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An old theorem of Fathi

Homeoc(Dn, ω) : group of volume-preserving homeomorphisms of the
n-disc, identity near the boundary.

Theorem (Fathi, late 70s)
Homeoc(Dn, ω) is simple when n ≥ 3.

Simple: no non-trivial proper normal subgroups.

Compactness assumption: Homeoc(Dn, ω) C Homeo(Dn, ω).

Fathi: Is the group Homeoc(D2, ω) simple?

Conjecture (“Simplicity Conjecture”)

Homeoc(D2, ω) is not simple.
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First Result

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeoc(D2, ω) is not simple.

Remarks:
If not simple =⇒ lots of proper normal subgroups (Le Roux,
2009).Example: [Homeoc(D2, ω),Homeoc(D2, ω)].

Cor: Homeoc(D2, ω) is not perfect.
Proof requires ideas from symplectic topology:

Hofer’s metric.
Floer homology .
C0 symplectic topology : studies non-smooth analogues of symplectic
objects, eg symplectic homeos.

In dim 2: symp homeos = area pres homeos.
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Fathi’s question for other surfaces.
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Hamiltonian diffeomorphisms

(Σ, ω) compact surface with an area-form ω. (allow ∂Σ 6= ∅ )

Ham(Σ, ω) : Hamiltonian diffeos of (Σ, ω), identity near ∂Σ (if ∂Σ 6= ∅).

Time-dependent function H : [0,1]× Σ→ R (Hamiltonian).

H = 0 near ∂Σ.

Vector field XH : ω(XH , ·) = dH.
XH generates isotopy. Hamiltonian diffeo:= time-1 ϕH .
Ham(Σ, ω) := {ϕH} ⊂ Diff0(Σ, ω).

Σ = D: Ham = area pres diffeos, identity near ∂Σ.
Σ = S2: Ham = area + orient pres diffeos.
Other Σ: Ham C Diff0(Σ, ω).
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Hamiltonian homeomorphisms and Fathi’s question

Def: ϕ area-pres homeo is Hamiltonian if ∃ϕi ∈ Ham s.t. ϕi
C0

−→ ϕ.

Ham(Σ, ω): Hamiltonian homeos of Σ, identity near ∂Σ.

Σ = D: Ham = Homeoc(D, ω) = area pres homeos, identity near ∂Σ.

Σ = S2: Ham = area + orient pres homeos.

Other Σ: Ham(Σ, ω) C Homeo0(Σ, ω).

Question (Fathi 70s)

Is the group Ham(Σ, ω) simple?
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Fathi’s work from the 70s
(M,Vol) compact mfld with vol form.
Homeo0(M,Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo0(M,Vol) simple?

Fathi: ∃ homomorphism (mass-flow)

F : Homeo0(M,Vol)→ H1(M)/Γ.

ker(F) C Homeo0(M,Vol). Non-trivial if H1(M) 6= 0.

Theorem (Fathi)
ker(F) is simple if dim(M) ≥ 3.

Cor: simplicity for Sn,Dn when n ≥ 3.

Question: dim(M) = 2?
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The case of surfaces

Fact: In the case of a surface Σ, ker(F) = Ham(Σ).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith 2021)

Ham(Σ) is not simple.

Remarks:
Σ = D,S2 proved in earlier papers (2020, 2021) with
Cristofaro-Gardiner, Humilière. Used periodic Floer homology.
Use Lagrangian Floer homology. Inspired by

Ozsvath-Szabo (2003),
Mak-Smith (2019),
Polterovich-Shelukhin (2021).
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History and comparisons
Ulam (“Scottish book”, 30s): Is Homeo0(Sn) simple?

Yes, for n = 2 (Ulam, von Neumann 40s)
Simple:

Homeo0(M) ( Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
Diff0(M) (Epstein, Herman, Mather, Thurston 70s)

Not (necessarily) simple:
Homeo0(M,Vol), n ≥ 3 (Fathi 70s)
Diff0(M,Vol) (Thurston 70s)
Symp0(M, ω) (Banyaga 70s)

Admit natural homomorphisms. (flux, mass-flow)
Kernel is simple.

Ham(Σ, ω)
No known natural homomorphism.
Lots of normal subgroups.
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Non-simplicity of Ham(Σ), ∂Σ 6= ∅
and the Calabi invariant

Assume: Σ = D.
Ham(Σ) = Homeoc(D, ω).
Ham(Σ) = Diffc(D, ω).
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The Calabi invariant

The Calabi invariant is a homomorphism

Cal : Diffc(D, ω)→ R.

Given ϕ ∈ Diffc(D, ω), write ϕ = ϕH , H = 0 near ∂D.
Define

Cal(ϕ) :=

∫ 1

0

∫
D

Ht ω dt .

Facts:

Well-defined: Cal(ϕ) doesn’t depend on choice of H.
Cal is a homomorphism.
Cal(ϕH) ≤ ‖H‖∞.
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Does Calabi extend?

Diffc(D, ω) ⊂ Homeoc(D, ω) dense in C0 topology.

Cal : Diffc(D, ω)→ R defined on a dense subset of Homeoc(D, ω).

Can we extend it? (Fathi 70s, Ghys ICM 2006)

If yes, then Homeoc(D, ω) not simple.
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Does Calabi extend?

Problem: Cal is not C0 continuous.

Eg: Take Hn, supported on disc of radius 1/n, where
∫

Hn ω = 1. Then,

Cal(ϕHn) = 1, but ϕHn

C0

−→ Id.

<

2/n

∫
Hnω = 1

Not easy to extend Cal to Homeoc(D, ω).
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It might extend to Hameo
Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) E Homeoc(D, ω).

Say ϕ ∈ Hameo(D) if there exist Hi ∈ C∞ and H ∈ C0 st

ϕHi

C0

−→ ϕ and Hi
‖·‖∞−−→ H.

Write ϕ = ϕH .
Fathi and Oh: define Cal : Hameo(D)→ R by

Cal(ϕ) :=

∫ 1

0

∫
D

Ht ω dt .

Must show:
1. Well-definedness: ϕ = ϕH = ϕG, then

∫ ∫
Ht ω dt =

∫ ∫
Gt ω dt . (Difficult)

2. Cal is a homomorphism. (Oh, 2000s)
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If well-defined

If Cal : Hameo(D)→ R well-defined =⇒ Homeoc(D, ω) not simple:

If Hameo is proper, we’re done.
If Hameo = Homeoc(D, ω), then ker(Cal) / Homeoc(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S , Smith)
Cal : Hameo(D)→ R is well-defined.

Remarks:
We show Hameo ⊂ Homeoc(D, ω). Hameo ⊂ Ham for any Σ.
Cal extends to Hameo(Σ) for any Σ with ∂Σ 6= ∅.
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Outline of the argument
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Key ingredients

1. Use Lagrangian Floer Homology, to define

cd : Diffc(D, ω) −→ R,

where d ∈ N. (Link spectral invariants)

2. Connect to Calabi:
lim

d−→∞
cd (ϕ) = Cal(ϕ).

3. Connect to Homeoc(D, ω): cd is C0 continuous and extends to

cd : Homeoc(D, ω)→ R.
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Argument for extending Calabi to Hameo
Must show: ϕ = ϕH = ϕG, then

∫ ∫
Ht ω dt =

∫ ∫
Gt ω dt .

Sufficient: ϕH = Id, then
∫ ∫

H ω dt = 0. (H ∈ C0)

Def of Hameo: ϕH = Id =⇒ ∃Hi ∈ C∞ and H ∈ C0 s.t.
ϕHi

C0

−→ Id and ‖H − Hi‖∞ −→ 0.∣∣∣∣∫ H
∣∣∣∣ ≤ ∣∣∣∣∫ H −

∫
Hi

∣∣∣∣+

∣∣∣∣∫ Hi − cd (ϕHi )

∣∣∣∣+ |cd (ϕHi )|

≤
∣∣∣∣∫ H −

∫
Hi

∣∣∣∣+

∣∣∣∣∫ Hi − cd (ϕHi )

∣∣∣∣+
∣∣cd (ϕHi )− cd (ϕHj )

∣∣+
∣∣cd (ϕHj )

∣∣ .
Fact (Hofer continuity):

∣∣cd (ϕHi )− cd (ϕHj )
∣∣ ≤ ‖Hi − Hj‖∞.∣∣∣∣∫ H

∣∣∣∣ ≤ ∣∣∣∣∫ H −
∫

Hi

∣∣∣∣+

∣∣∣∣∫ Hi − cd (ϕHi )

∣∣∣∣+ ‖Hi − Hj‖∞ +
∣∣cd (ϕHj )

∣∣
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Recall: ϕHi

C0

−→ Id and ‖H − Hi‖∞ −→ 0.∣∣∣∣∫ H
∣∣∣∣ ≤ ∣∣∣∣∫ H −

∫
Hi

∣∣∣∣+

∣∣∣∣∫ Hi − cd (ϕHi )

∣∣∣∣+ ‖Hi − Hj‖∞ +
∣∣cd (ϕHj )

∣∣ .

Let j −→∞: cd (ϕHj ) −→ cd (Id) = 0. We get:∣∣∣∣∫ H
∣∣∣∣ ≤ ∣∣∣∣∫ H −

∫
Hi

∣∣∣∣+

∣∣∣∣∫ Hi − cd (ϕHi )

∣∣∣∣+ ‖Hi − H‖∞.

Let d −→∞: cd (ϕHi ) −→
∫

Hi . We get:∣∣∣∣∫ H
∣∣∣∣ ≤ ∣∣∣∣∫ H −

∫
Hi

∣∣∣∣+ ‖Hi − H‖∞.

Let i −→∞: RHS −→ 0. We get:∫
H = 0.
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A few words on the invariant cd
Assume Σ = S2
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Construction of cd : overview.

1. Lagrangian spectral invariants: L ⊂ (M, ω) Lag, HF∗(L) = H∗(L).

There exists a mapping

` : C∞([0,1]×M)→ R

with many useful properties.
2. Our Lagrangian:

Choose an appropriate collection of curves L = {L1, ...,Ld} ⊂ Σ.
Associate to L a Lagrangian torus Symd (L) ⊂ Symd (Σ).

We show HF∗(Symd (L)) = H∗(Symd (L)).
3. Link spectral invariant: corresponding Lagrangian spectral invariant.
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Our Lagrangian and its Floer homology.
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Links

A link is a finite collection L = {L1, ...,Ld} of pairwise disjoint circles in Σ.<

L0 L1 L2

Strategy: Define Lagrangian Floer homology for links.
Previous work:

Oszvath-Szabo 2000s: Heegaard/knot Floer homology.
Mak-Smith, 2019: defined Lag Floer for L0.
Polterovich-Shelukhin, 2021: spectral invariants for L1 (any d).
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Equidistributed links

<

Area = 1
d+1

Area = 1
d+1

L = {L1, . . . ,Ld}

Use L to build a monotone Lagrangian torus in CPd .
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Symmetric products

L = {L1, ...,Ld} equidistributed link in (Σ, ω).

1. d-fold products: L1 × · · · × Ld ⊂ (Σd , ωd ) Lagrangian.

2. Sd acts on Σd : σ ∈ Sd , σ · (x1, . . . , xd ) 7→ (xσ(1), . . . , xσ(d)).

Quotient:

(Symd (Σ), ωorb) :=
(Σd , ωd )

Sd
.

Symp orbifold, singular locus ∆ := {(x1, . . . , xd ) : xi = xj} for some i 6= j .

Lagrangian: L1 × . . .× Ld in the quotient.

Symd (L) ⊂ Symd (Σ) \∆.
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Symmetric products

L = {L1, ...,Ld} equidistributed link in (Σ, ω).

1. d-fold products: L1 × · · · × Ld ⊂ (Σd , ωd ) Lagrangian.
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Lag Floer homology for Symd(L)

A priori (Symd (Σ), ωorb) is an orbifold.

Nice fact: Symd (Σ) ' CPd . (Σ = S2)

ωorb singular on ∆. Perutz: modify ωorb near ∆ to smooth symp form ωP .

ωP = ωorb on nbhd of Symd (L).

We prove:

Symd (L) is a monotone Lagrangian submfld of (CPd , ωP) and
HF (Symd (L)) 6= 0.

Similar results in Ozsvath-Szabo. (Knot Floer homology)

Key idea: Cobordism between Maslov 2 J-discs on Symd (L) and the
Clifford torus.
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Thank You!
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Bonus:

Lagrangian spectral invariants.
Calabi property.
The disc potential.
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Lagrangian Spectral Invariants

Viterbo, Oh, Leclercq, Zapolsky, ...

Set up: L ⊂ (M, ω) Lagrangian, HF∗(L) = H∗(L).

Simplifying assumption: π2(M,L) = 0.

Lagrangian spectral invariants:

` : C∞([0,1]×M)→ R.

`(H) := "the action level at which [L] appears in Lag Floer homology."
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The action functional

Ω(L) := {x : [0,1] −→ M : x(0), x(1) ∈ L, [x ] = 0 ∈ π1(M,L)}.
H ∈ C∞([0,1]×M). The action functional AH : Ω(L) −→ R

x 7→
∫ 1

0
Ht(x(t))dt −

∫
u
ω.

Does not depend on u, because π2(M,L) = 0.

Critical points of AH : x ∈ Ω st

x(t) = ϕt
H(p),p ∈ L.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 31



The action functional

Ω(L) := {x : [0,1] −→ M : x(0), x(1) ∈ L, [x ] = 0 ∈ π1(M,L)}.
H ∈ C∞([0,1]×M). The action functional AH : Ω(L) −→ R

x 7→
∫ 1

0
Ht(x(t))dt −

∫
u
ω.

Does not depend on u, because π2(M,L) = 0.

Critical points of AH : x ∈ Ω st

x(t) = ϕt
H(p),p ∈ L.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 31



The action functional

Ω(L) := {x : [0,1] −→ M : x(0), x(1) ∈ L, [x ] = 0 ∈ π1(M,L)}.
H ∈ C∞([0,1]×M). The action functional AH : Ω(L) −→ R

x 7→
∫ 1

0
Ht(x(t))dt −

∫
u
ω.

Does not depend on u, because π2(M,L) = 0.

Critical points of AH : x ∈ Ω st

x(t) = ϕt
H(p),p ∈ L.

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 31



Lagrangian Floer homology:

Chain complex CF (L,H): generated by critical points of AH .
Differential ∂: counts solutions to Floer’s equation.
HF (L,H) : homology of the complex = singular homology of L.

Action filtration: Fix a ∈ R.
CF a(H,L): subcomplex gen by critical points with AH ≤ a.
∂ preserves the filtration: ∂ : CF a(H,L) −→ CF a(H,L).
HF a(H,L) : homology of the complex. Depends on H.

Spectral invariants:
If a << 0, then HF a(H,L) = 0. Cannot see [L].
If a >> 0, then HF a(H,L) = H∗(L). Can see [L].
Define

`(H) := inf{a : can see [L] in HF a(H,L)}.
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The spectral invariant cd

HF (Sym(L)) = H∗(Sym(L)) =⇒ can define spectral invariants:

` : C∞([0,1]× Symd (Σ)) \ {0} → R.

Definition of cd :

Hamiltonian Ht : Σ→ R. Induces

Symd (H) : Symd(Σ)→ R

[(x1, . . . , xd )] 7→ Ht(x1) + . . . + Ht(xd ).

Define
cd (H) :=

1
d
`(Symd (H)).
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Calabi property
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The Calabi property

General fact: L ⊂ (M, ω) Lagrangian, with associated spectral invariant

` : C∞([0,1]×M)→ R.

Lagrangian Control:
∫ 1

0
min

L
Ht dt ≤ `(H) ≤

∫ 1

0
max

L
Ht dt .

Translation to our setting: L = {L1, ...,Ld} ⊂ (Σ, ω)

1
d

d∑
i=1

∫ 1

0
min

Li
Ht dt ≤ cd (H) ≤ 1

d

d∑
i=1

∫ 1

0
max

Li
Ht dt .
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<

Area = 1
d+1

Area = 1
d+1

L = {L1, . . . ,Ld}

∫ 1

0

(
1
d

d∑
i=1

min
Li

Ht

)
dt ≤ cd (H) ≤

∫ 1

0

(
1
d

d∑
i=1

max
Li

Ht

)
dt .

1
d

d∑
i=1

min
Li

Ht ≈ Riemann sum for
∫

Ht ω ≈
1
d

d∑
i=1

max
Li

Ht .

Hence, ∫ 1

0

∫
Ht ω dt ≤ lim

d−→∞
cd (H) ≤

∫ 1

0

∫
Ht ω dt .
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d
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Hence, ∫ 1

0
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The disc potential.
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Discs with boundary on Symd(L) <

Bi

A

L = {L1, . . . ,Ld}

Correspond to the discs B1, . . . ,Bd and the region A.

We get
H2(CPd ,Symd (L)) =< B1, . . . ,Bd ,A >.
Maslov 2 J-discs with bdry on Symd (L): {B1, . . . ,Bd ,A} .
Disc potential: x1 + . . . + xd + 1

x1...xd
.
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Thank You!
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