The algebraic structure of groups of area-preserving homeomorphisms joint work with Dan Cristofaro-Gardiner, Vincent Humilière, Cheuk Yu Mak, Ivan Smith

Sobhan Seyfaddini

CNRS & Sorbonne Univeristé

IST Lisbon November, 2022

Introduction

ъ

< B

Homeo_c(D^n, ω) : group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Homeo_c(D^n, ω) : group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, late 70s)

Homeo_c(D^n , ω) is simple when $n \ge 3$.

Simple: no non-trivial proper normal subgroups.

Homeo_c(D^n, ω) : group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, late 70s)

Homeo_c(D^n , ω) is simple when $n \ge 3$.

Simple: no non-trivial proper normal subgroups.

Compactness assumption: Homeo_c(D^n , ω) \lhd Homeo(D^n , ω).

Homeo_c(D^n, ω) : group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, late 70s)

Homeo_c(D^n , ω) is simple when $n \ge 3$.

Simple: no non-trivial proper normal subgroups.

Compactness assumption: Homeo_{*c*}(D^n , ω) \lhd Homeo(D^n , ω).

Fathi: Is the group Homeo_c(D^2 , ω) simple?

Homeo_c(D^n, ω) : group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, late 70s)

Homeo_c(D^n , ω) is simple when $n \ge 3$.

Simple: no non-trivial proper normal subgroups.

Compactness assumption: Homeo_c(D^n , ω) \lhd Homeo(D^n , ω).

Fathi: Is the group Homeo_c(D^2 , ω) simple?

Conjecture ("Simplicity Conjecture")

Homeo_c(D^2, ω) is not simple.

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

4 D N 4 B N 4 E

э

▶ < ∃ ▶</p>

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

Remarks:

• • • • • • • • • •

э

► < ∃ ►</p>

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

Remarks:

• If not simple \implies lots of proper normal subgroups (Le Roux, 2009).

▶ < ∃ ▶</p>

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

Remarks:

• If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.
- Proof requires ideas from symplectic topology:

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.
- Proof requires ideas from symplectic topology:
 - Hofer's metric.
 - Floer homology .

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.
- Proof requires ideas from symplectic topology:
 - Hofer's metric.
 - Floer homology .
 - C⁰ symplectic topology : studies non-smooth analogues of symplectic objects, eg symplectic homeos.

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.
- Proof requires ideas from symplectic topology:
 - Hofer's metric.
 - Floer homology .
 - C⁰ symplectic topology : studies non-smooth analogues of symplectic objects, eg symplectic homeos.
 - In dim 2: symp homeos = area pres homeos.

Theorem (Cristofaro-Gardiner, Humilière, S. 2020)

Homeo_c(D^2, ω) is not simple.

- If not simple \implies lots of proper normal subgroups (Le Roux, 2009).Example: [Homeo_c(D^2, ω), Homeo_c(D^2, ω)].
 - Cor: Homeo_c(D^2, ω) is not perfect.
- Proof requires ideas from symplectic topology:
 - Hofer's metric.
 - Floer homology .
 - C⁰ symplectic topology : studies non-smooth analogues of symplectic objects, eg symplectic homeos.
 - In dim 2: symp homeos = area pres homeos.

Fathi's question for other surfaces.

 (Σ, ω) compact surface with an area-form ω . (allow $\partial \Sigma \neq \emptyset$) Ham (Σ, ω) : Hamiltonian diffeos of (Σ, ω) , identity near $\partial \Sigma$ (if $\partial \Sigma \neq \emptyset$).

 (Σ, ω) compact surface with an area-form ω . (allow $\partial \Sigma \neq \emptyset$)

 $\operatorname{Ham}(\Sigma, \omega)$: Hamiltonian diffeos of (Σ, ω) , identity near $\partial \Sigma$ (if $\partial \Sigma \neq \emptyset$).

• Time-dependent function $H : [0, 1] \times \Sigma \rightarrow \mathbb{R}$ (Hamiltonian).

• H = 0 near $\partial \Sigma$.

 (Σ, ω) compact surface with an area-form ω . (allow $\partial \Sigma \neq \emptyset$)

 $\operatorname{Ham}(\Sigma, \omega)$: Hamiltonian diffeos of (Σ, ω) , identity near $\partial \Sigma$ (if $\partial \Sigma \neq \emptyset$).

• Time-dependent function $H : [0, 1] \times \Sigma \to \mathbb{R}$ (Hamiltonian).

• H = 0 near $\partial \Sigma$.

- Vector field X_H : $\omega(X_H, \cdot) = dH$.
- X_H generates isotopy. Hamiltonian diffeo:= time-1 φ_H .

 (Σ, ω) compact surface with an area-form ω . (allow $\partial \Sigma \neq \emptyset$)

 $\operatorname{Ham}(\Sigma, \omega)$: Hamiltonian diffeos of (Σ, ω) , identity near $\partial \Sigma$ (if $\partial \Sigma \neq \emptyset$).

• Time-dependent function $H : [0, 1] \times \Sigma \to \mathbb{R}$ (Hamiltonian).

• H = 0 near $\partial \Sigma$.

- Vector field X_H : $\omega(X_H, \cdot) = dH$.
- X_H generates isotopy. Hamiltonian diffeo:= time-1 φ_H .
- Ham $(\Sigma, \omega) := \{\varphi_H\} \subset \text{Diff}_0(\Sigma, \omega).$

 (Σ,ω) compact surface with an area-form ω . (allow $\partial \Sigma \neq \emptyset$)

 $\operatorname{Ham}(\Sigma, \omega)$: Hamiltonian diffeos of (Σ, ω) , identity near $\partial \Sigma$ (if $\partial \Sigma \neq \emptyset$).

• Time-dependent function $H : [0, 1] \times \Sigma \to \mathbb{R}$ (Hamiltonian).

• H = 0 near $\partial \Sigma$.

- Vector field X_H : $\omega(X_H, \cdot) = dH$.
- X_H generates isotopy. Hamiltonian diffeo:= time-1 φ_H .
- Ham $(\Sigma, \omega) := \{\varphi_H\} \subset \text{Diff}_0(\Sigma, \omega).$

Σ = D: Ham = area pres diffeos, identity near ∂Σ. $Σ = S^2$: Ham = area + orient pres diffeos. Other Σ: Ham ⊲ Diff₀(Σ, ω).

Def: φ area-pres homeo is **Hamiltonian** if $\exists \varphi_i \in \text{Ham s.t. } \varphi_i \xrightarrow{C^0} \varphi$.

Def: φ area-pres homeo is **Hamiltonian** if $\exists \varphi_i \in \text{Ham s.t. } \varphi_i \xrightarrow{C^0} \varphi$.

 $\overline{\text{Ham}}(\Sigma, \omega)$: Hamiltonian homeos of Σ , identity near $\partial \Sigma$.

Def: φ area-pres homeo is **Hamiltonian** if $\exists \varphi_i \in \text{Ham s.t. } \varphi_i \xrightarrow{C^0} \varphi$.

 $\overline{\text{Ham}}(\Sigma, \omega)$: Hamiltonian homeos of Σ , identity near $\partial \Sigma$.

 $\Sigma = D$: Ham = Homeo_c(D, ω) = area pres homeos, identity near $\partial \Sigma$.

 $\Sigma = S^2$: Ham = area + orient pres homeos.

Other Σ : Ham $(\Sigma, \omega) \lhd$ Homeo₀ (Σ, ω) .

Def: φ area-pres homeo is **Hamiltonian** if $\exists \varphi_i \in \text{Ham s.t. } \varphi_i \xrightarrow{C^0} \varphi$.

 $\overline{\text{Ham}}(\Sigma, \omega)$: Hamiltonian homeos of Σ , identity near $\partial \Sigma$.

 $\Sigma = D$: Ham = Homeo_c(D, ω) = area pres homeos, identity near $\partial \Sigma$.

 $\Sigma = S^2$: Ham = area + orient pres homeos.

Other Σ : Ham $(\Sigma, \omega) \lhd$ Homeo₀ (Σ, ω) .

Question (Fathi 70s)

Is the group $\overline{\operatorname{Ham}}(\Sigma, \omega)$ simple?

Def: φ area-pres homeo is **Hamiltonian** if $\exists \varphi_i \in \text{Ham s.t. } \varphi_i \xrightarrow{C^0} \varphi$.

 $\overline{\text{Ham}}(\Sigma, \omega)$: Hamiltonian homeos of Σ , identity near $\partial \Sigma$.

 $\Sigma = D$: Ham = Homeo_c(D, ω) = area pres homeos, identity near $\partial \Sigma$.

 $\Sigma = S^2$: Ham = area + orient pres homeos.

Other Σ : Ham $(\Sigma, \omega) \lhd$ Homeo₀ (Σ, ω) .

Question (Fathi 70s)

Is the group $\overline{\operatorname{Ham}}(\Sigma, \omega)$ simple?

(M, Vol) compact mfld with vol form. Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo₀(*M*, *Vol*) simple?

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo₀(*M*, *Vol*) simple?

Fathi: ∃ homomorphism (mass-flow)

 $\mathcal{F}: \operatorname{Homeo}_{0}(M, \operatorname{Vol}) \to H_{1}(M)/\Gamma.$

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo₀(*M*, *Vol*) simple?

Fathi: \exists homomorphism (mass-flow)

 $\mathcal{F}: \operatorname{Homeo}_{0}(M, \operatorname{\it Vol}) \to H_{1}(M)/\Gamma.$

 $\ker(\mathcal{F}) \lhd \operatorname{Homeo}_0(M, \operatorname{Vol})$. Non-trivial if $H_1(M) \neq 0$.

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo₀(*M*, *Vol*) simple?

Fathi: \exists homomorphism (mass-flow)

 $\mathcal{F}: \operatorname{Homeo}_{0}(M, \operatorname{Vol}) \to H_{1}(M)/\Gamma.$

 $\ker(\mathcal{F}) \lhd \operatorname{Homeo}_0(M, \operatorname{Vol})$. Non-trivial if $H_1(M) \neq 0$.

Theorem (Fathi)

 $\ker(\mathcal{F})$ is simple if $\dim(M) \geq 3$.

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group $Homeo_0(M, Vol)$ simple?

Fathi: \exists homomorphism (mass-flow)

 $\mathcal{F}: \operatorname{Homeo}_{0}(M, \operatorname{Vol}) \to H_{1}(M)/\Gamma.$

 $\ker(\mathcal{F}) \lhd \operatorname{Homeo}_0(M, \operatorname{Vol})$. Non-trivial if $H_1(M) \neq 0$.

Theorem (Fathi)

 $\ker(\mathcal{F})$ is simple if $\dim(M) \geq 3$.

Cor: simplicity for S^n , D^n when $n \ge 3$.

(*M*, *Vol*) compact mfld with vol form.

Homeo₀(M, Vol) : component of id in the group of vol-pres homeos of M.

Question: Is the group Homeo₀(*M*, *Vol*) simple?

Fathi: \exists homomorphism (mass-flow)

 $\mathcal{F}: \operatorname{Homeo}_{0}(M, \operatorname{Vol}) \to H_{1}(M)/\Gamma.$

 $\ker(\mathcal{F}) \lhd \operatorname{Homeo}_0(M, \operatorname{Vol})$. Non-trivial if $H_1(M) \neq 0$.

Theorem (Fathi)

 $\ker(\mathcal{F})$ is simple if $\dim(M) \geq 3$.

Cor: simplicity for S^n , D^n when $n \ge 3$.

Question: $\dim(M) = 2$?

The case of surfaces

Fact: In the case of a surface Σ , ker(\mathcal{F}) = $\overline{\text{Ham}}(\Sigma)$.

э
The case of surfaces

Fact: In the case of a surface Σ , ker(\mathcal{F}) = $\overline{\text{Ham}}(\Sigma)$.

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith 2021)

 $\overline{\text{Ham}}(\Sigma)$ is not simple.

The case of surfaces

Fact: In the case of a surface Σ , ker(\mathcal{F}) = $\overline{\text{Ham}}(\Sigma)$.

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith 2021)

 $\overline{\text{Ham}}(\Sigma)$ is not simple.

Remarks:

 Σ = D, S² proved in earlier papers (2020, 2021) with Cristofaro-Gardiner, Humilière. Used periodic Floer homology.

The case of surfaces

Fact: In the case of a surface Σ , ker(\mathcal{F}) = $\overline{\text{Ham}}(\Sigma)$.

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith 2021)

 $\overline{\text{Ham}}(\Sigma)$ is not simple.

Remarks:

- Σ = D, S² proved in earlier papers (2020, 2021) with Cristofaro-Gardiner, Humilière. Used periodic Floer homology.
- Use Lagrangian Floer homology. Inspired by
 - Ozsvath-Szabo (2003),
 - Mak-Smith (2019),
 - Polterovich-Shelukhin (2021).

Ulam ("Scottish book", 30s): Is $Homeo_0(S^n)$ simple?

• • • • • • • •

э

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)
 - Admit natural homomorphisms. (flux, mass-flow)
 - Kernel is simple.

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)
 - Admit natural homomorphisms. (flux, mass-flow)
 - Kernel is simple.
 - $\overline{\operatorname{Ham}}(\Sigma, \omega)$

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)
 - Admit natural homomorphisms. (flux, mass-flow)
 - Kernel is simple.
 - $\overline{\operatorname{Ham}}(\Sigma,\omega)$
 - No known natural homomorphism.

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)
 - Admit natural homomorphisms. (flux, mass-flow)
 - Kernel is simple.
 - $\overline{\operatorname{Ham}}(\Sigma,\omega)$
 - No known natural homomorphism.
 - Lots of normal subgroups.

- Simple:
 - Homeo₀(*M*) (Anderson, Fisher, Chernavskii, Edwards, Kirby 60s)
 - Diff₀(*M*) (Epstein, Herman, Mather, Thurston 70s)
- Not (necessarily) simple:
 - Homeo₀(*M*, *Vol*), *n* ≥ 3 (Fathi 70s)
 - Diff₀(*M*, *Vol*) (Thurston 70s)
 - $\operatorname{Symp}_0(M, \omega)$ (Banyaga 70s)
 - Admit natural homomorphisms. (flux, mass-flow)
 - Kernel is simple.
 - $\overline{\operatorname{Ham}}(\Sigma,\omega)$
 - No known natural homomorphism.
 - Lots of normal subgroups.

Non-simplicity of $\overline{\operatorname{Ham}}(\Sigma), \partial \Sigma \neq \emptyset$ and the Calabi invariant

э

Non-simplicity of $\overline{\operatorname{Ham}}(\Sigma), \partial \Sigma \neq \emptyset$ and the Calabi invariant

Assume: $\Sigma = D$.

- $\overline{\operatorname{Ham}}(\Sigma) = \operatorname{Homeo}_{c}(D, \omega).$
- Ham(Σ) = Diff_c(D, ω).

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

• • • • • • • • • •

b 4 Te

э

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

• Given $\varphi \in \text{Diff}_c(D, \omega)$, write $\varphi = \varphi_H$, H = 0 near ∂D .

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

Given φ ∈ Diff_c(D, ω), write φ = φ_H, H = 0 near ∂D.
Define

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \ \omega \ dt.$$

4 D K 4 B K 4 B K 4 B K

э

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

Given φ ∈ Diff_c(D, ω), write φ = φ_H, H = 0 near ∂D.
Define
Cal(φ) := ∫¹ ∫ H, φ, dt

$$\operatorname{al}(\varphi) := \int_0^{\infty} \int_D^{\infty} \boldsymbol{n}_t \, \boldsymbol{\omega}$$

- Facts:
 - Well-defined: $Cal(\varphi)$ doesn't depend on choice of *H*.

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

Given φ ∈ Diff_c(D, ω), write φ = φ_H, H = 0 near ∂D.
Define

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \ \omega \ dt.$$

- Facts:
 - Well-defined: $Cal(\varphi)$ doesn't depend on choice of *H*.
 - Cal is a homomorphism.

The Calabi invariant is a homomorphism

Cal : Diff_c(D, ω) $\rightarrow \mathbb{R}$.

Given φ ∈ Diff_c(D, ω), write φ = φ_H, H = 0 near ∂D.
Define

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \ \omega \ dt.$$

Facts:

- Well-defined: $Cal(\varphi)$ doesn't depend on choice of *H*.
- Cal is a homomorphism.
- $\operatorname{Cal}(\varphi_H) \leq \|H\|_{\infty}$.

$\operatorname{Diff}_{c}(D,\omega) \subset \operatorname{Homeo}_{c}(D,\omega)$ dense in C^{0} topology.

э

▶ < ∃ ▶</p>

$\operatorname{Diff}_{c}(D,\omega) \subset \operatorname{Homeo}_{c}(D,\omega)$ dense in C^{0} topology.

э

▶ < ∃ ▶</p>

$\operatorname{Diff}_{c}(D,\omega) \subset \operatorname{Homeo}_{c}(D,\omega)$ dense in C^{0} topology. Cal : $\operatorname{Diff}_{c}(D,\omega) \to \mathbb{R}$ defined on a dense subset of $\operatorname{Homeo}_{c}(D,\omega)$.

► < ∃ ►</p>

3

 $\operatorname{Diff}_{c}(D,\omega) \subset \operatorname{Homeo}_{c}(D,\omega)$ dense in C^{0} topology. Cal : $\operatorname{Diff}_{c}(D,\omega) \to \mathbb{R}$ defined on a dense subset of $\operatorname{Homeo}_{c}(D,\omega)$. Can we extend it? (Fathi 70s, Ghys ICM 2006) $\operatorname{Diff}_{c}(D,\omega) \subset \operatorname{Homeo}_{c}(D,\omega)$ dense in C^{0} topology. Cal : $\operatorname{Diff}_{c}(D,\omega) \to \mathbb{R}$ defined on a dense subset of $\operatorname{Homeo}_{c}(D,\omega)$. Can we extend it? (Fathi 70s, Ghys ICM 2006) If yes, then $\operatorname{Homeo}_{c}(D,\omega)$ not simple.

Problem: Cal is not C^0 continuous.

э

Problem: Cal is not C^0 continuous. Eg: Take H_n , supported on disc of radius 1/n, where $\int H_n \omega = 1$.

Problem: Cal is not C^0 continuous. Eg: Take H_n , supported on disc of radius 1/n, where $\int H_n \omega = 1$. Then, $\operatorname{Cal}(\varphi_{H_n}) = 1$, but $\varphi_{H_n} \xrightarrow{C^0} \operatorname{Id}$.

Problem: Cal is not C^0 continuous. Eg: Take H_n , supported on disc of radius 1/n, where $\int H_n \omega = 1$. Then, $\operatorname{Cal}(\varphi_{H_n}) = 1$, but $\varphi_{H_n} \xrightarrow{C^0} \operatorname{Id}$.

Not easy to extend Cal to Homeo_c(D, ω).

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

Say $\varphi \in \text{Hameo}(D)$ if there exist $H_i \in C^{\infty}$ and $H \in C^0$ st

$$\varphi_{H_i} \xrightarrow{C^0} \varphi$$
 and $H_i \xrightarrow{\|\cdot\|_{\infty}} H_i$

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

Say $\varphi \in \text{Hameo}(D)$ if there exist $H_i \in C^{\infty}$ and $H \in C^0$ st

$$\varphi_{H_i} \xrightarrow{C^0} \varphi$$
 and $H_i \xrightarrow{\|\cdot\|_{\infty}} H$.

Write $\varphi = \varphi_H$.

イロト イポト イラト イラト

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

Say $\varphi \in \text{Hameo}(D)$ if there exist $H_i \in C^{\infty}$ and $H \in C^0$ st

$$\varphi_{H_i} \xrightarrow{C^0} \varphi$$
 and $H_i \xrightarrow{\|\cdot\|_{\infty}} H_i$

Write $\varphi = \varphi_H$. Fathi and Oh: define Cal : Hameo(D) $\rightarrow \mathbb{R}$ by

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \, \omega \, dt.$$

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

Say $\varphi \in \text{Hameo}(D)$ if there exist $H_i \in C^{\infty}$ and $H \in C^0$ st

$$\varphi_{H_i} \xrightarrow{C^0} \varphi$$
 and $H_i \xrightarrow{\|\cdot\|_{\infty}} H_i$

Write $\varphi = \varphi_H$. Fathi and Oh: define Cal : Hameo(D) $\rightarrow \mathbb{R}$ by

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \, \omega \, dt.$$

Must show:

1. Well-definedness: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \, \omega \, dt = \int \int G_t \, \omega \, dt$. (Difficult)

Oh-Müller (mid 2000s): introduced a normal subgroup

Hameo(D) \leq Homeo_c(D, ω).

Say $\varphi \in \text{Hameo}(D)$ if there exist $H_i \in C^{\infty}$ and $H \in C^0$ st

$$\varphi_{H_i} \xrightarrow{C^0} \varphi$$
 and $H_i \xrightarrow{\|\cdot\|_{\infty}} H$.

Write $\varphi = \varphi_H$. Fathi and Oh: define Cal : Hameo(D) $\rightarrow \mathbb{R}$ by

$$\operatorname{Cal}(\varphi) := \int_0^1 \int_D H_t \, \omega \, dt.$$

Must show:

1. Well-definedness: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \, \omega \, dt = \int \int G_t \, \omega \, dt$. (Difficult)

2. Cal is a homomorphism. (Oh, 2000s)

If well-defined

If Cal : Hameo(D) $\rightarrow \mathbb{R}$ well-defined \implies Homeo_c(D, ω) not simple:

э
- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

A D N A B N A B N A B N

- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith)

Cal : Hameo(D) $\rightarrow \mathbb{R}$ is well-defined.

- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith)

Cal : Hameo(D) $\rightarrow \mathbb{R}$ is well-defined.

Remarks:

• We show Hameo \subset Homeo_c(D, ω).

- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith)

Cal : Hameo(D) $\rightarrow \mathbb{R}$ is well-defined.

Remarks:

• We show Hameo \subset Homeo_c(D, ω). Hameo \subset Ham for any Σ .

- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith)

Cal : Hameo(D) $\rightarrow \mathbb{R}$ is well-defined.

Remarks:

- We show $Hameo \subset Homeo_c(D, \omega)$. $Hameo \subset \overline{Ham}$ for any Σ .
- Cal extends to $Hameo(\Sigma)$ for any Σ with $\partial \Sigma \neq \emptyset$.

- If Hameo is proper, we're done.
- If Hameo = Homeo_c(D, ω), then ker(Cal) \triangleleft Homeo_c(D, ω).

Theorem (Cristofaro-Gardiner, Humilière, Mak, S, Smith)

Cal : Hameo(D) $\rightarrow \mathbb{R}$ is well-defined.

Remarks:

- We show $Hameo \subset Homeo_c(D, \omega)$. $Hameo \subset \overline{Ham}$ for any Σ .
- Cal extends to $Hameo(\Sigma)$ for any Σ with $\partial \Sigma \neq \emptyset$.

Outline of the argument

A D > A B > A B

 c_d : Diff_c(D, ω) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. (Link spectral invariants)

イロト イポト イヨト イヨト

 c_d : Diff_c(D, ω) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. (Link spectral invariants) 2. Connect to Calabi:

$$\lim_{d\longrightarrow\infty} \boldsymbol{C}_d(\varphi) = \operatorname{Cal}(\varphi).$$

< ロ > < 同 > < 三 > < 三 >

 c_d : Diff_c(D, ω) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. (Link spectral invariants) 2. Connect to Calabi:

$$\lim_{d\longrightarrow\infty} \boldsymbol{C}_d(\varphi) = \operatorname{Cal}(\varphi).$$

< ロ > < 同 > < 三 > < 三 >

 c_d : Diff_c(D, ω) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. (Link spectral invariants) 2. Connect to Calabi:

$$\lim_{d\longrightarrow\infty} \boldsymbol{c}_d(\varphi) = \operatorname{Cal}(\varphi).$$

3. Connect to Homeo_c(D, ω): c_d is C^0 continuous and extends to

 c_d : Homeo_c $(D, \omega) \rightarrow \mathbb{R}$.

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \, \omega \, dt = \int \int G_t \, \omega \, dt$.

(a)

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \, \omega \, dt = \int \int G_t \, \omega \, dt$.

(a)

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$. Sufficient: $\varphi_H = Id$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$. Sufficient: $\varphi_H = Id$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$ Def of Hameo: $\varphi_H = Id \implies \exists H_i \in C^\infty$ and $H \in C^0$ s.t. $\varphi_{H_i} \xrightarrow{C^0} Id$ and $\|H - H_i\|_\infty \longrightarrow 0$.

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \, \omega \, dt = \int \int G_t \, \omega \, dt$. Sufficient: $\varphi_H = Id$, then $\int \int H \, \omega \, dt = 0$. $(H \in C^0)$ Def of Hameo: $\varphi_H = Id \implies \exists H_i \in C^\infty$ and $H \in C^0$ s.t. $\varphi_{H_i} \xrightarrow{C^0} Id$ and $||H - H_i||_\infty \longrightarrow 0$. $\left| \int H \right| \leq$

Must show: $\varphi = \varphi_H = \varphi_G$, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$. Sufficient: $\varphi_H = \text{Id}$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$ Def of Hameo: $\varphi_H = \text{Id} \implies \exists H_i \in C^\infty \text{ and } H \in C^0 \text{ s.t.}$ $\varphi_{H_i} \xrightarrow{C^0} \text{Id} \text{ and } ||H - H_i||_\infty \longrightarrow 0.$ $\left|\int H\right| \leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + |c_d(\varphi_{H_i})|$

Must show:
$$\varphi = \varphi_H = \varphi_G$$
, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$.
Sufficient: $\varphi_H = \operatorname{Id}$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$
Def of Hameo: $\varphi_H = \operatorname{Id} \implies \exists H_i \in C^\infty$ and $H \in C^0$ s.t.
 $\varphi_{H_i} \xrightarrow{C^0} \operatorname{Id}$ and $||H - H_i||_\infty \longrightarrow 0$.
 $\left|\int H\right| \leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + \left|c_d(\varphi_{H_i})\right|$
 $\leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + \left|c_d(\varphi_{H_i})\right| + \left|c_d(\varphi_{H_i})\right| + \left|c_d(\varphi_{H_i})\right|$

э

▶ < ∃ >

Must show:
$$\varphi = \varphi_H = \varphi_G$$
, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$.
Sufficient: $\varphi_H = Id$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$
Def of Hameo: $\varphi_H = Id \implies \exists H_i \in C^\infty$ and $H \in C^0$ s.t.
 $\varphi_{H_i} \xrightarrow{C^0} Id$ and $||H - H_i||_\infty \longrightarrow 0$.
 $\left|\int H\right| \leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + |c_d(\varphi_{H_i})|$
 $\leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + |c_d(\varphi_{H_i})| + |c_d(\varphi_{H_i})| + |c_d(\varphi_{H_i})|$.
Fact (Hofer continuity): $|c_d(\varphi_{H_i}) - c_d(\varphi_{H_i})| \leq ||H_i - H_i||_\infty$

э

▶ < ∃ >

Must show:
$$\varphi = \varphi_H = \varphi_G$$
, then $\int \int H_t \,\omega \, dt = \int \int G_t \,\omega \, dt$.
Sufficient: $\varphi_H = \operatorname{Id}$, then $\int \int H \,\omega \, dt = 0$. $(H \in C^0)$
Def of Hameo: $\varphi_H = \operatorname{Id} \implies \exists H_i \in C^\infty$ and $H \in C^0$ s.t.
 $\varphi_{H_i} \xrightarrow{C^0} \operatorname{Id}$ and $||H - H_i||_\infty \longrightarrow 0$.
 $\left|\int H\right| \leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + |c_d(\varphi_{H_i})|$
 $\leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + |c_d(\varphi_{H_i}) - c_d(\varphi_{H_i})| + |c_d(\varphi_{H_i})|$.
Fact (Hofer continuity): $|c_d(\varphi_{H_i}) - c_d(\varphi_{H_i})| \leq ||H_i - H_i||_\infty$.

$$\left|\int H\right| \leq \left|\int H - \int H_i\right| + \left|\int H_i - c_d(\varphi_{H_i})\right| + \|H_i - H_j\|_{\infty} + |c_d(\varphi_{H_j})|$$

Recall:
$$\varphi_{H_i} \xrightarrow{C^0} \text{Id} \text{ and } ||H - H_i||_{\infty} \longrightarrow 0.$$

$$\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H_j||_{\infty} + |c_d(\varphi_{H_j})|.$$

Sobhan Seyfaddini The algebraic structure of groups of area-preserving homeomorphisms 20

Recall:
$$\varphi_{H_i} \xrightarrow{C^0} \text{Id} \text{ and } ||H - H_i||_{\infty} \longrightarrow 0.$$

$$\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H_j||_{\infty} + |c_d(\varphi_{H_j})|.$$

Let $j \longrightarrow \infty$: $c_d(\varphi_{H_i}) \longrightarrow c_d(\text{Id}) = 0.$

Recall:
$$\varphi_{H_i} \xrightarrow{C^0} \text{Id} \text{ and } ||H - H_i||_{\infty} \longrightarrow 0.$$

 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H_j||_{\infty} + |c_d(\varphi_{H_j})|.$
Let $j \longrightarrow \infty$: $c_d(\varphi_{H_j}) \longrightarrow c_d(\text{Id}) = 0.$ We get:
 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H||_{\infty}.$

Recall:
$$\varphi_{H_i} \xrightarrow{\mathcal{C}^0} \text{Id} \text{ and } ||H - H_i||_{\infty} \longrightarrow 0.$$

 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H_j||_{\infty} + |c_d(\varphi_{H_j})|.$
Let $j \longrightarrow \infty$: $c_d(\varphi_{H_j}) \longrightarrow c_d(\text{Id}) = 0.$ We get:
 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H||_{\infty}.$
Let $d \longrightarrow \infty$: $c_d(\varphi_{H_i}) \longrightarrow \int H_i.$

Recall:
$$\varphi_{H_i} \xrightarrow{C^0} \text{Id} \text{ and } ||H - H_i||_{\infty} \longrightarrow 0.$$

 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H_j||_{\infty} + |c_d(\varphi_{H_j})|.$
Let $j \longrightarrow \infty$: $c_d(\varphi_{H_j}) \longrightarrow c_d(\text{Id}) = 0.$ We get:
 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + ||H_i - H||_{\infty}.$
Let $d \longrightarrow \infty$: $c_d(\varphi_{H_i}) \longrightarrow \int H_i.$ We get:
 $\left| \int H \right| \leq \left| \int H - \int H_i \right| + ||H_i - H||_{\infty}.$

$$\begin{aligned} \text{Recall: } \varphi_{H_i} &\stackrel{\mathcal{C}^0}{\longrightarrow} \text{Id} \quad \text{and} \quad \|H - H_i\|_{\infty} \longrightarrow 0. \\ & \left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + \|H_i - H_j\|_{\infty} + |c_d(\varphi_{H_j})| \,. \end{aligned}$$

$$\begin{aligned} \text{Let } j \longrightarrow \infty: \ c_d(\varphi_{H_j}) \longrightarrow c_d(\text{Id}) = 0. \text{ We get:} \\ & \left| \int H \right| \leq \left| \int H - \int H_i \right| + \left| \int H_i - c_d(\varphi_{H_i}) \right| + \|H_i - H\|_{\infty}. \end{aligned}$$

$$\begin{aligned} \text{Let } d \longrightarrow \infty: \ c_d(\varphi_{H_i}) \longrightarrow \int H_i. \text{ We get:} \\ & \left| \int H \right| \leq \left| \int H - \int H_i \right| + \|H_i - H\|_{\infty}. \end{aligned}$$

Let $i \longrightarrow \infty$: RHS $\longrightarrow 0$. We get:

$$\int H=0.$$

ъ

A few words on the invariant C_d Assume $\Sigma = S^2$

A D > A B > A

Construction of c_d : overview.

1. Lagrangian spectral invariants: $L \subset (M, \omega)$ Lag, $HF_*(L) = H_*(L)$.

Construction of c_d : overview.

1. Lagrangian spectral invariants: $L \subset (M, \omega)$ Lag, $HF_*(L) = H_*(L)$.

There exists a mapping

$$\mathcal{C}: ([0,1]\times M) \to \mathbb{R}$$

with many useful properties.

$$\ell: \textit{\textit{C}}^\infty([0,1] imes \textit{\textit{M}})
ightarrow \mathbb{R}$$

with many useful properties. **2. Our Lagrangian:**

$$\ell: \textit{\textit{C}}^\infty([0,1] imes\textit{\textit{M}})
ightarrow \mathbb{R}$$

with many useful properties.

- 2. Our Lagrangian:
 - Choose an appropriate collection of curves $\mathcal{L} = \{L_1, ..., L_d\} \subset \Sigma$.

$$\ell: \textit{\textit{C}}^\infty([0,1] imes\textit{\textit{M}})
ightarrow \mathbb{R}$$

with many useful properties.

- 2. Our Lagrangian:
 - Choose an appropriate collection of curves $\mathcal{L} = \{L_1, ..., L_d\} \subset \Sigma$.
 - Associate to \mathcal{L} a Lagrangian torus $\operatorname{Sym}^{d}(\mathcal{L}) \subset \operatorname{Sym}^{d}(\Sigma)$.

$$\ell: \textit{\textit{C}}^\infty([0,1] imes\textit{\textit{M}})
ightarrow \mathbb{R}$$

with many useful properties.

2. Our Lagrangian:

- Choose an appropriate collection of curves $\mathcal{L} = \{L_1, ..., L_d\} \subset \Sigma$.
- Associate to \mathcal{L} a Lagrangian torus $\operatorname{Sym}^{d}(\mathcal{L}) \subset \operatorname{Sym}^{d}(\Sigma)$.
- We show $HF_*(Sym^d(\mathcal{L})) = H_*(Sym^d(\mathcal{L}))$.

$$\ell: \textit{\textit{C}}^\infty([0,1] imes\textit{\textit{M}})
ightarrow \mathbb{R}$$

with many useful properties.

- 2. Our Lagrangian:
 - Choose an appropriate collection of curves $\mathcal{L} = \{L_1, ..., L_d\} \subset \Sigma$.
 - Associate to \mathcal{L} a Lagrangian torus $\operatorname{Sym}^{d}(\mathcal{L}) \subset \operatorname{Sym}^{d}(\Sigma)$.
 - We show $HF_*(Sym^d(\mathcal{L})) = H_*(Sym^d(\mathcal{L}))$.

3. Link spectral invariant: corresponding Lagrangian spectral invariant.

Our Lagrangian and its Floer homology.

4 (1) × 4(2) × 4 (2) × 4 (2)

Links

A link is a finite collection $\mathcal{L} = \{L_1, ..., L_d\}$ of pairwise disjoint circles in Σ .

< ∃ >
Links

A link is a finite collection $\mathcal{L} = \{L_1, ..., L_d\}$ of pairwise disjoint circles in Σ .

Strategy: Define Lagrangian Floer homology for links.

Links

A link is a finite collection $\mathcal{L} = \{L_1, ..., L_d\}$ of pairwise disjoint circles in Σ .

Strategy: Define Lagrangian Floer homology for links. Previous work:

- Oszvath-Szabo 2000s: Heegaard/knot Floer homology.
- Mak-Smith, 2019: defined Lag Floer for \mathcal{L}_0 .
- Polterovich-Shelukhin, 2021: spectral invariants for \mathcal{L}_1 (any *d*).

Equidistributed links

э

< ⊒ >

Equidistributed links

Use \mathcal{L} to build a monotone Lagrangian torus in $\mathbb{C}P^d$.

э

 $\mathcal{L} = \{L_1, ..., L_d\}$ equidistributed link in (Σ, ω) .

1. *d*-fold products: $L_1 \times \cdots \times L_d \subset (\Sigma^d, \omega^d)$ Lagrangian.

Cal: Hameo
$$\rightarrow R$$

($de Hameo \rightarrow cal(d) < +\infty$
pind $\theta \in Homeo_{c}(0,\omega)$ ω_{l} $Cal(\theta) = +\infty$
 $H: D \rightarrow IR$
 $H(r,\theta) = fr)$
 $from the second s$

► < Ξ >

3

 $\mathcal{L} = \{L_1, ..., L_d\}$ equidistributed link in (Σ, ω) . 1. *d*-fold products: $L_1 \times \cdots \times L_d \subset (\Sigma^d, \omega^d)$ Lagrangian. 2. S_d acts on Σ^d : $\sigma \in S_d$, $\sigma \cdot (x_1, \ldots, x_d) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(d)})$. CI : DIFF (D, WI - R 2. Cd in a 9m. wy defet in >0 I CALERI - GUES - GUESI ZI JANE Med):= lim (J(l)

 $\mathcal{L} = \{L_1, ..., L_d\}$ equidistributed link in (Σ, ω) .

1. *d*-fold products: $L_1 \times \cdots \times L_d \subset (\Sigma^d, \omega^d)$ Lagrangian.

2. S_d acts on Σ^d : $\sigma \in S_d$, $\sigma \cdot (x_1, \ldots, x_d) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(d)})$. Quotient:

$$(\operatorname{Sym}^d(\Sigma), \omega_{\mathit{orb}}) := rac{(\Sigma^d, \omega^d)}{\mathcal{S}_d}.$$

 $\mathcal{L} = \{L_1, ..., L_d\}$ equidistributed link in (Σ, ω) .

1. *d*-fold products: $L_1 \times \cdots \times L_d \subset (\Sigma^d, \omega^d)$ Lagrangian.

2.
$$S_d$$
 acts on Σ^d : $\sigma \in S_d$, $\sigma \cdot (x_1, \ldots, x_d) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(d)})$.
Quotient:

$$(\operatorname{Sym}^d(\Sigma), \omega_{\mathit{orb}}) := rac{(\Sigma^d, \omega^d)}{\mathcal{S}_d}.$$

Symp orbifold, singular locus $\Delta := \{(x_1, \ldots, x_d) : x_i = x_j\}$ for some $i \neq j$.

 $\mathcal{L} = \{L_1, ..., L_d\}$ equidistributed link in (Σ, ω) .

1. *d*-fold products: $L_1 \times \cdots \times L_d \subset (\Sigma^d, \omega^d)$ Lagrangian.

2. S_d acts on Σ^d : $\sigma \in S_d$, $\sigma \cdot (x_1, \ldots, x_d) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(d)})$. Quotient:

$$(\operatorname{Sym}^d(\Sigma), \omega_{\mathit{orb}}) := rac{(\Sigma^d, \omega^d)}{\mathcal{S}_d}.$$

Symp orbifold, singular locus $\Delta := \{(x_1, \dots, x_d) : x_i = x_j\}$ for some $i \neq j$. Lagrangian: $L_1 \times \dots \times L_d$ in the quotient.

$$\operatorname{Sym}^d(\mathcal{L}) \subset \operatorname{Sym}^d(\Sigma) \setminus \Delta.$$

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold.

イロト イポト イヨト イヨト

э

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

 ω_{orb} singular on Δ . Perutz: modify ω_{orb} near Δ to smooth symp form ω_P .

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

 $ω_{orb}$ singular on Δ. Perutz: modify $ω_{orb}$ near Δ to smooth symp form $ω_P$. $ω_P = ω_{orb}$ on nbhd of Sym^d(\mathcal{L}).

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

 $ω_{orb}$ singular on Δ. Perutz: modify $ω_{orb}$ near Δ to smooth symp form $ω_P$. $ω_P = ω_{orb}$ on nbhd of Sym^d(\mathcal{L}).

We prove:

• $\operatorname{Sym}^{d}(\mathcal{L})$ is a monotone Lagrangian submfld of $(\mathbb{C}P^{d}, \omega_{P})$ and $HF(\operatorname{Sym}^{d}(\mathcal{L})) \neq 0$.

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

 $ω_{orb}$ singular on Δ. Perutz: modify $ω_{orb}$ near Δ to smooth symp form $ω_P$. $ω_P = ω_{orb}$ on nbhd of Sym^d(\mathcal{L}).

We prove:

- Sym^{*d*}(\mathcal{L}) is a monotone Lagrangian submfld of ($\mathbb{C}P^{d}, \omega_{P}$) and $HF(Sym^{d}(\mathcal{L})) \neq 0$.
 - Similar results in Ozsvath-Szabo. (Knot Floer homology)

A priori $(\text{Sym}^d(\Sigma), \omega_{orb})$ is an orbifold. Nice fact: $\text{Sym}^d(\Sigma) \simeq \mathbb{C}P^d$. $(\Sigma = S^2)$

 $ω_{orb}$ singular on Δ. Perutz: modify $ω_{orb}$ near Δ to smooth symp form $ω_P$. $ω_P = ω_{orb}$ on nbhd of Sym^d(\mathcal{L}).

We prove:

- $\operatorname{Sym}^{d}(\mathcal{L})$ is a monotone Lagrangian submfld of $(\mathbb{C}P^{d}, \omega_{P})$ and $HF(\operatorname{Sym}^{d}(\mathcal{L})) \neq 0$.
 - Similar results in Ozsvath-Szabo. (Knot Floer homology)
- Key idea: Cobordism between Maslov 2 *J*-discs on Sym^d(*L*) and the Clifford torus.

Thank You!

ъ

э

Bonus:

- Lagrangian spectral invariants.
- Calabi property.
- The disc potential.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Viterbo, Oh, Leclercq, Zapolsky, ...

Set up: $L \subset (M, \omega)$ Lagrangian, $HF_*(L) = H_*(L)$.

(a)

3

Viterbo, Oh, Leclercq, Zapolsky, ...

Set up: $L \subset (M, \omega)$ Lagrangian, $HF_*(L) = H_*(L)$.

Simplifying assumption: $\pi_2(M, L) = 0$.

3

Viterbo, Oh, Leclercq, Zapolsky, ...

Set up: $L \subset (M, \omega)$ Lagrangian, $HF_*(L) = H_*(L)$.

Simplifying assumption: $\pi_2(M, L) = 0$.

Lagrangian spectral invariants:

$$\ell: C^{\infty}([0,1] \times M) \rightarrow \mathbb{R}.$$

 $\ell(H) :=$ "the action level at which [L] appears in Lag Floer homology."

The action functional

$$\begin{split} \Omega(L) &:= \{ x : [0,1] \longrightarrow M : x(0), x(1) \in L, [x] = 0 \in \pi_1(M,L) \} \\ H \in C^{\infty}([0,1] \times M). \text{ The action functional } \mathcal{A}_H : \Omega(L) \longrightarrow \mathbb{R} \end{split}$$

$$x\mapsto \int_0^1 H_t(x(t))dt - \int_u \omega.$$

Does not depend on u, because $\pi_2(M, L) = 0$.

The action functional

 $\Omega(L) := \{x : [0,1] \longrightarrow M : x(0), x(1) \in L, [x] = 0 \in \pi_1(M,L)\}.$ $H \in C^{\infty}([0,1] \times M).$ The action functional $\mathcal{A}_H : \Omega(L) \longrightarrow \mathbb{R}$

$$x\mapsto \int_0^1 H_t(x(t))dt - \int_u \omega.$$

Does not depend on u, because $\pi_2(M, L) = 0$. Critical points of $A_H : x \in \Omega$ st

$$x(t) = \varphi_H^t(p), p \in L.$$

The action functional

 $\Omega(L) := \{x : [0,1] \longrightarrow M : x(0), x(1) \in L, [x] = 0 \in \pi_1(M,L)\}.$ $H \in C^{\infty}([0,1] \times M).$ The action functional $\mathcal{A}_H : \Omega(L) \longrightarrow \mathbb{R}$

$$x\mapsto \int_0^1 H_t(x(t))dt - \int_u \omega.$$

Does not depend on u, because $\pi_2(M, L) = 0$. Critical points of $A_H : x \in \Omega$ st

$$\mathbf{x}(t) = \varphi_H^t(\mathbf{p}), \mathbf{p} \in L.$$

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

4 D K 4 B K 4 B K 4 B K

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of *L*.

Action filtration:

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

• $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.
- $HF^{a}(H, L)$: homology of the complex. Depends on *H*.

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.
- $HF^{a}(H, L)$: homology of the complex. Depends on *H*.

Spectral invariants:

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.
- $HF^{a}(H, L)$: homology of the complex. Depends on *H*.

Spectral invariants:

• If $a \ll 0$, then $HF^{a}(H, L) = 0$. Cannot see [L].

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.
- $HF^{a}(H, L)$: homology of the complex. Depends on *H*.

Spectral invariants:

- If $a \ll 0$, then $HF^{a}(H, L) = 0$. Cannot see [L].
- If a >> 0, then $HF^{a}(H, L) = H_{*}(L)$. Can see [L].

- Chain complex CF(L, H): generated by critical points of A_H .
- Differential ∂ : counts solutions to Floer's equation.
- HF(L, H): homology of the complex = singular homology of L.

Action filtration: Fix $a \in \mathbb{R}$.

- $CF^{a}(H, L)$: subcomplex gen by critical points with $A_{H} \leq a$.
- ∂ preserves the filtration: $\partial : CF^a(H, L) \longrightarrow CF^a(H, L)$.
- $HF^{a}(H, L)$: homology of the complex. Depends on *H*.

Spectral invariants:

- If $a \ll 0$, then $HF^{a}(H, L) = 0$. Cannot see [L].
- If a >> 0, then $HF^{a}(H, L) = H_{*}(L)$. Can see [L].

Define

$$\ell(H) := \inf\{a : \text{ can see } [L] \text{ in } HF^a(H,L)\}$$

The spectral invariant c_d

 $HF(Sym(\mathcal{L})) = H_*(Sym(\mathcal{L})) \implies$ can define spectral invariants:

$$\ell: \boldsymbol{C}^\infty([0,1] imes \operatorname{Sym}^d(\Sigma))\setminus\{0\} o\mathbb{R}.$$

イロト 不得 トイヨト イヨト 二日

The spectral invariant c_d

 $HF(Sym(\mathcal{L})) = H_*(Sym(\mathcal{L})) \implies$ can define spectral invariants:

$$\ell: \boldsymbol{C}^{\infty}([0,1] imes \operatorname{Sym}^{\boldsymbol{d}}(\Sigma)) \setminus \{\mathbf{0}\} o \mathbb{R}.$$

Definition of *c*_{*d*}:

イロト イポト イヨト イヨト

э.

The spectral invariant c_d

 $HF(Sym(\mathcal{L})) = H_*(Sym(\mathcal{L})) \implies$ can define spectral invariants:

$$\ell: \boldsymbol{C}^{\infty}([0,1] imes \operatorname{Sym}^{\boldsymbol{d}}(\Sigma)) \setminus \{\mathbf{0}\} o \mathbb{R}.$$

Definition of c_d :

Hamiltonian $H_t : \Sigma \to \mathbb{R}$.

э
The spectral invariant c_d

 $HF(Sym(\mathcal{L})) = H_*(Sym(\mathcal{L})) \implies$ can define spectral invariants:

 $\ell: \boldsymbol{C}^{\infty}([0,1] \times \operatorname{Sym}^{d}(\Sigma)) \setminus \{0\} \to \mathbb{R}.$

Definition of *c*_{*d*}:

Hamiltonian $H_t : \Sigma \to \mathbb{R}$. Induces

 $\operatorname{Sym}^d(H) : \operatorname{Sym}^d(\Sigma) \to \mathbb{R}$ $[(x_1, \ldots, x_d)] \mapsto H_t(x_1) + \ldots + H_t(x_d).$

Define

$$c_d(H) := \frac{1}{d}\ell(\operatorname{Sym}^d(H)).$$

4 D K 4 B K 4 B K 4 B K

Calabi property

A D A A B A A B A A B

э

The Calabi property

General fact: $L \subset (M, \omega)$ Lagrangian, with associated spectral invariant

 $\ell: C^{\infty}([0,1] \times M) \rightarrow \mathbb{R}.$

э

< ロ > < 同 > < 回 > < 回 > :

The Calabi property

General fact: $L \subset (M, \omega)$ Lagrangian, with associated spectral invariant

 $\ell: C^{\infty}([0,1] \times M) \rightarrow \mathbb{R}.$

Lagrangian Control:
$$\int_0^1 \min_L H_t \ dt \ \leq \ell(H) \leq \int_0^1 \max_L H_t \ dt.$$

э

< ロ > < 同 > < 回 > < 回 > :

The Calabi property

General fact: $L \subset (M, \omega)$ Lagrangian, with associated spectral invariant

 $\ell: C^{\infty}([0,1] \times M) \rightarrow \mathbb{R}.$

Lagrangian Control:
$$\int_0^1 \min_L H_t \, dt \leq \ell(H) \leq \int_0^1 \max_L H_t \, dt.$$

Translation to our setting: $\mathcal{L} = \{L_1, ..., L_d\} \subset (\Sigma, \omega)$

$$\frac{1}{d} \sum_{i=1}^{d} \int_{0}^{1} \min_{L_{i}} H_{t} dt \leq c_{d}(H) \leq \frac{1}{d} \sum_{i=1}^{d} \int_{0}^{1} \max_{L_{i}} H_{t} dt.$$

イロト 不得 トイヨト イヨト 二日

$$\mathcal{L} = \{L_1, \dots, L_d\}$$
Area = $\frac{1}{d+1}$
Area = $\frac{1}{d+1}$

$$\int_0^1 \left(\frac{1}{d}\sum_{i=1}^d \min_{L_i} H_t\right) dt \leq c_d(H) \leq \int_0^1 \left(\frac{1}{d}\sum_{i=1}^d \max_{L_i} H_t\right) dt.$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

$$\mathcal{L} = \{L_1, \dots, L_d\}$$
Area = $\frac{1}{d+1}$
Area = $\frac{1}{d+1}$

$$\int_0^1 \left(\frac{1}{d} \sum_{i=1}^d \min_{L_i} H_t\right) dt \le c_d(H) \le \int_0^1 \left(\frac{1}{d} \sum_{i=1}^d \max_{L_i} H_t\right) dt.$$
$$\frac{1}{d} \sum_{i=1}^d \min_{L_i} H_t \approx \text{Riemann sum for } \int H_t \omega$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 三 ○ ○ ○ ○

$$\mathcal{L} = \{L_1, \dots, L_d\}$$
Area = $\frac{1}{d+1}$
Area = $\frac{1}{d+1}$

$$\int_0^1 \left(\frac{1}{d}\sum_{i=1}^d \min_{L_i} H_t\right) dt \leq c_d(H) \leq \int_0^1 \left(\frac{1}{d}\sum_{i=1}^d \max_{L_i} H_t\right) dt.$$
$$\sum_{i=1}^d \min_{L_i} H_t \approx \text{Riemann sum for } \int H_t \ \omega \approx \frac{1}{d}\sum_{i=1}^d \max_{L_i} H_t.$$

 $\frac{1}{d}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

$$\mathcal{L} = \{L_1, \dots, L_d\}$$

$$Area = \frac{1}{d+1}$$

$$Area = \frac{1}{d+1}$$

$$\int_{0}^{1} \left(\frac{1}{d}\sum_{i=1}^{d}\min_{L_{i}}H_{t}\right) dt \leq c_{d}(H) \leq \int_{0}^{1} \left(\frac{1}{d}\sum_{i=1}^{d}\max_{L_{i}}H_{t}\right) dt$$

$$\sum_{i=1}^{d}\min_{L_{i}}H_{t} \approx \text{Riemann sum for } \int H_{t} \ \omega \approx \frac{1}{d}\sum_{i=1}^{d}\max_{L_{i}}H_{t}.$$

Hence,

 $\frac{1}{d}$

$$\int_0^1 \int H_t \, \omega \, dt \leq \lim_{d \to \infty} c_d(H) \leq \int_0^1 \int H_t \, \omega \, dt.$$

ъ.

The disc potential.

Correspond to the discs B_1, \ldots, B_d and the region *A*.

Correspond to the discs B_1, \ldots, B_d and the region *A*.

•
$$H_2(\mathbb{C}P^d, \operatorname{Sym}^d(\mathcal{L})) = < B_1, \ldots, B_d, A >.$$

Correspond to the discs B_1, \ldots, B_d and the region *A*.

- $H_2(\mathbb{C}P^d, \operatorname{Sym}^d(\mathcal{L})) = \langle B_1, \ldots, B_d, A \rangle$.
- Maslov 2 J-discs with bdry on $\operatorname{Sym}^{d}(\mathcal{L})$: $\{B_1, \ldots, B_d, A\}$.

Correspond to the discs B_1, \ldots, B_d and the region A.

- $H_2(\mathbb{C}P^d, \operatorname{Sym}^d(\mathcal{L})) = < B_1, \ldots, B_d, A >.$
- Maslov 2 J-discs with bdry on $\operatorname{Sym}^{d}(\mathcal{L})$: $\{B_1, \ldots, B_d, A\}$.
- Disc potential: $x_1 + \ldots + x_d + \frac{1}{x_1 \ldots x_d}$.

Correspond to the discs B_1, \ldots, B_d and the region A.

- $H_2(\mathbb{C}P^d, \operatorname{Sym}^d(\mathcal{L})) = < B_1, \ldots, B_d, A >.$
- Maslov 2 J-discs with bdry on $\operatorname{Sym}^{d}(\mathcal{L})$: $\{B_1, \ldots, B_d, A\}$.
- Disc potential: $x_1 + \ldots + x_d + \frac{1}{x_1 \ldots x_d}$.

Thank You!

< B

э