A family of threefold with unusual features

Antonella crass.

Alma Mater studiorum, Universite di Bologna University of Rennsyluanie, USA.
(1) $\left\{x_{\text {top }}(x)\right\}, x$ caloubi- yau, Physics.
(2) A conjectur of Pago molav
(3) Rawamats. Roxerison conjecture.
(4) A conjectur of Namikawe
(5) A conjectur of Elkies. (Physics of String Theory)

Question (1) (From: String \& Geometry, $\sim$ Mid 80s) what integers arise as $\psi_{\text {top }}(x)$, $x, \quad \operatorname{dim}_{\mathbb{C}} x=3$, compact, kähles, $c_{1}(x)=0$ ?
[ stromingen-wilter, et al 186 ]
[c. Schoen, 1988 ]:
A tamily of such $x$, proj. olgetmovic, amputis $\quad x_{\text {top }}(x)$.
\& 1. $x:$ "The schoens"

- Step $0: B$ rational elliptic surface with section

$$
r \underset{\mathbb{T}^{\prime}}{\downarrow}
$$

Example:
$\{F, G\}$ general cubics in $\mathbb{P}^{2}, \quad\{\lambda F+\mu G\}$ pencil.

$$
\begin{aligned}
& \mathbb{P}^{2} \cdots \mathbb{R}^{1} \\
& z=\left[z_{0}, z_{1}, z\right] \longmapsto {[f(z), G(z)] }
\end{aligned} \quad F \cdot G=\left\{p_{0}, \ldots, p_{0}\right\}
$$


$r: B \longrightarrow \mathbb{R}^{1}$ is an elliptic fimation, with section (s)
$5_{0}, \ldots, 5_{8}$ are sections.

Theorem: All rational elliptic surfaces w/ section. arise from pencils of plane cubics.

Example:

$$
\begin{aligned}
& f(x, y, z)=z_{0}^{3}+z_{1}^{3}+z_{2}^{3} \\
& G(x, y, z)=z_{0}^{2} z_{1}-2^{-1 / 3} \tau z_{0}^{2} z_{2}-8^{1 / 3} c^{2} z_{0} z_{2}^{2} \quad, C^{3}=1
\end{aligned}
$$

- Pencie: $\{\lambda F+\mu G\}$

$$
F \cdot G=\{F=G=0\}=\left\{P_{0}, . .88\right\}
$$

- RES B: $y^{2}=x^{3}-\frac{1}{4}\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-3 \mu^{6}\right)$

- Singuler tibers: $\left.r^{-1} l q_{j}\right): y^{2}=x^{3} \quad\{$
where $q_{j}=\left[\lambda_{j}, \mu_{j}\right]$, noots of $\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-z \mu^{6}\right) \quad 1 \leqslant j \leqslant 6$ [ 6 cusps, A. ZANARDINI]

Example: F, $G$ geneuel $\{\lambda F+\mu G\}$ penal

- res b:

$$
\begin{array}{lc}
\downarrow_{\pi^{1}}^{B} & (x, y,(\lambda, \mu]) \\
{[\lambda, \mu]}
\end{array} \quad q_{i}=\left[\lambda_{i}, \mu\right] \quad 1 \leq j \leq 12
$$

- Singular tibers: $r^{-1}\left(q_{i}\right): y^{2}=x^{2}(x+2) \quad \alpha$
$\operatorname{Dif}: \operatorname{Disai} m i$ moult $\stackrel{\operatorname{def}}{=} \sum\left(B / \mathbb{P}^{\prime}\right)=\left\{q_{j}^{\prime}\right\}$

Step 1 The construction
Let $r: B \rightarrow \mathbb{P}^{\prime}, r^{\prime}: B^{\prime} \rightarrow \mathbb{P}^{\prime} \quad$ RES, with section.

$$
x \stackrel{\text { def }}{=} \underset{B_{1}}{ }
$$



$$
x=\underset{\substack{ \\\mathbb{P}^{2}}}{\operatorname{Br} B^{\prime}}
$$



B

$B^{\prime}$

Remark:
(i) $\quad \sum\left(B / P^{\prime}\right) \cap \sum\left(B^{\prime} / \mathscr{P}^{\prime}\right)=$ of $4 \infty \quad \times$ smooth
(ii) $x_{\text {top }}(x)$ is easily computed.

Proof: Mayen-Vietri

$$
r: B \rightarrow \mathbb{T}^{\prime} ; r^{\prime}: B^{\prime} \rightarrow \mathbb{P}^{\prime} \quad \text { family of } X_{\text {top }}(x)
$$

(ii) $x$ gen, smooth and $x_{\text {top }}(x)=0$

Mostly mild singularities : $c_{1}(x)$ ok. $\omega_{x}$

Proposition 1: $\omega_{x} \sim \delta_{x}$

Proof:

Proposition 2: $x$ is simply commected

$$
h^{\prime}\left(\partial_{x}\right)=h^{2}\left(\sigma_{x}\right)=0
$$

Def: $x, \operatorname{dim}_{4} x=3$ is ar smooth colabi-Yau Bfold

$$
\leftrightarrow \text { xproj, smooth }\left\{\begin{array}{l}
a(x)=0 \quad\left(\Omega k_{x} \sim \sigma_{x}\right), \\
\mu^{\prime}\left(\sigma_{x}\right)=\mu^{2}\left(\sigma_{x}\right)=0\left(\mu^{D}\left(\Omega_{x}^{j}\right)_{=0}\right)
\end{array}\right.
$$

$\rightarrow X$ smooth Schoen is a calabi-Yaus
[ Schoen / Rapusta-Rapuste] conditions on $\left\{\begin{array}{l}r: B \rightarrow \mathbb{R}^{\prime} \\ r: B^{\prime} \rightarrow \mathbb{P}^{\prime}\end{array}\right.$ such that, if $x$ is singuler.
$\exists \pi: \tilde{x} \rightarrow x, \quad \tilde{x}$ smooth colabi-Yau

Rewark: $\pi$ is a small resolution.


12 exceptional $\mathbb{P}^{\prime} \approx \mathbb{s}^{2}$
$\pi \downarrow$


12 singular points

$$
\begin{gathered}
x=B+B^{\prime} \\
\mathbb{P}^{\prime}
\end{gathered}
$$



NODES

$$
x^{2}+y^{2}=\omega^{2}+z^{2}
$$

$P_{2}$
$\ell p_{1}$
$\alpha$

$$
B^{\prime}=B
$$


§(schoen) . Calculations of

- untartunately for the physicists..."" many $x_{\text {top }}()$

Review MSai Net: Beauvill )
.... theoreticae physicists do not seem to care any longer about these thruefolds... but mathematicions

In fact:

Question (2) Bogomolov: $x, k_{x} \sim \delta_{x}$ Does $\tilde{x} \leftrightarrow \tilde{x}$ biational outo morplis m extend to a binegular automosplism?

Counterexauple (schoen) $\exists \tilde{x}_{1}$ schoen /
3: $\tilde{x} \leftrightarrow \tilde{x}$ tiational outo morphism which.
does not extend to $\quad \begin{aligned} & \tilde{x} \text { \&f } \\ & l\end{aligned} \underset{\downarrow}{\tilde{x}} \quad$ biregulor.
$\oint$ plygics of Mireur sy mmetry

Mikers sy m met ry :for $r, Y$ colabi-You käher moduli, $x$ os moduli, $y$
question (3) (Morrison 192)
Dees $\overline{N e f}(x)=H^{2}(x, \theta)$ have a funsomuutal domain whech is a a ational polyhedal cone for Aut $(x)$ ?

Theorem (AG-Morerison,' 92 )
The conjecture is montrivially satistied for $x$ schoen, gewerae.

Def: (nähler use)

$$
\begin{aligned}
& \text { Nef }(x)=\{A Q \text { Bivisors on } X / A \cdot \Gamma \geqslant 0, \Gamma e \overline{N E}(x)\} \\
& \overline{N E}(x)=\{\Gamma \text {, effective curves }\}
\end{aligned}
$$

Remarks
(i) Most $x$, cy in the physics litenature wef $(x)$ is ratimally poly he dral.
(ii) (3) Moerison-Kawamata conjectue in mue geverality.

Proof: (Ideor of 1

- Additión law intler fibers gives $\frac{\text { infinuitely many edges of } \overline{N \in(x)}}{\overline{N e f(x)}}$


Not to scale!
$\operatorname{dim} H^{2}(x, \mathbb{Z})=19$

- Addition law inthe fibens gives fundaumutal domain and action of $\operatorname{Aut}(x)$.

$$
X=\underset{\mathbb{P}}{ }=\underset{\mathbb{P}^{\prime}}{ }>
$$


$B^{\prime}$

B


$$
\begin{gathered}
\rightarrow-0 \\
\Sigma\left(B / \mathbb{P}^{\prime}\right) \quad \sum\left(B^{\prime} / \mathbb{P}^{\prime}\right)
\end{gathered}
$$

$$
\mathbb{T}^{1}
$$

§ Deformations and Resolution (geometric Transitions)

Question (4) (Namikawa) $x$, calabi-Yau / $\tilde{x} \rightarrow x$ rmall vesolution
Doed $\exists \tilde{y}$, e.y. $\tilde{y} \rightarrow y, y$,
and flat defornation. $\tilde{x}$ on $\tilde{y}$ ?

Theorem (Nami kawa//Rossi) 7 counter exaufles: $\left\{x_{i}\right\}$ family of $N=w$ schoe $n s$

Rewouk: Conifold trausitions, Ply sics.

Recall:
Example: $\quad f(x, y, z)=z_{0}^{3}+z_{1}^{3}+z_{2}^{3}$

$$
G(x, y, \tau)=z_{0}^{2} z_{1}-2^{-1 / 3} 乙 z_{0}^{2} z_{2}-8^{1 / 3} C^{2} z_{0} z_{2}^{2} \quad, \quad C^{3}=1
$$

- Pencil: $\{\lambda F+\mu G\}$

$$
\begin{array}{cc}
\begin{array}{cc}
B & y^{2}=x^{3}-\frac{1}{4}\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-3 \mu^{6}\right) \\
B & (x, y,(\lambda, \mu]) \\
+ & \downarrow \\
R^{2} & {[\lambda, \mu]}
\end{array}
\end{array}
$$

- Singular fibers: $\left.r^{-1} l q_{i}\right): \quad y^{2}=x^{3} \quad\{$
where $q_{j}=\left[\lambda_{j}, \mu_{j}\right]$, roots of $\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-z \mu^{6}\right) \quad 1 \leq j \leq 6$

$$
x=B \times{\underset{P}{ }}^{1}, \quad 6 \text { singularities. Not NODAL }
$$

cartoon:

$$
\begin{gathered}
X=B \times B^{\prime} \\
\mathbb{P}^{\prime}
\end{gathered}
$$



6 singular point:

$$
y^{2}-x^{3}=w^{2}-z^{3}
$$

$\measuredangle P_{1}$

$$
\{\{
$$

$$
B^{\prime}=B
$$

B

$$
\begin{gathered}
\text { O-R-Q } a, \mathbb{P}^{1} \\
\Sigma\left(B / \mathbb{R}^{\prime}\right)=\Sigma\left(B^{\prime} / \mathbb{P}^{\prime}\right)
\end{gathered}
$$

$\exists\left\{x_{i}\right\}_{0 \leq i \leq 5} \quad \pi_{i}: x_{i} \rightarrow x$ small resolutions.
$\oint$ Physics of $F$-Theory.

Def: $X \xrightarrow{P} B$ elliptic fimation
$E \longmapsto P \in U \subset B$ derese, $E \simeq \tau^{2}$
elliptic curve.

Vata ' if : Evidence of $F$-Therry constructed as dual
"F-theory" on $X \xrightarrow{P} B \longleftrightarrow \mathbb{Q} B$ on $B$, with 7-braues $x$ cy, pellepric.
$S L(2, \pi)$ symmetry of $E \longleftrightarrow S L(2, \pi<)$ symmetry of IB $\bar{i} \sim \tau^{2}=\mathbb{C} / \Lambda$

7"many" cy with elliptic fubrations. (A. I. searches).

- Mirrur symmerry: othen dualities.

Questions: Compule the "spectrum" in pleysics. ? colometry of $x \rightarrow B$
objects of interest to the spectrum.

- $M W(x / B)$ : Mar deel-Weie grougs of sections. of $X \rightarrow B$
- Enumelative invariauts

Def/Theonem: $M W(X / B)$ is abelian, finite genelated.

$$
x=\underset{\mathbb{R}^{2}}{B+B^{\prime}}
$$

 $B^{\prime}$

(via dualities)
Physics prodiction: $\quad x \rightarrow B$ elliptic $C-y$ bold:
$\operatorname{rek} M W(x) \leqslant 20$ if $B \nmid P^{2}$
$\operatorname{rkMW}(x) \leq 24 \quad$ if $B=\mathbb{P}^{2}$

Remark: (i) . dim $x=2$ (k3) Plysics: $2 k M W \leq 18$

- (cox, kloosterman, Kuwate):
rk $\Pi W \leq 18$, de volues occure.
Whatis top akrज(x), $\operatorname{din} x=3$ ?
(ii) $\operatorname{dim} x=3$ $\exists$ examples (mony) $2 K M W \leq 9$

Question: Others??

Def : Ēlkies" "Excellent tamily"

$$
W_{N D E}=y^{2}=x^{3}+\left(p_{4} \zeta^{4}+p_{10} \zeta\right) x+\zeta^{9}+p_{6} \zeta^{3}+p_{18}
$$

$$
(x, y, z) \quad(6,9,2)
$$

pj invariaut form of deg $j$ for $S \tau_{33}$ shephord-Todd unitany affection im $P^{4}$

Theonem (ElRies): Take
Pj $\mid \mathbb{T}^{2}, \mathbb{R}^{2}$ gereol, $C$ quadratic in $\mathbb{P}^{2}$ $\operatorname{UR} \operatorname{MW}\left(w_{N D} / \mathbb{R}^{2}\right)=10$

Question 5 : © Is WNE calabi-you?
(ii) The spectrum (imvariouts)

Problem: to onswer.
Analyse the singularitie s of $W_{\text {NDE }}$

Theorem: $(\mathcal{C} G$-Weigand):
$\exists X_{i} \rightarrow B$, calabi-Yau, schoen, $B: R \in S$
(i) reh $\operatorname{MW}\left(X_{i} / B\right)=10$
(ii) Compute the spectrum of F-theny $\downarrow$
dictionau (t)Compute invariants, im pouticulor elative genus 0 Gopakumar-Vata, which are binational invanauts.

Dictiomary: Geometry $\leftrightarrow F$-theory in particulor:
$\operatorname{MW}\left(x_{i} / B\right) \leftrightarrow$ gounge group $\oplus_{a=1}^{10} u(1)_{a}$

- rk $M W\left(x_{i} \mid B\right) \leftrightarrow V$, rectr muetiplets
- Genus 0 GV imvariauts $\rightarrow$ Hch, charged hyper multiplets.
- shioda_map $\leftrightarrow u(1)_{a}$ chauges (height poinineys)

Anomaly cancellations hold.

Proof: Take $x_{i}$ as in Namikawa-Rossi
cartoon:


Exaptissal curves $\left\{P_{j}^{i A}\right\},\left\{P_{j}^{i B}\right\}:$

6 singular point


$$
y^{2}-x^{3}=w^{2}-z^{3}
$$

B
$P_{2}$
$\square$

(i) $O \sigma_{0}, ., T_{9}$ of $R E S$ give 8 sections, ind.
$x_{i} \rightarrow x$ smell red. gives 2 other ind.
(ii) Careful analysis.

Relative Gopalumar vafa invariants:

Question:
Is this a WNDE

Theorem:

$$
\exists \quad x_{i} \rightarrow \mathbb{P}^{2}, \quad \operatorname{ck} \operatorname{MW}\left(x_{i} / \mathbb{P}_{2}\right)=10
$$

$X_{i}$ : binationd to:

$$
W_{i}: y^{2}=x^{3}+\beta_{18}, \quad \text { deg } \beta_{18} \text { reducible. }
$$

Proof: sketch:


Blow up in the Fins example of $R, \hat{E}, S$.

- Fix a section : of

$$
f\left(\left.\right|_{B \rightarrow \mathbb{P}^{2}} ^{x_{i}}\right.
$$

Build a Relative log canonical model: $w_{i}$

$\beta_{18}=\prod_{i}$ legpations of 6 cuspidor cubics $)^{2}$ as in ex auyle 1 .
conollouy: $\omega_{i}$ has

- Q-factorial canonical (not terminal) sing. over $\left\{P_{0}, \ldots P_{8}\right\} \in \mathbb{P}^{2}$
- Non Q-factorial terminal sing over the cups in the pencils in $\mathbb{P}^{2}$
- The singular louses of the discriminant hos. 15 points.

Example:

$$
\begin{aligned}
& F(x, y, z)=z_{0}^{3}+z_{1}^{3}+z_{2}^{3} \\
& G(x, y, z)=z_{0}^{2} z_{1}-2^{-1 / 3} Z z_{0}^{2} z_{2}-2^{1 / 3} C^{2} z_{0} z_{2}^{2} \quad, C^{3}=1 \\
& \left\{P_{0}, \ldots P_{8}:\right\}=\{F=G=0\}
\end{aligned}
$$

B: $\quad y^{2}=x^{3}-\frac{1}{4}\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-3 \mu^{6}\right)$


- 6 singular fibers: $r^{-1}\left(q_{j}\right): \quad y^{2}=x^{3} \quad\{$ where $q_{j}=\left[\lambda_{j}, \mu_{j}\right]$, roots of $\left(27 \lambda^{6}-5 \lambda^{3} \mu^{3}-z \mu^{6}\right) \quad 1 \leq j \leq 6$
corollary: If $p_{18}$ is irreducible, and $p_{4}=p_{10}=p_{6}=0$ $w_{i}$ is not a WNDE.

Def : Ēlkies' "Excellent tamily"

$$
\begin{aligned}
& y^{2}=x^{3}+\left(p_{4} \zeta^{4}+p_{10} \zeta\right) x+\tau^{9}+p_{6} \zeta^{3}+p_{18} \\
& (x, y, z) \quad(6,9,2)
\end{aligned}
$$

Pj invariaut form of deg $j$ for $S \tau_{33}$ shephard.Todd unitany affection

Remark: $P_{4}$ : is the epration of the Buikhordt quartic, recond guartic, 45 modes.
irereducible P18: equation of duce of the Burkhardt not nomal. (Freitoysolvati-Manni) 45 components of codimension one.

Questions:

- Is $\quad \beta_{18}=\beta_{18}^{\prime} \mid \mathbb{R}^{2} \quad \beta_{18}^{\prime}-S_{33}$ imworiait?
- What about general WNDE?
- comrute all GopaRumor vafa for $X_{i} \rightarrow B$

