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Let K be a compact Lie group, let K̂ be the set of equivalence classes of
irreps of K, labeled by highest weight λ and let dx be the Haar measure.

Peter-Weyl Theorem: One has an orthogonal decomposition

L2(K, dx) =
⊕̂

λ∈K̂
V ⊕dimVλ
λ .

Let f ∈ L2(K, dx). Then, there exist endomorphisms Aλ ∈ End(Vλ), λ ∈ K̂,
such that

f(x) =
∑
λ∈K̂

tr(πλ(x)Aλ).

On the other hand, the Borel-Weil-Bott theorem realizes irreps of K as spaces
of holomorphic sections of line bundles over coadjoint orbits

Vλ
∼= H0(Oλ, Lλ).

We will describe how Hamiltonian flows in imaginary time and geometric
quantization relate the 2 results by assigning geometric cycles in T ∗K to each
summand in the Peter-Weyl decomposition.



Plan of the talk

• Geodesics on the space of Kähler metrics

• Geometric quantization

• Toric Manifolds and T ∗K

• The Kirwin-Wu polarization on T ∗K



Geodesics on the space of Kähler metrics

Recall that a Kähler manifold (M,ω, J, γ) is a symplectic manifold (M,ω)
with compatible integrable complex structure J. The two structures define a
Riemannian metric (M,γ). Locally, on a sufficiently small open set U ⊂ M ,
the Kähler form can be written in terms of a (non-unique) Kähler potential

ω = i∂∂̄κ, κ ∈ C∞(U,R).

If M is compact, from the ∂∂̄-lemma, the space of Kähler forms in the class
[ω] ∈ H1,1(M) is described by

H = {φ ∈ C∞(M) : ωφ = ω + i∂∂̄φ > 0},
(two Kähler forms in [ω] differ by a global Kähler potential), so that the space
of Kähler metrics in the class [ω] is given by H/R.

The Mabuchi metric on H is

||δφ||2φ =

∫
M

(δφ)2dµφ, dµφ =
1

n!
ωnφ.



The expression for the curvature of H, as well as other arguments, show that
(Donaldson, Semmes), morally,

H ∼= HamC(M,ω)/Ham(M,ω),

an infinite-dimensional non-compact symmetric space for the “group” of com-
plexified symplectomorphisms of (M,ω). (This group does not really exist but
this is a useful analogy.) This led Donaldson to suggest that geodesics on H
should be generated by “complexified” Hamiltonian flows. This can be made
concrete and explicit, and can applied to interesting examples.

Geodesics on H are described by the non-linear equation

φ̈ =
1

2
||∇φ̇||2φ.



The (very hard to obtain) analytical and geometrical properties of these ge-
odesics play an important role in recent developments in Kähler geometry,
namely on the relation between stability and the existence of constant scalar
curvature Kähler metrics in the Yau-Tian-Donaldson program.

For instance, the K-energy is an important functional on H, which is con-
vex along geodesics and whose critical points give constant scalar curvature
metrics.



Let (M,ω, J, γ) be a compact Kähler manifold and suppose that all the struc-
tures (symplectic form ω, complex structure J, Riemannian metric γ) are real
analytic.

If X is a real analytic vector field, its time t flow, ϕt : M → M , will be real
analytic in t. Power series (in one variable) have a radius of convergence in
the complex plane. This is defined on small open sets on M (Gröbner). Since
M is compact there exists some T > 0 such that we can analytically continue
to complex time τ for |τ | < T .

Let zj be local holomorphic coordinates on M and consider their (complex)
time τ flow

zjτ = eτXzj =
∞∑
k=0

τk

k!
Xk(zj).

Whenever it is well defined, the operator exp(τX) acts as an automorphism
of the algebra of (real analytic) functions:

eτX(fg) = eτX(f)eτX(g).



Therefore, on overlapping holomorphic coordinate charts the operator exp(τX)
preserves the (holomorphic) coordinate transformations defining M as a com-
plex manifold.

Theorem: (Mourão-N ’15) There exists T > 0 such that for |τ | < T there
exists a global complex structure Jτ on M , defined locally by the coordinates
zjτ , and a unique biholomorphism

ϕτ : (M,Jτ)→ (M,J).

We get two equivalent Kähler structures (ie nothing new)

(M,ω, J, γ) ∼= (M,ϕ∗τω, Jτ , ϕ
∗
τγτ).

When X is an Hamiltonian vector field, X = Xh, h ∈ Cω(M), however, Jτ is
still compatible with the original symplectic form ω and we get a new Kähler
structure. (Note that {ziτ , z

j
τ}PB = 0 since Xh is Hamiltonian.)



Theorem: (Mourão-N ’15) For |τ | < T ,

i) (M,ω, Jτ) is a Kähler manifold (w/ a new Riemannian metric γτ)

ii) There is a reasonably explicit formula for the local Kähler potential κτ .

Theorem: (Mourão-N ’15) The family of Kähler metrics γτ , τ = is, s ∈ R, is
a geodesic with respect to the Mabuchi metric.

If M is not compact the Mabuchi metric is not defined but the geodesic
equation still makes sense and, sometimes, the above results still hold even
if M is not compact and for T = +∞.



Geometric Quantization

Let (M,ω) be a symplectic manifold, dimM = 2n.

Geometric quantization is a rich framework where one can study mathematical
issues related to the problem of quantization.

Assume that there exists L → M with hermitian structure h and compatible
connection ∇, with curvature F∇ = −iω. One calls (M,L, h,∇) the prequan-
tization data.

The prequantum Hilbert space ΓL2(M,L) is too big for irreduciblity. Choose
a polarization

P ⊂ TM ⊗ C
that is, a Lagrangian (rank(P ) = n, ω|P = 0), involutive distribution in TM⊗C.

The Hilbert space of quantum states is then (a completion of, if necessary)

HP = {s ∈ ΓL2(M,L) : ∇P̄s = 0}.



There are two main cases:

I) (M,ω, J, γ) is Kähler and P = T 1,0(M), so that P ∩ P̄ = 0. Then, H =
H0(M,L) (possibly with conditions on growth at infinity).

II) P = P̄ is a real polarization. Sections of L covariantly constant along P
must be supported on leaves of P where ∇ has trivial holonomy. These are
the Bohr-Sommerfeld leaves (BS leaves).

If M is compact, in good cases, some open dense subset of M will be fibered by
Arnold-Liouville tori. Of these, only a finite number will be BS. Thus, sections
which are covariantly constant along P will be distributional in nature.

Need to study weak solutions of the equations of covariant constancy.

Mixed polarizations have been less studied and will play the leading role in
this talk.



Ideology

A major, and geometrically very rich, problem in geometric quantization is
the dependence of HP on the choice of P . In some cases, if J is a nice space
of Kähler complex structures for (X,ω) one gets a Hilbert bundle

H → J ,
with fiber HP over P ∈ J . Of course, one would like to find a natural unitary
(projectively) flat connection on H provinding for a unitary identification of
quantizations for different polarizations through parallel transport.

If J has some (partial) compactification J̄ , where ∂J̄ includes some mixed and
real polarizations, one would like to have continuous interpolation between
quantum states for holomorphic and real polarizations on the boundary.

Sometimes the holomorphic quantum states can be generated by a concrete
analytical gadget applied to quantum states in a real polarization P0 ∈ ∂J̄ .
The unitarity (or lack of) of this operator then decides the equivalence of
quantizations in different polarizations P, P ′ ∈ J̄ .

This gadget, a generalized coherent state transform, is intimately related to
complexified Hamiltonian symplectomorphisms and to the (Mabuchi) geode-
sics they generate.



This program can be applied very concretely to rich families of examples which
include complex Lie groups, complex tori and classical theta functions, non-
abelian theta functions on the moduli space of holomorphic vector bundles
over an elliptic curve and symplectic toric manifolds.

Today, I will mention symplectic toric manifolds for context and the main
focus will be the case of cotangent bundles of Lie groups.



Toric manifolds (no details, just for context)

Let X be a 2n-dimensional smooth symplectic toric manifold, with moment
map µ and moment polytope P = µ(X) ⊂ Rn defined by linear inequalities

li(x) = 〈x, νi〉 − λi ≥ 0, λi ∈ R, i = 1, . . . , d,

where the νi’s are the inner pointing primitive normal vectors to the facets
of P . Assume λi ∈ Z, i = 1, . . . , n, so that [ ω

2π
] ∈ H2(X,Z). (We may have to

take [ ω
2π

] half-integer to include the half-form correction.) Recall that X is a
Kähler manifold with an holomorphic action of (C∗)n and a dense open orbit

X̌ = µ−1(P̌ ) ∼= P̌ × T n ∼= (C∗)n.

The symplectic form on the open orbit, in action-angle coordinates, is simply

ω =
n∑
i=1

dxi ∧ dθi, (x, θ) ∈ P̌ × T n.



Toric invariant Kähler structures on X are described by a symplectic potential
of the form (Guillemin ’94, Abreu ’98)

g = gP + ϕ,

where gP =
∑r

j=1
1
2
`j(x) log(`j(x)) and ϕ ∈ C∞(P̌ ) is such that the Hessian

HgP+ϕ is positive definite on P̌ and has singular behaviour along ∂P fixed by
gP . Note that the Kähler potential is the Legendre transform of g.

Let h be a smooth strictly convex function on P . Consider the family of toric
Kähler structures defined by the symplectic potentials

gs = gP + sh, s > 0.

This is a Mabuchi geodesic ray of toric Kähler metrics on X.

Let Ps,h be the corresponding Kähler polarization.



The holomorphic structure on X and P define an holomorphic structure on an
appropriate smooth line bundle L → X, a meromorphic section σL of L, and
a connection ∇ = d+ ixdθ with curvature −iω. For any toric Kähler structure
the quantization of X in the corresponding Kähler polarization is then

H0(X,L) = 〈σm = wmσL,m ∈ P ∩ Zn〉C,
where w = (w1, . . . , wn) gives the holomorphic coordinates.

(If you include the half-form correction then you get the integral points in a
corrected polytope P ′.)

(X,ω) has a natural real polarization PR = 〈 ∂
∂θi
, i = 1, . . . , n〉C. It is immediate

to check that the BS leaves correspond to the integral points in P .



The generalized coherent state transform associated to the geodesic family
of Kähler structures (ω, Js) is then defined as

Cs : H0(X, J0, L)→ H0(X, Js, L), s > 0,

where

Cs = exp(shpQ) ◦ exp(−sĥ),

where hpQ is the Kostant-Souriau prequantum operator for h and ĥ(σm) :=
h(m)σm. The prequantum operator hpQ = i∇Xh

+ h is responsible for analytic
continuation along the complex time flow J0 → Js, while ĥ asymptotically
corrects the growth of norms. (There is also a Lie derivative acting on the
half-form part that I am not showing for the sake of simplicity.) One obtains,



Theorem (Baier-Florentino-Mourão-N ’11, Kirwin-Mourão-N ’13, Kirwin-
Mourão-N ’16)

i) Pointwise in X̌, lims→+∞Ps,h = PR;
ii) The quantization in the real toric polarization is given by distributional
sections supported on integral points

HPR =
⊕

m∈P∩Zn

〈δm〉C;

iii) lims→+∞Csσ
m
s = c · δm, where c is an (m-independent) constant.

Note that the isotypical decomposition for the lift of the T n−action to L,

H0(X, Js, L) =
⊕

m∈P∩Zn

〈σms 〉C,

is related, in the infinite Mabuchi geodesic time limit, to a collection of geome-
tric cycles in X given by the Bohr-Sommerfeld cycles of the limit polarization.

We will now describe a (more involved) non-abelian analog.



Cotangent bundles of compact Lie groups, T ∗K ∼= KC
Let K be a compact, connected, simply-connected Lie group and h : Lie(K)→
R an Ad−invariant strongly convex Hamiltonian function h(ξ).

Theorem: (Kirwin-Mourão-N ’13) Let Im(τ) > 0. The diffeomorphism

T ∗K ∼= KC
(x, ξ) 7→ xeτu,

where u = ∂h
∂ξ

, defines a K × K-invariant Kähler metric on T ∗K, γ(h,τ). In-

variance of h guarantees that ξ and u(ξ) Lie in the same Cartan subalgebra.
(For simplicity, we will identify LieK ∼= (LieK)∗).

Note that T ∗K is equipped with the standard symplectic structure while KC
is equipped with the standard complex structure inherited from LieK ⊗ C.

The Kähler potential is the K × K−invariant function determined by the
Legendre transform of h. This generalizes the construction for toric manifolds.

For τ = is, s ∈ R, this family of K×K−invariant metrics is a Mabuchi geodesic,
generated by the Hamiltonian flow of h analytically continued to imaginary
time.

Let Ps,h be the corresponding Kähler polarization.



The quantization in the vertical polarization gives, à la Peter-Weyl and inclu-
ding the half-form correction, with Ω0 the Haar volume-form,

L2(K, dx) ∼= HPvert =
⊕̂

λ∈K̂
W 0
λ ,

W 0
λ = {σ0

λ,A = tr(πλ(x)A)⊗
√

Ω0, λ ∈ K̂, A ∈ End(Vλ)}.
(Hall ’02)

The quantization in the Kähler polarization polarization Ps,h, s > 0, gives

HPs,h =
⊕̂

λ∈K̂
W s
λ,

where

W s
λ =

{
σsλ,A = tr(πλ(xeisu)A)e−

1

2
κs ⊗
√

Ωs, λ ∈ K̂, A ∈ End(Vλ)
}
,

where κs is the Kähler potential (which is, explicitly, the Legendre transform
of sh) and, as above, u = ∇h. Ωs is a trivializing holomorphic section of the
canonical bundle of (T ∗K, Js). (Kirwin-Mourão-N ’13)



The quantizations of T ∗K in the corresponding Kähler polarizations can be
connected to the quantization in the vertical polarization explicitly by analogs
of the coherent state transform of Hall (which is the case h = ξ2/2, τ = i)

Cs : L2(K, dx) → HL2(KC, dνs), s > 0,
f 7→ C ◦ e−

s

2
∆f,

where C denotes analytic continuation and ∆ is the Laplacian for a bi-invariant
metric on K. (Hall ’02, Florentino-Matias-Mourão-N ’05 ’06, Kirwin-Mourão-
N ’13’14)



In the present case we have linear isomorphisms

Cs : HPvert →HPs,h, s > 0,

where

Cs = exp(shpQ) ◦ exp(−sĥ),

As in the toric case, hpQ is the Kostant-Souriau prequantum operator for h and
ĥ|W0

λ

:= h(λ+ ρ) where ρ is the Weyl vector. (Kirwin-Mourão-N ’13) (Again, I

am hiding a term with a Lie derivative that takes care of the half-forms.)

Note that the points λ + ρ in the weight lattice play the role of the integral
points in the moment polytope in the toric case. (Recall we are identifying
LieK ∼= (LieK)∗.)



Note that Cs preserves the isotypical decompositions of the Hilbert spaces,
so we have linear K ×K−equivariant isomorphisms

Cs : W 0
λ →W s

λ, λ ∈ K̂.

Note also that

eisXh · tr(πλ(x)A) = tr(πλ(xeisu)A),

and, for the trivializing holomorphic section of the canonical bundle,

eisLXhΩ0 = Ωs.

The prequantum operator hpQ = i∇Xh
+h is responsible for analytic continua-

tion along the complex time flow, while ĥ asymptotically corrects the growth
of norms. (Kirwin-Mourão-N ’14).



By the way, acting with complex time Hamiltonian flows of a function which is
convex only along a Cartan subalgebra one can also generate K×T−invariant,
but not K ×K−invariant, Kähler structures on T ∗K, one can get interesting
mixed polarizations of T ∗K and also study the corresponding quantizations.
(Mourão-N-Pereira ’18)



The Kirwin-Wu polarization on T ∗K

It turns out that the geodesic family of K × K−invariant Kähler structures
on T ∗K, as defined above, defines a very interesting mixed polarization as
s→ +∞, as first noticed by Kirwin and Wu in unpublished work.

We will describe this polarization in a different approach, by using local al-
gebras of polarized functions, and will describe how half-form corrected ho-
lomorphic sections converge to distributional sections supported on (partial)
Bohr-Sommerfeld cycles.



Let t+ be the (closed) positive Weyl chamber associated to a (fixed) choice
of maximal torus T ⊂ K and of simple roots {α1, . . . , αr}. The sweeping map
s : LieK → t+ conjugates Lie algebra elements to the positive Weyl chamber
and gives an homeomorphism (LieK)/AdK ∼= t+. (Again, recall that we are
identifying LieK and its dual.)

To an Hamiltonian K−action on a symplectic manifold X one can associate
a smooth Hamiltonian effective action of a torus T̂ , with LieT̂ ⊂ LieT , on an
open dense subset X̌ ⊂ X and whose moment map is µ̂ = s ◦ µ. This action
is given, explicitly, by

t ? p = (g−1tg) · p, t ∈ T̂ , g ∈ K,Adgµ(p) ∈ ť+.

(In general, µ̂ can take values on a positive codimension stratum of t+, called
the principal stratum, and whose linear span is Lie T̂ ). (Guillemin-Sternberg
’83, Kirwan ’84, Woodward ’98, Lane ’18, ...)



Recall that the (left) K×K−action on T ∗K is Hamiltonian with (equivariant)
moment map

µ = (µL, µR)(x, ξ) = (Adxξ,−ξ), x ∈ K, ξ ∈ LieK.

For T ∗K, T̂ ∼= T . Consider KAK coordinates on ˇT ∗K = K × (LieK)reg,

T ∗K 3 (x, ξ)↔ xeiξ ↔ x1e
isξ+x−1

2 ∈ KC,

where x = x1x
−1
2 and ξ = Adx2ξ+, ξ+ ∈ ť+, x1, x2 ∈ K. Then,

(x1, ξ+, x2) ? t = (x1t
−1, ξ+, x2) ∼ (x1, ξ+, x2t).

(Since s ◦ µL(x, ξ) and s ◦ µR(x, ξ) take values in opposite Weyl chambers, we
are now considering T̂ to act on the left on x1 or on the right on x2).



The Kirwin-Wu polarization, PKW , on ˇT ∗K = K×(LieK)reg, is a K×K−invariant
polarization that can be described as follows. Its real directions are tangent
to the T̂−orbits. The subsets

µ̂−1(ξ+) = K ×Oξ+
, ξ+ ∈ ť+,

are T̂− principal bundles over a product of coadjoint orbits Oξ+
× Oξ+

with
natural identifications Oξ+

∼= K/T ∼= KC/B, where B is the Borel subgroup.
The holomorphic directions of PKW are then induced by the standard complex
structure on the product of these orbits. (One of the orbits actually gets the
conjugate complex structure due to the signs of the actions.)



For λ ∈ K̂, A ∈ End(Vλ), u+ = ∇ξ+
h, let

f sλ,A(x, ξ) = tr(πλ(x1e
isu+x−1

2 )A),

(Recall the quantization of T ∗K in the Kähler polarizations Ps,h.) Consider,
locally, for vλ ∈ Vλ a highest weight vector,

Fλ,A(x1, x2) = tr(πλ(x1)vλ ⊗ v∗λπλ(x−1
2 )A).

The local rings generated by {Fλ,A}λ∈K̂,A∈End(Vλ)
are generated by products of

the form, with u ∈ Vλ, v∗ ∈ V ∗λ ,

Fλ,u⊗v∗ = tr(πλ(x1)vλ ⊗ v∗λπλ(x−1
2 )u⊗ v∗) = tr(πλ(x1)vλ ⊗ v∗) tr(πλ(x−1

2 )u⊗ v∗λ).

Each of these factors transforms under the expected character of T as a
section for a Borel-Weil-Bott line bundle over a coadjoint orbit. The quotients
Fλ,A1

/Fλ,A2
, where defined, are T̂−invariant.

Note that Ps,h is generated pointwise by the Hamiltonian vector fields of Js
anti-holomorphic functions,

Ps,h = 〈Xf̄ sλ,A
, λ ∈ K̂, A ∈ End(Vλ)〉C.



Theorem (Baier-Hilgert-Kaya-Mourão-N)

i) Pointwise, on ˇT ∗K,

lim
s→+∞

X fs
λ,A1
fs
λ,A2

= XFλ,A1
Fλ,A2

.

ii) Locally, on ˇT ∗K,

PKW = 〈X F̄λ,A1
F̄λ,A2

, Xµ̂j〉C,

for λ ∈ K̂, A ∈ End(Vλ) and µ̂j are the components of µ̂.

iii) Pointwise, in the Lagrangian Grassmannian on ˇT ∗K,

lim
s→+∞

Ps,h = PKW .



One can check that the Bohr-Sommerfeld cycles for PKW are precisely given
by µ̂−1(λ+ ρ), for highest weights λ, where ρ is the Weyl vector.

The canonical bundle KPKW is trivializable with a K×K−invariant trivialization
given by (with Lie algebra conventions such that ρ(u+) > 0)

Ω∞ = lim
s→+∞

s−re−2sρ(u+)Ωs.

One also has a polarized section of KPKW , with Aρ = vρ ⊗ v∗ρ ∈ End(Vρ),

Ω̂∞ = β(ξ+)F−2
ρ,Aρ

Ω∞,

where it is useful to include an appropriate (PKW−polarized) function β(ξ+).



Theorem (Baier-Hilgert-Kaya-Mourão-N)

lim
s→+∞

Cs σ
0
λ,A = σ∞λ,A, λ ∈ K̂, A ∈ End(Vλ)

where

σ∞λ,A = aλ0Fλ,AFρ,Aρ
δξ+

(λ+ ρ)⊗
√

Ω̂∞,

is a PKW−polarized distributional section supported on the BS cycle µ̂−1(λ+ρ).

When h is quadratic, the CST transforms Cs are unitary for all s > 0. This
gives a natural Hilbert space structure

HPKW =
⊕̂

λ∈K,A∈End(Vλ)
〈σ∞λ,A〉C,

such that the quantizations on Pvert and on PKW become related, through the
family Ps,h of Kähler polarizations, by a unitary K×K−equivariant non-abelian
Fourier transform FK : HPvert →HPKW , defined by

FK(σ0
λ,A) = σ∞λ,A.

Future interesting generalizations are expected.



THANK YOU.


