Higher Berry classes for many-body quantum lattice systems
joint work with
Nikita Sopenko

Plan

- Reviear of "Berry phase" and difficulties with extending to many-body systems
- Local Noether theorem for quantum lattice systems
- Application to "higher Berry phase".

Review of "Berry phase".
Let M be a compact manifold ("parameter)
Let V be a fixed f.d. Hilbert space.
Let $H_{\mu}: V \rightarrow V, \mu \in M$
be a smooth family of Hamiltonians (self-adjaint operators) s.t.
lowest eigenvalue is "non-degenevate" (eigenspace has dimension $1 \quad \forall \mu \in M$)

line bundle of "ground states"

- LL is a serbbundle of a trivial fondle with fiber V.
- There is a canonical connection ∇_{B} on \mathcal{L} ("Berry connection")
$F=\nabla_{B}^{2} \in \Omega^{2}(M, i \mathbb{R})$ ("Berry cervivature")
Purely imaginary b.c. D_{B} is cenitary.
$\left[\frac{F}{2 \pi i}\right] \in H^{2}(M, \mathbb{R})$ is an integral class (lies in the image of $H^{2}(M, Z) \rightarrow H^{2}(M, \mathbb{R})$)
$\left[\frac{F}{2 \pi i}\right]$ depends only on \mathcal{L}, not on the Hamiltonian $H(\mu)$.
lt $\left[\frac{F}{2 \pi i}\right] \neq 0$, the family of ground states is "topologically non-trisial".

Can we generalize this to the case of a many-body quantum system?

Quantum lattice systems
Typical setrep: $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$
Hilbert space is not specified at the outset.
Instead, specify an algebra of observables,

$$
\begin{aligned}
\mathscr{A}=\otimes_{p \in \mathbb{Z}^{d}} \mathscr{O}_{p}, & A_{p} \cong \operatorname{Mat}\left(\begin{array}{l}
n \\
p
\end{array}, \mathbb{C}\right) \\
& \text { fid. C. algebra }
\end{aligned}
$$

Define somehow a Hamiltonian on A which generates the tome evolution.
A ground state is now a positive linear function $\omega: \delta \rightarrow \mathbb{C}$ invariant under evolution.
ω defines the Hilbert space via GNS construction.
Problem: as the Hamiltonian varies, so will w. The thilbert spaces for different w are not naturally isomorphic.

The same problem from a different angle
Suppose the parameters are themselves physical degrees of freedom...

$$
\phi^{\alpha} \leadsto \phi^{\alpha}(\vec{x}, t)
$$

local coors. on M

$$
\vec{x}=\left(x^{1}, \ldots, x^{d}\right)
$$

$$
d=0
$$

$$
S_{\text {eff }}=\int A_{\alpha}^{B}(\phi(t)) \frac{d \phi^{\alpha}}{d t} d t=\int \phi^{*} A^{B}(t \ldots)
$$

Here $A^{B}=A_{\alpha}^{B} d \phi^{\alpha}$ is the "connection 1-form".

$$
D_{B}=d+A^{B}
$$

A^{B} is defined only locally.

$$
\begin{aligned}
& A^{(1)}-A^{(2)}=d f^{(12)} \\
& f^{(12)}=U^{(12)} \rightarrow i \dot{x} / 2 / 2 \pi \mathbb{Z} \\
& F^{B}=d A^{B} \text { is }
\end{aligned}
$$ an honest 2 -form

$$
\begin{aligned}
& \underline{d>}> \\
& S_{e f f}=\int \phi^{*} C+\ldots \\
& C=\frac{1}{(d+1)!} C_{\alpha_{1} \ldots \alpha_{d+1}} d \phi^{\alpha_{1}} \ldots d \phi^{\alpha_{d+1}}
\end{aligned}
$$

is a $(d+1)$-form (locally)

$$
\begin{gathered}
C^{(1)}-C^{(2)}=d \lambda^{(12)} \\
\lambda^{(12)} \in \Omega^{d}\left(u^{(12)}, i \mathbb{R}\right) \\
\lambda^{(12)}+\lambda^{(23)}+\lambda^{(13)}=d \rho^{(123)} \\
\rho^{(123)} \in \Omega^{d-1}\left(u^{(123)}, i \mathbb{R}\right)
\end{gathered}
$$

$F=d C \in \Omega^{d+2}(M, i \mathbb{R})$ is an honest $(d+2)$-form
(C, λ, P, \ldots) is a Beilinson-Deligne cocycle

$$
((d+1) \text {-form gauge field })
$$

Alternative description:
Cheeger-Simons differential character

Summary

- For $d>0$ expect a "higher Berry phase" described by a $(d+1)$-form gauge field.
- $\left[\frac{f}{2 \pi i}\right] \in H^{d+2}(M, \mathbb{R})$ should be possible to define without knowing the details of the Hamiltonian
- $\left[\frac{f}{2 \pi i}\right]$ is possibly quantized. (perhaps under some additional conditions)
'Philosophy'.
- To understand lattice systems, if is natural to use
Quantum Statistical Mechanics.
- Mathematical apparatus:

Operator algebras (analysis)

- This is not as hard as it seems (some nice algebra emerges)

Currents in QFT
Symmetry \Rightarrow current j^{μ}

- "global"
- acts locally
- conserved: $\partial_{\mu} j^{\mu}=0$
- local
ambiguity: $\quad j^{\mu} \mapsto j^{\mu}+\partial_{\rho} h^{\mu \rho}, \quad h^{\mu \rho}=-h^{\rho \mu}$
Equivalently: $\quad j^{0}=\rho \mapsto \rho+\partial_{i} h^{0 i}, i=1,2,3$
($Q=\int \rho d^{3} x$ is unchanged)

$$
j^{k} \mapsto j^{k}-\partial_{0} h^{o k}+\partial_{i} h^{k i} .
$$

\uparrow
additional
ambiguity
All these ambiguities are physically harmless*
(Net current
through a surface not affected)

Currents and conserved quantities on a lattice.

$$
\quad \begin{aligned}
\quad \therefore \quad\left(e \cdot 9 \cdot \Lambda=\mathbb{R}^{d}\right. \\
\quad\left(\mathbb{Z}^{d}\right)
\end{aligned}
$$

Algelora of observables:

$$
\begin{aligned}
A & =\bigotimes_{p \in \Lambda} A_{p} \\
A_{p} & =M a+\left(n_{p}, \mathbb{C}\right) .
\end{aligned}
$$

Hamiltonian:

$$
\left.A \mapsto "^{\prime \prime} H, A\right]^{\prime \prime}=\delta_{H}(A)
$$

derivation of A

$$
\begin{align*}
& \delta(A B)=\delta(A) \cdot B+A \cdot \delta(B) \tag{B}\\
& A, B \in \mathscr{A}
\end{align*}
$$

- δ_{H} is NOT bounded
- δ_{H} is not defined everywhere on of.
- Unbounded deviations do not form a Lie algebra.

Physically relevant derivation:

$$
\delta_{\phi}: A \mapsto \sum_{r \in P(\Lambda)}[\phi(r), A], \quad \phi(r) \in d t_{r}
$$

Properties of $\phi(\Gamma)$

- $\phi(\Gamma)^{*}=-\phi(T)$.
- $\phi(T) \rightarrow 0$ as $\operatorname{diam}(T) \rightarrow \infty$
- $\operatorname{Tr}(\phi(\Gamma))=0$.

NB.

- $\phi(\Gamma)$ are not uniquely defined by δ_{ϕ}.
- No notion of "density of energy"

Alternative:

$$
\begin{aligned}
\delta_{F}: A & \mapsto \sum_{p \in \Lambda}\left[F_{p}, A\right], F_{p} \in \mathscr{A} . \\
\cdot F_{p}^{*} & =-F_{p} .
\end{aligned}
$$

- Fp is approximately localized near $p_{\text {. }}$
- $\operatorname{Tr}\left(F_{p}\right)=0$

Q1 How do we describe the ambiguity in F_{p} for a given δ_{F} ?

Conservation equation:

$$
\begin{aligned}
& \delta_{H} F_{j}=-\sum_{k \in \Lambda} J_{k j}^{F} T_{k}{ }^{\text {"current from }} \text { j to } k \text { " } \\
& \text { conserved }
\end{aligned}
$$

quantity at j

- $J_{k j}^{F}=-\left(J_{k j}^{F}\right)^{*}$
- $J_{k j}^{F}=-J_{j k}^{F}$
- $J_{k j}^{f} \rightarrow 0$ as $|j-k| \rightarrow \infty$
- $J_{k j}^{F}$ is approximately localized near j, k.

Q2 Does such a J^{F} exist for any "Hamiltonian" F?

Q3 How does one describe the ambiguity in J^{F} for a given F_{p},

$$
p \in \Lambda ?
$$

Finite -range (UL) chains
$a: \underbrace{\Lambda \times \Lambda \times \ldots \times \Lambda}_{q+1 \text { times }} \rightarrow A$
q-chain

- shew-symmetric

$$
q \geq 0
$$

- traceless
- $a_{j 0 \ldots j q}$ localized on a ball of radius R centered at $j_{h}, h \in\{0, \ldots, q\}$
- bounded

Let $C_{q}^{u L}$ be the space of q-chains.

$$
(\partial a)_{v_{1} \ldots j q}=\sum_{j_{0}} a_{j_{0} j, \ldots j q} .
$$

$\partial: C_{q}^{u L} \rightarrow C_{q-1}^{u L}$ is a differential:

$$
\partial^{2}=0
$$

Let $J_{j h}$ be a 1-chain.

$$
\left(\partial J^{F}\right)_{k}=\sum_{j} J_{j k}
$$

Conservation equation takes the form

$$
\delta_{H}(F)=-\partial J^{F}
$$

Ambiguity?

$$
J \mapsto J+\partial M, M \in C_{2}^{u L}
$$

no other amboguition b.C.
Theorem
Homology of ($\left.C^{u L}, \partial\right)$ is trivial for $\quad q>0$.
$H_{0}\left(C^{u L}\right) \cong$ finite. range derivations
Deft. UL Noether complex is

$$
\stackrel{\partial}{\partial} C_{2}^{u L} \stackrel{\partial}{\rightarrow} C_{1}^{u L} \stackrel{\partial}{\rightarrow} C_{0}^{u L} \stackrel{\delta}{\rightarrow} C_{-1}^{u L}
$$

"nice" derivations
UL Noether complex has trivial homology.

Rapidly decaying (UAL) chains
Uniformly Almost local chains.
$a: \underbrace{\wedge \times \ldots \times \wedge}_{q+1 \text { times }} \rightarrow d$

- skew-symmetric
- traceless
- ajo...jq approximaidy localized near any of j_{0}, \ldots, j_{q}.
$\partial: C_{q}^{U A L} \rightarrow C_{q-1}^{U A L} \quad, \quad \partial^{2}=0$
UAL derivations:
$a: A \mapsto \sum_{j}\left[a_{j}, A\right] . \quad A \in \mathscr{f}_{\substack{ \\ }}$ dense subalsebra
$\frac{\text { Theorem }}{\text { nomology of }} \ldots C_{1}^{\text {VAL }} \rightarrow C_{0}^{\text {GAL }} \rightarrow C_{-1}^{u A L}$ in A is trivial

UAL derivations

Important technical point:
one can set up the definitions so that Hal, $C_{q}^{U A L}$ are "nice" topological vector
spaces (Frèchet spaces) $\forall q \geq-1$
and ∂_{q} is a continuous map $\forall q \geq 0$

Applications

- any "local" symmetry of a "local" Hamiltonian gives a "local" current
- currents are determined up to exact 1-chains.
- conserved quantity determiner its density up to exact 0 -chains

Example: energy current.

$$
J_{j h}^{E}=\left[H_{h}, H_{j}\right] . \quad \text { (kitaer, "Anyous") }
$$

More generally, for any two O-chains ("demsitiel") F_{j}, G_{j} can define a 1-chain:

$$
[F, G]_{j h}=\left[F_{j}, G_{k}\right]-\left[F_{k}, G_{j}\right] .
$$

How does this binary operation fit into our story?

There is a bracket of degree +1 on $C_{0}^{u L}$ \& $C_{\text {. }}^{u A L}$

$$
[a, b]_{i_{0} \ldots i_{p+q+1}}=\frac{1}{p!q!}\left[a_{i_{0} \ldots i_{p}}, b_{i_{p+1} \ldots i_{p+q+1}}\right]
$$ p-chain q-chair

permutations
$\left(C_{0}^{u c, u A L} \partial,[\because \cdot]\right)$ is a (1-shifted) DG lie algebra

- graded Jacobi for (,]
(DGLA)
- graded Leibniz for $([],, \partial)$
$C_{-1} \times C_{-1} \rightarrow C_{-1}$ - Lie bracket of derivations
$C_{0} \times C_{0} \rightarrow C_{1}$. symmetric operation on O-chains
C.f. in QFT: shear-symmetric in a, b

$$
\left[J^{a}(\vec{x}, 0), J^{b}(\vec{y}, 0)\right]=f^{a b c} J^{c}(\vec{x}) \delta^{3}(\vec{x}-\vec{y})
$$

symmetric in a, b Schwinger
terms

QFT - lattice dictionary

QFT in D+1 space-time dimensions

D -form
$(D-1)$-form $=$ current
p-form
de Rham d $?$

Submanifold of dimension p

Lattice models in D spatial dimensions

O- chain
1-chain
$(D-p)$-chain ∂

$$
[,]
$$

(Dep) . cochain
(to be discussed)

What is this good for?
Not sure... but there is an analogous structure which is VERY useful.

Let $\omega=A \rightarrow \mathbb{C}$ be a state.
Deft. An observable A does not excite ω if $\langle[A, B]\rangle=0$ $\forall B \in \mathcal{A}$.
This seems rare.
Deft. A derivation δ_{F} does not excite ω if $\left\langle\delta_{F}(B)\right\rangle=0 \quad \forall B \in \mathcal{A}$

Example: Derivations associated to unbroken symmetries

Def. A q-chain a does not excite ω if $\left\langle\left[a_{j o \ldots j q}, B\right]\right\rangle=0$

$$
\forall B \in A
$$

Also seems rare

Let C_{q}^{w} be the space of chains which do not excite $\omega, q \geq-1$
Th. $L_{t} \omega$ is a gapped ground state of a Hamiltonian $H=\sum_{j} H_{j}$ arising from a O-chain H_{j}, then (C_{0}^{ω}, ∂) has trivial homology.
Application \#1
$\delta_{H}: A \mapsto \sum_{j}\left[H_{j}, A\right]$ does not excite the ground state CJ of H
If H is sapped, then $\exists \widetilde{H}_{j}$ s.t.

- \tilde{H}_{j} is a O-chain
- $\delta_{H}=\delta_{\tilde{H}}$ (i.e. $H \& \widetilde{H}$ generate the same dynamics)

$$
\left\langle\left[\tilde{H}_{j}, B\right]\right\rangle=0 \quad \forall B \in \mathcal{A}
$$

e.e. $|0\rangle$ is the eigenstate of each \tilde{H}_{j}. \leftarrow due to

Application \#2: Higher Berry dass

Def. A family of states $\omega_{\mu}: \mathcal{A} \rightarrow \mathbb{C}$ is called smooth
$\mu \in M$

$$
\text { if } \exists G \in \Omega^{1}\left(M, D_{a l}\right)
$$

space of UAL derivations
such that (M, w) is "covariantly constant" w. 2. to $D=d+G$.

$$
d\langle A\rangle_{\mu}=\langle G(A)\rangle_{\mu} \quad \forall A \in A
$$

Or, if $A: M \rightarrow \mathcal{A}$ is a smooth function:

$$
d\langle A\rangle=\langle d A+G(A)\rangle=\langle D A\rangle
$$

note:

$$
0=d^{2}\langle A\rangle=\left\langle D^{2}(A)\right\rangle=\langle F(A)\rangle
$$

where $F=d G+\frac{1}{2}[G, G]$.
Thus $F \in \Omega^{2}\left(M, D_{a l}^{\omega}\right)$
also, $D F=0$.

Th. Et $H: M \rightarrow \mathcal{D}_{e}$ is a smooth family of "Hamiltonians" with unique ground states $\omega_{\mu}, \mu \in M$ such that $\langle A\rangle_{\mu} \in C^{\infty}(M, \mathbb{C}) \quad \forall A \in \mathcal{A}$, then such a G exists.
(follows from a theorem of Y. Ogata and A. Moon).

This provides a justification for studying smooth families of states.

We will further assume that for some $\mu_{0} \in M$ the state $\omega_{\mu_{0}}$ is a unique ground state of a gapped UL "Hamiltonian". Then

$$
\ldots \rightarrow \Omega^{p}\left(M, C_{1}^{\omega}\right) \stackrel{\partial}{\rightarrow} \Omega^{p}\left(M, C_{0}^{\omega}\right) \xrightarrow{\partial} \Omega^{p}\left(M, D_{a l}^{\omega}\right)
$$

has trivial homology $\forall p \geqslant 0$.

Now let's try to define the Berry curvature $f \in \Omega^{d+2}(M, i \mathbb{R})$

$$
\frac{d=0}{\mathcal{F}=\langle F\rangle}
$$

C makes sense bar. $D_{a l}=D=\left\{\begin{array}{l}\text { traceless } \\ \text { anti-self-adjoint } \\ \text { elements of ot }\end{array}\right\}$
Check that if is closed:

$$
d f=\langle D F\rangle=0
$$

$d>0$

$$
F=d G+\frac{1}{2}[G, G] \in \Omega^{2}\left(M, \mathscr{D}_{a l}^{\omega}\right)
$$

But $\langle F\rangle$ now does not make sense.
$D_{a l}^{\text {al }}$ now consists of formal sums
$B=\sum_{j \in \Lambda} B_{j}, \quad B_{j} \in A_{a l}$ is
"approximately localized at j ".
$\sum_{j}\left\langle B_{j}\right\rangle$ is divergent ...

Maurer-Carton element
Recall that given a DG lie algebra $\left(g^{0}, d,[],\right)$, an MC element is a degree-1 element G satisfying

$$
d G+\frac{1}{2}[G, G]=0 .
$$

$G \in \Omega^{\prime}\left(M, D_{a l}\right)$ is a degree-1 element in

$$
g^{\bullet}=\bigoplus_{p, q} \Omega^{p}\left(M, J_{q}\right)
$$

where T_{0} is the complex

$$
\begin{aligned}
& \quad \stackrel{\partial}{\rightarrow} C_{1}^{\omega} \xrightarrow{\partial} C_{0}^{v} \stackrel{\partial}{\rightarrow} D_{a l} \\
& g:- \\
& d= \\
& d+\partial
\end{aligned}
$$

deg:
$[$,$] is a combination of [$, and wedge product of forms.
G is not an MC element b.c.

$$
F=d G+\frac{1}{2}[G, G] \neq 0 .
$$

But can use G as a "seed":

$$
G=G+\sum_{p=2}^{\infty} g^{p}, \quad g^{p} \in \Omega^{p}\left(M, T_{p-1}\right)
$$

Can solve the MC equation recursively:

$$
\begin{aligned}
& F+\partial g^{(2)}=0 \quad V \\
& D g^{(2)}-\partial g^{(3)}=0 \quad V \\
& D g^{(3)}+\frac{1}{2}\left\{g^{(2)}, g^{(2)}\right\}+\partial g^{(4)}=0
\end{aligned}
$$

What do we do now?
heed to extract an observable out of all these form-valued chains...

Integrating chains

$$
d=1
$$

How to integrate a 1-chain ($=$ current):

Main property

$$
\int_{A_{0} A_{1}} \partial h^{\prime}=0 \quad \text { for a 2. chain } h^{\prime}
$$

Consider $F^{(3)}=\int_{A_{0} A_{1}}\left\langle g^{(3)}\right\rangle \in \Omega^{3}(M, i \mathbb{R})$

$$
d F^{(3)}=\int_{A_{0} A_{1}}\left\langle D g^{(3)}\right\rangle=-\int_{A_{0} A_{1}}^{A_{0} A_{1}}\left\langle\partial g^{(4)}\right\rangle=0
$$

Can also check that $\left[\mathcal{F}^{(3)}\right] \in H^{3}(M, \mathbb{R})$ does not depend on the section.

General d : Integrating a d-chain

- Choose $d+1$ conical regions
$A_{0}, \ldots, A_{d} \subset \mathbb{R}^{d}$ s.t. $\bigcup_{i} A_{i}=\mathbb{R}^{d}$

$$
\text { - } \iint_{A_{0} \ldots A_{d}} h=\sum_{\substack{i_{0} \in A_{0} \\ \vdots \\ i_{d} \in A_{d}}} h_{i_{0}} \ldots i_{d}
$$

Hence we let

$$
\begin{aligned}
& \mathcal{F}^{(d+2)}=\int_{A_{0} \ldots A_{d}}\left\langle g^{(d+2)}\right\rangle \\
& d F^{(k+2)}=\int_{A_{0} \ldots A_{d}}\left\langle D g^{(d+2)}\right\rangle= \pm \int_{A_{0} \ldots A_{d}}\left\langle\partial g^{(d+3)}\right\rangle
\end{aligned}
$$

Th. $\left[F^{d+2}\right] \in H^{d+2}(M, i \mathbb{R})$ does not depend on the choice of $A_{0} \ldots A_{d}$, or the $M C$ element G
\Rightarrow it is a topological invariant of the family.

Concluding remarks

- $\left[F^{(d+2)}\right]$ is not expected to be quantized, in general.
- But can be shown to be quantized for $d=1$
- $\mathcal{F}^{(a+2)}$ depends on varioces choices \Rightarrow not physical.
- Suppose (M, ω) is a G-equivaricent family ($G=a$ compact lie group) Can attach to it an element

$$
\text { of } H_{G}^{(d+2)}(M, i \mathbb{R})
$$

- This is interesting even for $M=\{*\}$: get topological invariants of G-invariant states taking values in G-invariant polynomials on the lie algebra of G \Rightarrow Chern-Simons forms!

References
This work originated with a proposal by A.Kituer, see his talk at Dan Freed's Goth birthday conference.

Further develoned by
Lev Spodyneiko \& A.K, 2001.03454

$$
2003.09519
$$

The talk is based on work with Nikita Sopenko (to appear soon)

