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o | will also show that Yetter's TQFTs associated to finite groups generalise to
explicitly calculable functors from this category.
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Definition
Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram

i:X > M <Y :j such that (i,j): XU Y — M is a closed cofibration.
For spaces X, Y € Top, we define the set of all cofibrant cospans

Y

(i,j) is a closed cofibration } .

X
CofCos(X,Y)={ ~ v,
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Definition
Let A and X be spaces. A map i:A - X has the homotopy extension property,

with respect to the space Y, if for any pair of a homotopy h: AxI - Y and a map
f: X — Y satisfying (f oi)(a) = h(a,0), there exists a homotopy H: X xI - Y,
extending h, with H(x,0) = f(x) and H(i(a),t) = h(a,t). This is illustrated by

the following diagram.
X f
7
0
A Y

XoxI==tis
ixidy
N
0
AxI h

(Where for any space X, t5: X — X x I is the map x + (x,0).)
We say that i: A — X is a cofibration if i satisfies the homotopy extension property

for all spaces Y.









Example
Let X be a space. The cospan idx: X — X < X :idx is not a cofibrant cospan,

unless X = &.



Proposition
For X a topological space, the cospan LgIX > XxI+< X :Li( is a cofibrant cospan

(where 1X: X — X x 1 is the map x = (x, a)).

Proof sketch

Suppose there exists a homotopy h: (X U X) xI - K, and a map f: X xI - K,
such that h((x,0),0) = f(x,0) and h((x,1),0) = f(x,1). Composition with below
retraction gives homotopy H: (X xI) xI - K.

x




Proposition
A concrete cobordism canonically defines a cofibrant cospan.

Precisely, let X, Y and M be smooth oriented manifolds, and let M be a concrete
cobordism from X to Y. Hence there exists a diffeomorphism ¢: X U'Y — OM.
Define maps i(x) = ¢(x,0) and j(y) = ¢(y,1). Then, using X, Y and M to
denote the underlying topological spaces, i: X — M « Y :j is a cofibrant cospan.
Example

Any CW complex together with a pair of disjoint subcomplexes and inclusions

gives a cofibrant cospan.
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Lemma
(1) For any spaces X, Y and Z in Ob(Top) there is a composition of cofibrant

cospans
- :CofCos(X, Y) x CofCos(Y,Z) - CofCos(X, Z)

X Y Y zZ\ X V4
A A 7
M N Muy N

where i = pys o i and [= pwn o | are obtained via the following diagram

NN A

/\/II_IyN7

the middle square of which is the pushout of j: M <« Y — N:k in Top. H



Lemma
For each pair X, Y € Ob(CofCos), we define a relation on CofCos(X, Y) by

(x y) C,,(x y)
AN K . ~ N W .,
m TN

if there exists a commuting diagram

MI

where 1) is a homotopy equivalence. For each pair X, Y € Top the relations
(CofCos(X, Y), CNh) are a congruence on CofCos.
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Theorem (T.)
The quadruple

. X
CofCos = | Ob(Top) , CofCos(X,Y)/ <, +, |« &
o X xI " i

is a category.
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Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
X Y X Y ..
If  ~ w. . ,~ , arecospanssuch that (i,j):XuY - M and
M TN
(i",j"): X u'Y — N are cofibrations, then the set of homotopy equivalences v such

that
M

X/ w’\jY

Lo

MI
commutes, is in bijective correspondence with the set of v’ such that there exists

¢:N — M with ¢' o ¢ and ¢ o 1)’ homotopic to identity through maps commuting
with cospans.
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There is a functor CD:Toph — CofCos which sends a homeomorphism f: X - Y to
X Y

the cospan , Koy
Lo of VI 4

Theorem (T.)
There is a monoidal category (CofCos, ®, @, ax,v.z, Ax, px, Bx,vy) where

iuk

lw X

% 7 WuY Xuz
N v = ~ .
Koy h Mun

ch ch

All other maps are the images of the corresponding maps in (Top,U).
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Definition
A space X is called homotopically 1-finitely generated if w(X,A) is finitely

generated for all finite sets of basepoints A.
Let x denote the class of all homotopically 1-finitely generated spaces.

Theorem (T.)
There is a (symmetric monoidal) subcategory of CofCos

X X
Lé(\ K X

HomCob = | x, HomCob(X, Y), -,
XxI “

ch
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Motion groupoids




Definition
Fix a manifold, submanifold pair M = (M, A). A flow in M is a map

f € Top(I, TOPA (M, M)) with f = idy. Define,
Flowy = {f € Top(I, TOP4(M, M)) | fy = idwm}.

Definition
Fix a M =(M,A). A motion in M is a triple f: N =« N" consisting of a pre-motion

f e Flowpm, a subset N ¢ M and the image of N at the endpoint of f, fi(N) = N".

17



TOP"(M, M)
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Theorem (.T, Faria Martins, Martin)
Let M = (M, A) where M is a manifold and Ac M a subset. There is a groupoid

Moty = (PM, Mty (N, N")/ %, %, [Idml., [fl = [Fl)-

e The motion subgroupoid of a configuration of n points in the disk is
isomorphic to the n strand Artin braid group.

e The motion subgroupoid of a configuration of n unknotted unlinked loops in
the 3-ball is isomorphic to the loop braid group with n loops.

20



Definition
The worldline of a motion f: N <= N’ in a manifold M is

W(f:N=N)= | fR(N)x{t}cMxL
te[0,1]

Let W/(f:N <= N')=(MxI)~ (W (f:N<=N")).

Theorem (T.)
Let M be a manifold. There is a well-defined functor

MOT 4 hfMoty - HomCob

which sends an object N € Ob(hfMoty) to M\ N, and which sends a morphism
[f: N <= N'], to the cospan homotopy equivalence class of

M~ N M~ N’

L

\ (Lfl
W/ (f: N < N')

where tg: M\ f(N) > W'(F:N <= N"), me (m,t). 21



/;:HomCob — Vect¢




Definition
Let x be the set of pairs (X, Xp) such that X isin x and X is a finite
representative subset.
Let (X, Xp), (Y, Yo) and (M, Mp) be in x. A based homotopy cobordism from
(X, Xp) to (Y, Yo) is a diagram i: (X, Xp) - (M, Mp) < (Y, Yo) :j such that:
1. it X > M —Y:jis a homotopy cobordism.
2. i and j are maps of pairs.
3. Myni(X)=i(Xo) and My nj(Y) =j(Yo).

22



1’ 1’)
(S%ii /C%S So
S
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Let G be a group.
For a pair (X, Xp) € x, define

ZIG(X7X0) =C (Gl'pd (TF(X7X0)’ G)) :

24



(X, Xo) 2 (Z*Z)u{*}u{+}. Maps from 7(X, Xp) to G are determined by pairs
in G x G, whose elements respectively denote the images of the equivalence classes
of the loops marked x; and x, in the figure, so we have Zi-(X, Xp) 2 C(G x G).
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Let i: (X, Xp) = (M, My) < (Y, Yp) :j be a based homotopy cobordism, we define
a matrix

Z‘G(“‘X“,»(M‘MO)«” Y‘”) 6(X. X0) > ZG(Y, Yo)

as follows. Let f € Zi-(X,Xo) and g € Z(Y, Yo) be basis elements, then

(X, Xo) (Y, Y0)
Z, .
(g’ G '\)(M‘MU)(J

(X, Xo) "f(Y o)

«M w)

w(M, I\/IO)

f'

>: h:m(M, M) - G
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Lemma
The map Z!G preserves composition, extended in the obvious way to a composition

of based cospans.

W(X,Xo) 7T(Y, Yo) W(Z,Zo)

(M, Mp) (N, No)

m(Muy N, My uy, No)

|

G

Proof
Thm.9.1.2, Topology and Groupoids, Brown gives that middle square is a push

out.

27



Lemma
Let X be a topological space, G a group, Xp € X a finite representative subset and

y € X a point with with y ¢ Xy. There is a non-canonical bijection of sets

©,:Grpd(7m(X,Xp),G) x G - Grpd(7w(X, Xou{y}),G)
(f.g)~ F

where 7 is a choice of a path from some x € Xj to y and F is the extension along

v and g.
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Consider a concrete homotopy cobordism, i: (X, Xp) = (M, My) < (Y, Yo) :j. It
follows

Zg(M, Mo u{m}) =G| Zs(M, Mp).
It follows that for all M} and My, we can write
Z6(M, Mg u Mo) = |G| (M MIHMDZE (M, M)

and
Z (M, Mg u Mo) = |G| IMeMl-IMD 74 (a7, mip)

which together imply
|GITMIZG (M, Mo) = |6 M1Z (M, My)

and that
\G|‘(|M°|‘|X°|)Z!G(/VI, Mo) = |G|_(‘Mo|_|XO|)Z!C;(M7 M}).
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Lemma
We redefine the linear map we assign to a concrete based homotopy cobordisms as

z4 ((X,le_ A Y°>) = |G|~ (IMol-1XeD 7! ((X’X'J),.\) g m).

2 J J
(M, Mo) (M, Mo)

The map Zg does not depend on the choice of subset My € M, and this preserves
composition. When the relevant cospan is clear, we will refer to this as
Z!G!(M,XO, Yo) to highlight the dependence on Xy and Yj.
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Lemma
There is a contravariant functor

Vx : FinSet”(X) — Set

constructed as follows. Let X,, X3 € Ob(FinSet* (X)) with X3 c X,. Let
Vx(Xa) = Grpd(7(X, X,), G). For any v, € Vx(X,) we have a commuting
triangle

(X, X5) —= 7(X, Xa)

Now let Vx (tga: Xs = Xo) = dap Where ¢op i Vx(Xa) = Vx(X3), Va = Va © Lags.
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Definition
For X € x define
Z5(X) = colim(Vy) = C(colim(Vx))

where V5 = Fy,. o Vx and Vx:FinSet*(X) — Set.

32



Let i X - M < Y :j be a concrete homotopy cobordism. Fix a choice of Y, c Y
such that (Y, Y,/ ) € x. For each pair X,, X3 € X such that (X, X,), (X, Xg) e x
we have the following diagram

X
7L (X, Xy) —2 5 Zi (X, X3)
Z(M X, Yar) Zg(M.Xg, Yor) (1)

¢\> Zo(Y).
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Lemma
The assignment

X Y
Zg| v v. |= ;/d(’y

does not depend on the choice of Y.

Theorem (T.)
Zc is a functor.
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Lemma
Let i X - M < Y :j be a concrete homotopy cobordism,

i: (X, X0) = (M, Mp) < (Y, Yp) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zg(Y') be basis elements (so [f], for
example, is an equivalence class in colim(Vx)), then

(llZe(M)|[F]) = |G|"IMI=IXDS™ | e (M, Mo) > G [ Alw(x x0) = £ A Bla(yve) = &)
gedy *([g])

_ ‘G|—(|Mo|-\Xo|) Z (g|Z!G(M, Mo) | f)
gedy (lg])

where ¢y Z(Y, Yo) = Z(Y) is the map into colim(V},).
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Lemma
Let i X - M < Y :j be a concrete homotopy cobordism,

i: (X, X0) = (M, Mp) < (Y, Yp) :j a choice of concrete based homotopy
cobordism, and [f] € Zg(X) and [g] € Zg(Y') be basis elements (so [f], for
example, is an equivalence class in colim(Vx)), then

(llZe(M)|[F]) = |G|"IMI=IXDS™ | e (M, Mo) > G [ Alw(x x0) = £ A Bla(yve) = &)
gedy *([g])

_ ‘G|—(|Mo|-\Xo|) Z (g|Z!G(M, Mo) | f)
gedy (lg])

where ¢ Z-(Y, Yo) = Z(Y) is the map into colim(V},). Equivalently

(LelIZe(M)|[F])=|G|" M=% | s (M, Mo) = G [ Alu(x x0) = A Blay ve) ~ &}
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VXD [ F— V(X)) ————— V(Xp)

Theorem (T.)
For X a space, the map ¢,, is an isomorphism. Hence, for a homotopically
1-finitely generated space X € x

ZG(X) = (C((Gl’pd(ﬂ'(X,X()), G)/ ;)a

for any choice Xy c X of finite representative subset, where % denotes taking maps
up to natural transformation.
Further,

Z6(X) = C((Grpd(n(X), G)/ ).

36



PR e

Let X be the complement of the embedding of two circles shown. Letting Xo ¢ X
be the subset shown, Grpd(7 (X, Xp), G) = G x G as discussed previously. Since
all objects are mapped to the unique object in G, taking maps up to natural
transformation is means taking maps up to conjugation by elements of G at each
basepoint, hence in this case maps are labelled by pairs of elements of G, up to
simultaneous conjugation, so we have Zg(X) = C((G x G)/G).

37



X

Basis elements in Zg(X) are given by equivalence classes [(f1,f,)] where fi,h € G
and [] denotes simultaneous conjugation by the same element of G.
Basis elements in Z¢(Y') are given by elements of g taken up to conjugation,

denoted [g1]. We have
(e ]lZe(M)|[(f,R)]) = \G|_2{a7 b,c,d,ec G|la=fi,b=1f,g ~ ebae‘l}
={ecG|g ~efife '}
_{|G| if g1 ~ fify

0 otherwise.



Let x € X be the basepoint which is in the connected component of X homotopy
equivalent to the punctured disk, and x’ € X some choice of basepoint in the other
connected component. There is a bijection sending a map h € Grpd(7(M, Mp), G)
to a quadruple (A, h(y1), h(72), h(73)) € Grpd(m (M, {x,x"}) x G x G x G, where
h' is the restriction of h to m(M,{x,x"}). Now 7(M, {x,x'}) is the disjoint union
of the groupoids (M, {x}) and w(M,,{x’}) where M; is the path connected
component of M containing x, and M, is the path connected component
containing x’. The group (M, {x'}) is trivial, so there is one unique map into
G. The group m(My, {x}) is isomorphic to the twice punctured disk, which has
fundamental group isomorphic to the free product Z x Z. This isomorphism can be
realised by sending the loop x; to the 1 in the first copy of Z and x, to the 1 in
the second copy of Z. Thus we can label elements in Grpd(7(My, {x}), G) by
elements of G x G where g € (g1, 8) corresponds to the image of x;, and g the
image of x». Hence a map in Grpd(7(M, M), G) is determined by a five tuple
(a,b,c,d,e) € Gx G x G x G xG where a corresponds to the image of x1, b to the
image of x, and ¢, d and e correspond to the images of 71, 72 and 3 respectively.
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