.i. descends to a q.i. of mapping cones (o = d + 1 — 2v)

Cone(E(1 d)F(dH)( ) — F ) =

@ 42p=ayq(y ) @Id

[a]

Cone (@ 1+2p+0‘1d

p=>0 p>0

Theorem (Lacabanne—Naisse-V. ’20)

There are isomophisms of sla-modules
K5(THD,0) = M()\) @ V&,
K5 (TD,9) 2 v @ v&d = yOd+D),




A categorical blob action m

Following Webster we define the cup bimodule B; for 1 < i < d — 2 as the
(T(d=2) 71d)_bimodule generated by the diagram

S B
=1

with additional black strands crossing the diagram.

The generator is placed in deg;, , (W) = (0,0,0).

The diagrams are taken up to regular isotopy, and subjected to the same
local relations as 7 ¢ together with the extra local relations

u/ = 0, U = 0, M =—%, etc...




The cap bimodule B; is defined similarly, by taking the mirror along the
horizontal axis of B;. However, degy, , \ (m) = (-1,-1,0).

Set T = @y>0 T(1,4)- One define the coevaluation and evaluation
dg-functors as

B := B; @ — : Dyg(TH472,0) — Dy (T, 0),

B; := B; ®%F — : Dy (TH,0) — Dygy(T1472) ).




The double braiding bimodule X is the (7(1@), 7(Ld))_bimodule generated

by the diagram
"< " ' " deg(haA)( ||<> =(0,0,-1)

——

d—1

with local relations

Bk BR

We define the double braiding functor as

2= X ®f — : Dyg(T",0) = Dyg(T,0).




A In order to prove the (categorical) relations of B;(A, ¢) one needs
resolutions of the bimodules involved, and this takes us to the world of
Aso-bimodules.

Proposition (Lacabanne-Naisse-V. ’20)

@ The functor Z : Dyy(T*",0) — Day(T",0) is an autoequivalence,
with inverse given by =1 := RHOM(X, —).

@ There are natural isomorphisms of functors Eo == =o E,
EoB; 2 B;oE and EoB; = B; o E (similarly for F in the place of E).

@ There are quasi-isomorphisms of A,.-bimodules
T34 = Bivy ®F B,
o7 @ ¢ (TH)[-1] = B; % Bi.

The q.i. above correspond to m = H = m and @ =—q—q*!
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Theorem (Lacabanne—Naisse—V. ’20)

There is a quasi-isomorphism

Cone ()\qQE[l] —q* Id[l]) [1] = Cone <E 0E — )\*15>
of dg-functors, and a quasi-isomorphism

A(TEN @ A (THD)[-1] = B ©F X ©F By,

of A,.-bimodules.

These correspond to the last two defining relations of By(\, ¢q) :

|
A h _q2|

and .
~g+ 2| =g




Final remarks

o A link diagram with a pole gives a functor from Dy, (710, 0) to itself,
categorifying the Jones invariant.

At the time beeing we cannot tell this is equivalent to APS...

@ give a htpy construction (calculational-friendly) of the 2-blob
(imitating Mackaay—Webster seems too technical at the moment)...

© other g's, other V's
@ several poles

e A different application (Naisse-V. '17) of categorification of parabolic
Verma modules for gl,,, allows a HRT construction of Khovanov—Rozansky
HOMFLYPT homology (the connection between HOMFLYPT polynomial
and Verma modules was not known before).
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Thanks for your attention ! (I

Geometric Topology
Constructlons ? HOMFLYPT HKhR w/ Naisse

Annular HKh w/ Lacabanne,Naisse

Higher structure ?

2-blob algebra
Z‘h-W- 2'Vermas ? w/ Lacabanne, Naisse

(2-07)
2-Ariki-Koike ? Hecke algebras /
2-row quotients (generalized blob) ? S’n‘reps w/ Maksimau, Rizzo

2-representation theory ?

a la Mazorchuck—Miemietz—Mackaay et al.



