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Instituto Superior Técnico - Department of Mathematics

LisMath Seminar - October 2017



Summary
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General constants, slow reservoirs and long jumps



Goal

Present microscopic models for the dynamics between particles to obtain
the macroscopic laws for the evolution of some quantity of interest in a
physical system.



Physical motivation

Goal: Study the asymptotic behavior of interact particle systems out
of equilibrium.

A channel kept out of equilibrium through the application of a
chemical potential. It is predicted that an steady state
out-of-equilibrium will be reached, in which the particles flow from
one reservoir to another at a constant rate.
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Frank Ludvig Spitzer 1970

Frank Ludvig Spitzer (July 24,
1926 – February 1, 1992) was
an Austrian mathematician
who made fundamental
contributions to probability
theory especially the theory of
interacting particle systems.



Physical motivation

Find the equilibrium states of the system.

Characterize these states as a quantity ρ(·) (density, pressure,
temperature, energy, etc.)

Fix a point u ∈ V and choose a small neighborhood Vu (small for the
macroscopic scale but huge from the microscopic point of view). Due
to interaction, the system reaches an equilibrium ρ(u).

Let time evolve and now the equilibrium close to u is given by ρ(t, u).
How does ρ(t, u) evolve?



Probability theory and PDE’s

Probability PDE’S

The temporal evolution of the density of particles in the macroscopic
state is described as the weak solution of a PDE.

A random process gives rise to a process that is deterministic.

The techniques used here are interesting because they exhibit a
different way of demonstrating the existence of weak solutions for
PDE’s using probabilistic tools.



Motivation to study the porous medium model

In 2009 Patŕıcia Gonçalves, Claudio Landim and Cristina Toninelli
deduced the porous medium equation from the porous medium model
in Z without reservoirs.

Adding two reservoirs on the boundary, i.e, puting an external current
in the system, the question that remains is: How can the conditions
macroscopically affect the system?



Porous medium model

ΣN = {1, 2, . . . ,N − 1} - the bulk

1 2 · · · N-2 N-1

Jumps only for the nearest neighbor

1 2 3 4 5 6 7

×

Only one particle per site

1 2 3 4 5 6 7



Porous medium model

Adding a clock on each bond

1 2 3 4 5 6 7

Two clocks can’t ring at the same time

1 2 3 4 5 6 7



Porous medium model

If the clock rings at the bond {x , x + 1}, the particle can jump from the
site x to x + 1 with a certain rate

Case 1:

x-2 x-1 x x+1 x+2

1

Case 2:

x-2 x-1 x x+1 x+2

1

Case 3:

x-2 x-1 x x+1 x+2

2



Porous medium model with reservoirs

Adding the reservoirs at site x = 0 and x = N

0 1 · · · x-2 x-1 x x+1 x+2 · · · N-1 N

α

1− α

β

1− β



Infinitesimal generator

For N ≥ 1 let ΣN = {1, 2, · · · ,N − 1}.
We denote the process by {ηt}t≥0 which has state space
ΩN = {0, 1}ΣN .

Fix α, β ∈ (0, 1). Given a function f : {0, 1}ΣN → R, the infinitesimal
generator of the PMM in contact with reservoirs is given by

(LN f )(η) = (LN,0f )(η) + (LN,bf )(η),

where

(Ln,0f )(η) =
N−2∑
x=1

[η(x)(1− η(x + 1)) + η(x + 1)(1− η(x))][η(x − 1)

+ η(x + 2)][f (ηx,x+1)− f (η)],

(Ln,bf )(η) = [α(1− η(1)) + (1− α)η(1)][f (η1)− f (η)]

+ [β(1− η(1)) + (1− β)η(1)][f (ηN−1)− f (η)]



Empirical measure

For each configuration η ∈ {0, 1}ΣN we define the empirical
measure πN(η, du) on [0, 1] as

πN(η, du) =
1

N

∑
x∈ΣN

η(x)δ x
N

(du).

If H : [0, 1]→ R, then the integral of H with respect to the
empirical measure πNt will be given by

〈πNt ,H〉 :=

∫
H(u)πNt (η, du) =

1

N

N−1∑
x=1

Hxηt(x),

where Hx = H( x
N ).
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Hydrodynamic limit

Definition

A sequence of probability measures {µN}N≥1 in {0, 1}ΣN is said to be
associated to a density profile ρ0 : [0, 1]→ [0, 1] if, for all γ > 0 and for
any continuous function H : [0, 1]→ R the following limit holds:

lim
N→∞

µN

(
η ∈ {0, 1}ΣN :

∣∣∣∣∣ 1

N

N−1∑
x=1

H
( x

N

)
η(x)−

∫
[0,1]

H(u)ρ0(u)du

∣∣∣∣∣ > γ

)
= 0.

πN0
µN−−→ π0(du) = ρ0(u)du

πNt
PµN−−→ πt(du) = ρt(u)du
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Hydrodynamic limit

Theorem

ρ0 : [0, 1]→ [0, 1] measurable function

{µN}N≥1 associated to a profile

For each t ∈ [0,T ], γ > 0 and for all functions H ∈ C [0, 1], we have that

lim
N→∞

PµN

(
η· :

∣∣∣∣∣ 1

N

N−1∑
x=1

H
( x

N

)
ηt(x)−

∫
[0,1]

H(u)ρ(t, u)du

∣∣∣∣∣ > γ

)
= 0,

holds, where ρ(t, ·) is the unique weak solution of the porous medium
equation.



The weak solution

Let ρ0 : [0, 1]→ [0, 1] be a measurable function. We say that
ρ : [0,T ]× [0, 1]→ [0, 1] is a weak solution of the porous medium
equation with Dirichlet boundary conditions

∂tρt(u) = ∆ (ρt(u))2, (t, u) ∈ [0,T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ [0,T ],

ρ0(·) = ρ0(·),

if the following conditions hold:

1 ρ ∈ L2(0,T ;H1);
2 ρ satisfies the weak formulation:∫ 1

0

ρt(u)Ht(u) du −
∫ 1

0

ρ0(u)H0(u) du −
∫ t

0

∫ 1

0

ρs(u)∂sHs(u) du ds

−
∫ t

0

∫ 1

0

(ρs(u))2∆Hs(u) du ds −
∫ t

0

β2∂uHs(1)− α2∂uHs(0) ds = 0,

for all t ∈ [0,T ] and any function H ∈ C 1,2
0 ([0,T ]× [0, 1]).



Comparing the micro and macro

Weak formulation Dynkin’s formula



Heuristic of the hydrodynamic limit

Analyse the time evolution of the empirical measure associated to the
process {ηt}t≥0.

We define the empirical measure process as πNt (η, du) = πN(ηtN2 , du).

If H ∈ C 1,2
0 ([0,T ]× [0, 1]), then the integral of H with respect to the

empirical measure πNt will be given by

〈πNt ,H〉 :=
1

N

N−1∑
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HxηtN2(x),

where Hx = H( x
N ).
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Heuristic of the hydrodinamic limit

Dynkin’s formula

{ηt}t≥0 a Markov process with countable state space and with
generator L.

F : R+ × E → R be a bounded function such that

∀η ∈ E ,F (·, η) ∈ C 2(R+),
there exists a finite constant C , such that
sup(s,η) |∂jsF (s, η)| ≤ C , for j = 1, 2.

For t ≥ 0, let

MF
t = F (t, ηt)− F (0, η0)−

∫ t

0
(∂s + L)F (s, ηs)ds.

Them {MF
t }t≥0 is a martingale wrt Ft = σ(ηs ; s ≤ t).



Heuristic of the hydrodynamic equation

Fix H ∈ C 1,2
0 ([0,T ]× [0, 1]).

By Dynkin’s formula, taking the function
F (t, ηt) = 〈πNt ,H〉 = 1

N

∑N−1
x=1 HxηtN2(x), we have that

MN
t (H) = 〈πNt ,H〉 − 〈πN0 ,H〉 −

∫ t

0
(∂s + N2LN)〈πNs ,H〉ds,

is a martingale with respect to the natural filtration Ft := σ(ηs : s ≤ t).

Since F (s, ·) is time independent, then ∂sF (s, ·) = 0. So,

MN
t (H) = 〈πN

t ,H〉 − 〈πN
0 ,H〉 −

∫ t

0

N2LN〈πN
s ,H〉ds
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Heuristic of the hydrodynamic equation

N2LN〈πNt ,H〉 = 1
N

∑N−1
x=1 ∆NHxϕx(η) + c1(t,H) + cN−1(t,H),

where

c1(t,H) = ∇+
NH0

(
α− η(1) + αη(1) + η(1)η(2)− αη(2)

)
cN−1(t,H) = −∇−NHN

(
β − η(N − 1) + η(N − 2)η(N − 1)

+ η(N − 1)β − η(N − 2)β
)
,

and

ϕx(η) = η(x − 1)η(x) + η(x)η(x + 1)− η(x − 1)η(x + 1).



Heuristic of the hydrodynamic equation
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Heuristic of the hydrodynamic equation

Definition

The discrete laplacian of H in x
N with x ∈ ΣN is given by

∆NHx = N2{Hx−1 − 2Hx + Hx+1}.

We also define the discrete gradients as

∇+
NHx = N(Hx+1 − Hx),

∇−NHx = − N(Hx−1 − Hx).



Heuristic of the hydrodynamic equation

Hypothesis

µN be a measure in {0, 1}ΣN .

η(1)←→ α with a certain error e1, EµN [e1]
N→∞−−−−→ 0.

η(N − 1)←→ α with a certain error eN−1, EµN [eN−1]
N→∞−−−−→ 0.

Then

MN
t (H) =

1

N

N−1∑
x=1

Hxη(x)− 1

N

N−1∑
x=1

Hxη0(x)

−
∫ t

0

1

N

N−1∑
x=1

∆NHxϕx(η)ds

+

∫ t

0
∇+

NH0α
2 ds + e1 −

∫ t

0
∇−NHNβ

2 ds + eN−1.
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Heuristic of the hydrodynamic equation

Since MN
0 (H) = 0 and the expectation of a martingale with respect to

any measure µN is constant, then EµN [MN
t (H)] = EµN [MN

0 (H)] = 0,

0 =
1

N

N−1∑
x=1

Hx

(
EµN

[η(x)]− EµN
[η0(x)]

)
−
∫ t

0

1

N

N−1∑
x=1

∆NHxEµN
[ϕx(η)]ds

+

∫ t

0

∇+
NH0α

2 ds −
∫ t

0

∇−NHNβ
2 ds + EµN

[e1] + EµN
[eN−1],
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Heuristic of the hydrodynamic equation

Let ρt be a density profile which is the solution of the partial
differential equation that we are looking for.

Let ρNt (x) = EµN [ηtN2(x)].

Suppose that ρNt (x) ∼ ρt( x
N ).

Assuming that the expectation of the product is the product of the
expectation and ρt(

x±1
N ) ∼ ρt( x

N ), for each x ∈ ΣN we can write

EµN [ϕx(ηtN2)] ∼ ρt( x
N )2.
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Heuristic of the hydrodynamic equation

Therefore,

0 =
1

N

N−1∑
x=1

Hx

(
ρt(

x
N )− ρ0( x

N )
)
−
∫ t

0

1
N

N−1∑
x=1

∆NHx

∣∣ρ2
s ( x

N )
∣∣ ds

−
∫ t

0

∇−NHNβ
2ds +

∫ t

0

∇+
NH0α

2ds + EµN
[e1] + EµN

[eN−1].

Letting N →∞ and using the fact that EµN [e1] and EµN [eN−1]
vanishes, we have

0 =

∫ 1

0

(ρt(u)− ρ0(u))H(u)du −
∫ t

0

∫ 1

0

∆NH(u)(ρs(u))2duds

−
∫ t

0

∂uH(1)β2 − ∂uH(0)α2ds.

This is the notion of weak solution of the porous medium equation
with Dirichlet boundary conditions.
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PMM with slow reservoirs

In the hydrodynamic scenario we obtain that the time evolution of the
spatial density of particles, in the diffusive scaling, is given by the
weak solution of the porous medium equation, with boundary
conditions that depend on θ.

The behavior of the system is strongly affected and new boundary
conditions may be derived at the macroscopic level.



θ < 1 Dirichlet type, that is,
∂tρ(t, u) = ∂2

uρ
2(t, u) , for t > 0 , u ∈ (0, 1) ,

ρ(t, 0) = α , for t > 0 ,

ρ(t, 1) = β , for t > 0 ,

ρ(0, u) = ρ0(u) , u ∈ [0, 1] .

θ = 1 Robin type, that is,
∂tρ(t, u) = ∂2

uρ
2(t, u) , for t > 0 , u ∈ (0, 1) ,

∂uρ
2(t, 0) = m(ρ(t, 0)− α) , for t > 0 ,

∂uρ
2(t, 1) = m(β − ρ(t, 1)) , for t > 0 ,

ρ(0, u) = ρ0(u) , u ∈ [0, 1] .

θ > 1 Neumann type, that is
∂tρ(t, u) = ∂2

uρ
2(t, u) , for t > 0 , u ∈ (0, 1) ,

∂uρ(t, 0) = 0 , for t > 0 ,

∂uρ(t, 1) = 0 , for t > 0 ,

ρ(0, u) = ρ0(u) , u ∈ [0, 1] .



Long jumps

The presence of long jumps, have a drastic effect on the macroscopic
behavior and critical exponents of the system.

Fractional Laplacian.

Fractional porous medium equation.



Contact information
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