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An old theorem of Fathi

Homeo(D",w) : group of volume-preserving homeomorphisms of the
n-disc, identity near the boundary.

Theorem (Fathi, late 70s)

Homeo.(D",w) is simple when n > 3.

Simple: no non-trivial proper normal subgroups.
Compactness assumption: Homeo.(D", w) <t Homeo(D", w).

Fathi: Is the group Homeo.(D?, w) simple?

Conjecture (“Simplicity Conjecture”)

Homeo(D?,w) is not simple.
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Fathi’s question for other surfaces.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 5]



Hamiltonian diffeomorphisms

(X, w) compact surface with an area-form w. (allow 0% # ()
Ham(X, w) : Hamiltonian diffeos of (X, w), identity near 9% (if 0% # 0).
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Hamiltonian diffeomorphisms

(X, w) compact surface with an area-form w. (allow 0% # ()
Ham(X, w) : Hamiltonian diffeos of (X, w), identity near 9% (if 0% # 0).
@ Time-dependent function H : [0, 1] x ¥ — R (Hamiltonian).
e H=0nearox%.
@ Vector field Xy: w(Xy, -) = dH.
@ Xy generates isotopy. Hamiltonian diffeo:= time-1 ¢y.
@ Ham(X,w) := {pn} C Diffp(X, w).
Y = D: Ham = area pres diffeos, identity near 0%.

Y = §2: Ham = area + orient pres diffeos.
Other X: Ham < Diffy(X, w).
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Fathi’'s work from the 70s

(M, Vol) compact mfld with vol form.
Homeog (M, Vol) : component of id in the group of vol-pres homeos of M.
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Fathi’'s work from the 70s

(M, Vol) compact mfld with vol form.
Homeog (M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeoo(M, Vol) simple?
Fathi: 3 homomorphism (mass-flow)

F : Homeog(M, Vol) — H{(M)/T.

ker(F) < Homeog(M, Vo). Non-trivial if Hy(M) # 0.

Theorem (Fathi)
ker(F) is simple if dim(M) > 3.

Cor: simplicity for S”, D" when n > 3.
Question: dim(M) = 2?
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The case of surfaces

Fact: In the case of a surface ¥, ker(F) = Ham(X).
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The case of surfaces

Fact: In the case of a surface ¥, ker(F) = Ham(X).

Theorem (Cristofaro-Gardiner, Humiliere, Mak, S, Smith 2021)

Ham(X) is not simple.

Remarks:
@ ¥ = D, S? proved in earlier papers (2020, 2021) with
Cristofaro-Gardiner, Humiliére. Used periodic Floer homology.
@ Use Lagrangian Floer homology. Inspired by

e Ozsvath-Szabo (2003),
e Mak-Smith (2019),
e Polterovich-Shelukhin (2021).
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and the Calabi invariant
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Non-simplicity of Ham(X), 9% # ()
and the Calabi invariant

Assume: ¥ = D.
@ Ham(X) = Homeo.(D, w).
@ Ham(X) = Diff (D, w).
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The Calabi invariant

The Calabi invariant is a homomorphism

Cal : Diff,(D,w) — R.
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The Calabi invariant is a homomorphism
Cal : Diff;(D,w) — R.

@ Given ¢ € Diff,(D,w), write ¢ = ¢y, H= 0 near dD.

Define
Cal / / Ht w at.

e Well-defined: Cal(y) doesn’t depend on choice of H.
e Cal is a homomorphism.
o Cal(pn) < [[Hl|oo-

@ Facts:
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Does Calabi extend?

Diff¢(D, w) C Homeo(D,w) dense in C° topology.
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Does Calabi extend?

Diff¢(D, w) C Homeo(D,w) dense in C° topology.
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Does Calabi extend?

Diff¢(D, w) C Homeo(D,w) dense in C° topology.

Cal : Diff;(D,w) — R defined on a dense subset of Homeo.(D, w).
Can we extend it? (Fathi 70s, Ghys ICM 2006)

If yes, then Homeo. (D, w) not simple.
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Does Calabi extend?

Problem: Cal is not C° continuous.
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Does Calabi extend?

Problem: Cal is not C° continuous.
Eg: Take H,, supported on disc of radius 1/n, where [ H, w = 1. Then,

Cal(,) = 1, but o, 2> 1d.

n:
wa 1

2/n
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Does Calabi extend?

Problem: Cal is not C° continuous.
Eg: Take H,, supported on disc of radius 1/n, where [ H, w = 1. Then,

Cal(,) = 1, but o, 2> 1d.

n:
wa 1

<«

2/n

Not easy to extend Cal to Homeo.(D, w).
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It might extend to Hameo

Oh-Muiller (mid 2000s): introduced a normal subgroup
Hameo(D) < Homeo.(D,w).
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Hameo(D) < Homeo. (D, w).
Say ¢ € Hameo(D) if there exist H; € C>* and H € C° st

0 .
on S and H =y,

Write ¢ = pp.
Fathi and Oh: define Cal : Hameo(D) — R by

Cal / / Htw dt.
Must show:

1. Well-definedness: ¢ = ¢y = g, then [ [ Hiwdt = [ [ Giw dt. (Difficult)
2. Cal is a homomorphism. (Oh, 2000s)
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If well-defined

If Cal : Hameo(D) — R well-defined = Homeo(D,w) not simple:
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If well-defined

If Cal : Hameo(D) — R well-defined = Homeo(D,w) not simple:

@ If Hameo is proper, we're done.
@ If Hameo = Homeo.(D, w), then ker(Cal) <« Homeo.(D, w).
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If well-defined

If Cal : Hameo(D) — R well-defined = Homeo(D,w) not simple:

@ |f Hameo is proper, we're done.
@ If Hameo = Homeo.(D, w), then ker(Cal) <« Homeo.(D, w).

Theorem (Cristofaro-Gardiner, Humiliére, Mak, S , Smith)

Cal : Hameo(D) — R is well-defined.
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If well-defined

If Cal : Hameo(D) — R well-defined = Homeo(D,w) not simple:

@ |f Hameo is proper, we're done.
@ If Hameo = Homeo.(D, w), then ker(Cal) <« Homeo.(D, w).

Theorem (Cristofaro-Gardiner, Humiliére, Mak, S , Smith)

Cal : Hameo(D) — R is well-defined.

Remarks:
@ We show Hameo C Homeos(D,w).
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Outline of the argument

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 17



Key ingredients

1. Use Lagrangian Floer Homology, to define

Cq : Diffo(D,w) — R,
where d € N. (Link spectral invariants)
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Key ingredients

1. Use Lagrangian Floer Homology, to define

Cq : Diffo(D,w) — R,
where d € N. (Link spectral invariants)

2. Connect to Calabi:
lim cq(p) = Cal(p).

d—o0
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Key ingredients

1. Use Lagrangian Floer Homology, to define

Cq : Diffo(D,w) — R,

where d € N. (Link spectral invariants)

2. Connect to Calabi:
lim cq(p) = Cal(p).

d—so0
3. Connect to Homeo.(D,w): ¢4 is C° continuous and extends to

C4 : Homeo(D, w) — R.
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.

Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)

Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.
on S5 1d and ||H— Hjl. — 0.
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.

Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)

Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.
on S5 1d and ||H— Hjl. — 0.

4
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)
Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.

on S5 1d and ||H— Hjl. — 0.
’/H‘S‘/H—/H, +’/Hi—cd(90H,-)

+ |calipr)]
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)
Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.

on S5 1d and ||H— Hjl. — 0.
[o<|[H-[n

+ ’/H/_Cd(SOH,-)
o fn

+calpr)]

+|ca(en) — calen)| + |calen)|:

+ ‘/H,- — Ca(pH,)
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)
Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.

on S5 1d and ||H— Hjl. — 0.
’/H‘S‘/H—/H,‘—|—’/H/—Cd(90/-/,)
/H—/H,- /H,'—Cd(gol./,)

Fact (Hofer continuity): |ca(er,) — Ca(eon)| < 1Hi — Hills)
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Argument for extending Calabi to Hameo

Must show: ¢ = oy = pg, then [ [ Hiwdt = [ [ Giw dt.
Sufficient: py = Id, then [ [Hw dt = 0. (H € C°)
Def of Hameo: ¢y = Id = 3H, € C* and H € C° s.t.

on S5 1d and ||H— Hjl. — 0.
’/H‘S‘/H—/H, +’/H/—Cd(90H,-)
/H—/H,- /H,'—Cd(gol./,)
Fact (Hofer continuity): |ca(er,) — Ca(eon)| < |Hi — Hjlls-

Jol=lf

+ |calipr)]

< + + [ca(pn) — calon)| + |calen)] -

+ | Hi = Hjlloo + |Calen)]

+ '/H,- — Ca(pH;)
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

+[H; = Hilloo + [ calen)|
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

Let j — oo: ca(pn,) — Cq(ld) = 0.

+ ||Hi = Hjlloo + | calipn)] -
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

Let j — oco: ca(pH,) — Cq(ld) = 0. We get:

LRIZNE

+ ||Hi = Hjlloo + | calion)] -

+[[Hi — Hl|.

+ ‘/ H; — ca(¢h,)
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

Let j — oco: ca(pH,) — Cq(ld) = 0. We get:

LRIENE

Let d — oo: Cd(QOH/) — fH,

+[H; = Hilloo + [ calen)|

+[[Hi — Hl|.

+ ‘/ H; —¢ca(eH,)
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

Let j — oco: ca(pH,) — Cq(ld) = 0. We get:

‘/H’g’/H—/Hi +‘/H,-—cd(wH,)

Let d — oo: Co(pr,) — [ Hi. We get:

Jol= o ]

+[H; = Hilloo + [ calen)|

+[[Hi — Hl|.

+1Hi = Hle.
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Recall: ¢ 2> 1d and ||H — Hil|.c — O.

//-/ g'/H—/H,- —f—‘/H;—Cd(SDHf)

Let j — oco: ca(pH,) — Cq(ld) = 0. We get:

‘/H’g’/H—/Hi +‘/H,-—cd(wH,)

Let d — oo: Co(pr,) — [ Hi. We get:

Jol= o

Let i — oo: RHS — 0. We get:

[H=0

+[H; = Hilloo + [ calen)|

+[[Hi — Hl|.

+Hi = Hlle.
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A few words on the invariant ¢,
Assume ¥ = §?
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Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).
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Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).
There exists a mapping
¢:C*([0,1] x My—= R

with many useful properties.
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Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).
There exists a mapping

0. C=([0,1] x M) > R

with many useful properties.
2. Our Lagrangian:
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2. Our Lagrangian:

@ Choose an appropriate collection of curves £ = {Ly, ..., Ly} C ¥.
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Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).
There exists a mapping

:C*(0,1] x M) - R
with many useful properties.
2. Our Lagrangian:
@ Choose an appropriate collection of curves £ = {Ly, ..., Ly} C ¥.
@ Associate to £ a Lagrangian torus Sym“(£) ¢ Sym?(X).

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 22



Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).
There exists a mapping

:C*(0,1] x M) - R
with many useful properties.
2. Our Lagrangian:
@ Choose an appropriate collection of curves £ = {Ly, ..., Ly} C ¥.
@ Associate to £ a Lagrangian torus Sym?(£) c Sym?(%).
@ We show HF,(Sym?(£)) = H.(Sym?(L)).
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Construction of c4: overview.

1. Lagrangian spectral invariants: L C (M, w) Lag, HF.(L) = H.(L).

There exists a mapping

:C*([0,1] x M) - R
with many useful properties.
2. Our Lagrangian:
@ Choose an appropriate collection of curves £ = {Ly, ..., Ly} C ¥.
@ Associate to £ a Lagrangian torus Sym?(£) c Sym?(%).
@ We show HF,(Sym?(£)) = H.(Sym?(L)).
3. Link spectral invariant: corresponding Lagrangian spectral invariant.
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Our Lagrangian and its Floer homology.
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Links

A link is a finite collection £ = {L4, ..., Ly} of pairwise disjoint circles in X.

A0

Lo L4 Lo
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Links

A link is a finite collection £ = {L4, ..., Ly} of pairwise disjoint circles in X.

@
QQQ

Lo L4 Lo

Strategy: Define Lagrangian Floer homology for links.
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Links

A link is a finite collection £ = {L4, ..., Ly} of pairwise disjoint circles in X.

@
QQQ

Lo L4 Lo

Strategy: Define Lagrangian Floer homology for links.
Previous work:

@ Oszvath-Szabo 2000s: Heegaard/knot Floer homology.
@ Mak-Smith, 2019: defined Lag Floer for L.
@ Polterovich-Shelukhin, 2021: spectral invariants for £ (any d).
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Equidistributed links
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Equidistributed links

Use £ to build a monotone Lagrangian torus in CP¢.
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Symmetric products

£ ={Ly,..., Ly} equidistributed link in (T, w).
1. d-fold products: L; x --- x Ly C (X9, w) Lagrangian.
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Symmetric products

£ ={Ly,..., Ly} equidistributed link in (Z, w).
1. d-fold products: L; x --- x Ly c (X9 w) Lagrangian.

2. Sgactson X% 0 € Sy, o (X1,. .., Xg) = (Xo(t)s - - - s Xo(d))-
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Symmetric products

£ ={Ly,..., Ly} equidistributed link in (T, w).
1. d-fold products: L; x --- x Ly C (X9, w) Lagrangian.
2. Sgactson X% g € Sy, o (X1y. ..y Xd) B (Xo(t)s -+ - s Xo(d))-
Quotient:
(X% wY)

Ss

(Symd(Z), Worb) =
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Symmetric products

£ ={Ly,..., Ly} equidistributed link in (T, w).
1. d-fold products: L; x --- x Ly C (X9, w) Lagrangian.
2. Sgactson X% g € Sy, o (X1y. ..y Xd) B (Xo(t)s -+ - s Xo(d))-

Quotient:
Zd, d
(Sym?(%), wor) = \ S“’ ).
d
Symp orbifold, singular locus A := {(xy,...,Xq) : Xi = X;} for some i # j.
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Symmetric products

£ ={Ly,..., Ly} equidistributed link in (T, w).
1. d-fold products: L; x --- x Ly C (X9, w) Lagrangian.

2. Sgactson X% g € Sy, o (X1y. ..y Xd) B (Xo(t)s -+ - s Xo(d))-

Quotient:
Zd, d
(Sym?(%), wor) = \ S“’ ).
d
Symp orbifold, singular locus A := {(xy,...,Xq) : Xi = X;} for some i # j.

Lagrangian: Ly x ... x Ly in the quotient.

Sym?(£)  Sym?(X)\ A.
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.
Nice fact: Sym?(X) ~ CPY. (L = S?)
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.
Nice fact: Sym?(X) ~ CPY. (L = S?)

worp Singular on A. Perutz: modify w,, near A to smooth symp form we.
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.
Nice fact: Sym?(X) ~ CPY. (L = S?)
worp Singular on A. Perutz: modify w,, near A to smooth symp form we.

wp = worp ON Nbhd of Sym?(L).
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.

Nice fact: Sym?(X) ~ CP?. (L = S?)

worp Singular on A. Perutz: modify w,, near A to smooth symp form we.
wp = worp ON Nbhd of Sym?(L).

We prove:

@ SymY(L) is a monotone Lagrangian submfld of (CPY, wp) and
HF (Sym?(L)) # 0.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 27



Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.

Nice fact: Sym?(X) ~ CP?. (L = S?)

worp Singular on A. Perutz: modify w,, near A to smooth symp form we.
wp = worp ON Nbhd of Sym?(L).

We prove:

@ SymY(L) is a monotone Lagrangian submfld of (CPY, wp) and
HF (Sym?(L)) # 0.

e Similar results in Ozsvath-Szabo. (Knot Floer homology)
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Lag Floer homology for Sym9(£)

A priori (Sym?(X), won) is an orbifold.

Nice fact: Sym?(X) ~ CP?. (L = S?)

worp Singular on A. Perutz: modify w,, near A to smooth symp form we.
wp = worp ON Nbhd of Sym?(L).

We prove:

@ SymY(L) is a monotone Lagrangian submfld of (CPY, wp) and
HF (Sym?(L)) # 0.

e Similar results in Ozsvath-Szabo. (Knot Floer homology)

@ Key idea: Cobordism between Maslov 2 J-discs on Sym?(£) and the
Clifford torus.
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Thank You!

The algebraic structure of groups of area:



Bonus:

@ Lagrangian spectral invariants.
@ Calabi property.
@ The disc potential.
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Lagrangian Spectral Invariants

Viterbo, Oh, Leclercq, Zapolsky, ...
Set up: L C (M,w) Lagrangian, HF.(L) = H.(L).
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Lagrangian Spectral Invariants

Viterbo, Oh, Leclercq, Zapolsky, ...
Set up: L C (M,w) Lagrangian, HF.(L) = H.(L).
Simplifying assumption: m2(M, L) = 0.
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Lagrangian Spectral Invariants

Viterbo, Oh, Leclercq, Zapolsky, ...
Set up: L C (M,w) Lagrangian, HF.(L) = H.(L).
Simplifying assumption: m2(M, L) = 0.
Lagrangian spectral invariants:

¢:C*([0,1] x M) — R.

((H) := "the action level at which [L] appears in Lag Floer homology."
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The action functional

Q(L) :={x:[0,1] — M:x(0),x(1) € L,[x] =0 € m(M, L)}.
H e C>([0,1] x M). The action functional Ay : Q(L) — R

Xl—>/01 Ht(x(t))dt—/uw.

Does not depend on u, because m(M, L) = 0.
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The action functional

Q(L) :={x:[0,1] — M:x(0),x(1) € L,[x] =0 € m(M, L)}.
H e C>([0,1] x M). The action functional Ay : Q(L) — R
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Lagrangian Floer homology:
@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.
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Lagrangian Floer homology:

@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration:
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Lagrangian Floer homology:

@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
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Lagrangian Floer homology:

@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
@ 0 preserves the filtration: 0 : CF3(H,L) — CF?3(H, L).
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Action filtration: Fix a € R.
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@ HF?4(H, L) : homology of the complex. Depends on H.
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Lagrangian Floer homology:
@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
@ 0 preserves the filtration: 0 : CF3(H,L) — CF?3(H, L).
@ HF?4(H, L) : homology of the complex. Depends on H.

Spectral invariants:
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Lagrangian Floer homology:
@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
@ 0 preserves the filtration: 0 : CF3(H,L) — CF?3(H, L).
@ HF?4(H, L) : homology of the complex. Depends on H.

Spectral invariants:
e If a<< 0, then HF3(H, L) = 0. Cannot see [L].
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Lagrangian Floer homology:

@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
@ 0 preserves the filtration: 0 : CF3(H,L) — CF?3(H, L).
@ HF?4(H, L) : homology of the complex. Depends on H.

Spectral invariants:
e If a<< 0, then HF3(H, L) = 0. Cannot see [L].
@ If a>> 0, then HF3(H, L) = H,(L). Can see [L].
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Lagrangian Floer homology:

@ Chain complex CF(L, H): generated by critical points of Ay.
@ Differential 9: counts solutions to Floer’s equation.
@ HF(L, H) : homology of the complex = singular homology of L.

Action filtration: Fix a € R.
@ CF?(H, L): subcomplex gen by critical points with Ay < a.
@ 0 preserves the filtration: 0 : CF3(H,L) — CF?3(H, L).
@ HF?4(H, L) : homology of the complex. Depends on H.

Spectral invariants:
e If a<< 0, then HF3(H, L) = 0. Cannot see [L].
@ If a>> 0, then HF3(H, L) = H,(L). Can see [L].
@ Define
((H) :=inf{a: cansee [L]in HF?(H,L)}.
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The spectral invariant ¢y

HF(Sym(L)) = H.(Sym(£)) = can define spectral invariants:

¢: C=([0,1] x Sym?(X)) \ {0} — R.
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The spectral invariant ¢y

HF(Sym(L)) = H.(Sym(£)) = can define spectral invariants:
¢: C>([0,1] x Sym?(X)) \ {0} — R.

Definition of c;:
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The spectral invariant ¢y

HF(Sym(L)) = H.(Sym(£)) = can define spectral invariants:
¢: C>([0,1] x Sym?(X)) \ {0} — R.

Definition of c;:
Hamiltonian H; : ¥ — R.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 33



The spectral invariant ¢y

HF(Sym(L£)) = H.(Sym(£)) = can define spectral invariants:
¢: C=([0,1] x Sym?(X)) \ {0} — R.
Definition of c;:
Hamiltonian H; : ¥ — R. Induces
Sym“(H) : Sym*(¥) — R
[(X1,...,X4)] = Hi(X1) + ... + Hi(Xq).
Define

c4(H) = :—jﬁ(Symd(H)).
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Calabi property

Sobhan Seyfaddini The algebraic structure of



The Calabi property

General fact: L C (M, w) Lagrangian, with associated spectral invariant

0. C=([0,1] x M) = R.
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The Calabi property

General fact: L C (M, w) Lagrangian, with associated spectral invariant

0. C=([0,1] x M) = R.

1 1
Lagrangian Control: / mLin H: dt <((H) < / max H; dt.
0 0
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The Calabi property

General fact: L C (M, w) Lagrangian, with associated spectral invariant

0. C=([0,1] x M) = R.

1 1
Lagrangian Control: mLin H: dt <((H) < / max H; dt.
0 0

Translation to our setting: £ = {L4, ..., Lg} C (¥, w)

d 1
dZ/ mmtht<Cd )< = Z/ mathdt
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‘C:{L17"'7Ld}

[

d
g Z min Ht ~ Riemann sum for [ H; w

d 1 d
1
; min H; tgcd(H)g/o aZmath dt.

Ql
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/

d d
1 . . 1
g ; min H; ~ Riemann sum for [ H; w ~ g ; max H;.
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d d
1 . . 1
g ; min H; ~ Riemann sum for [ H; w ~ g ; max H;.

Hence,

1 1
/ /Ht w at < dllm Cd(H) < / /Ht w dt.
0 > 0
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The disc potential.
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Discs with boundary on Sym?(£)

EZ{L17"'7Ld}

Correspond to the discs B;, ..., By and the region A.
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Discs with boundary on Sym?(£)

EZ{L17"'7Ld}

Correspond to the discs B;, ..., By and the region A.

We get
@ Hy(CPY Sym?(L)) =< By, ..., By, A >.
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Discs with boundary on Sym?(£)

EZ{L17"'7Ld}

Correspond to the discs By, ..., By and the region A.
We get
@ Hy(CPY Sym?(L)) =< By, ..., By, A >.
@ Maslov 2 J-discs with bdry on Sym®(£): {B;, ..., By, A} .
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Discs with boundary on Sym?(£)

EZ{L17"'7Ld}

Correspond to the discs By, ..., By and the region A.

We get
@ Ho(CPY, Sym?(L)) =< By,...,By, A>.
@ Maslov 2 J-discs with bdry on Sym?(£): {B;, ..., By, A} .
@ Disc potential: Xy + ...+ Xg + —!

X{...Xg "
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Discs with boundary on Sym?(£)

EZ{L17"'7Ld}

Correspond to the discs By, ..., By and the region A.

We get
@ Ho(CPY, Sym?(L)) =< By,...,By, A>.
@ Maslov 2 J-discs with bdry on Sym?(£): {B;, ..., By, A} .
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Thank Youl!

The algebraic structure of groups of area:



