Topological quantum field theories \& homotopy cobordisms

arXiv:2208.14504

Fiona Torzewska
16/11/22
University of Leeds

Motivation

AIM: To study particle statistics in topological phases.

Motivation

AIM: To study particle statistics in topological phases.

Motivation

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...

Motivation

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Untwisted Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.

Motivation

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Untwisted Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of cofibrant cospans of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.

Motivation

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Untwisted Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of cofibrant cospans of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.
- I will also show that Yetter's TQFTs associated to finite groups generalise to explicitly calculable functors from this category.

Talk Plan

Talk Plan

1. Construction of the category CofCos, and subcategory HomCob
2. Construction of the category CofCos, and subcategory HomCob
3. Functor from the motion groupoid of a manifold to HomCob
4. Construction of the category CofCos, and subcategory HomCob
5. Functor from the motion groupoid of a manifold to HomCob
6. Family of functors $Z_{G}: \operatorname{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Cofibrant cospans and homotopy cobordisms

Cofibrant cospans

Definition

Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram $i: X \rightarrow M \leftarrow Y: j$ such that $\langle i, j\rangle: X \sqcup Y \rightarrow M$ is a closed cofibration.
For spaces $X, Y \in$ Top, we define the set of all cofibrant cospans

$$
\operatorname{Cof} \operatorname{Cos}(X, Y)=\left\{\left.\begin{array}{c}
X_{i} \searrow M_{j}{ }_{K}^{Y}
\end{array} \right\rvert\,\langle i, j\rangle \text { is a closed cofibration }\right\} .
$$

Cofibrations

Definition

Let A and X be spaces. A map $i: A \rightarrow X$ has the homotopy extension property, with respect to the space Y, if for any pair of a homotopy $h: A \times \mathbb{I} \rightarrow Y$ and a map $f: X \rightarrow Y$ satisfying $(f \circ i)(a)=h(a, 0)$, there exists a homotopy $H: X \times \mathbb{I} \rightarrow Y$, extending h, with $H(x, 0)=f(x)$ and $H(i(a), t)=h(a, t)$. This is illustrated by the following diagram.

(Where for any space $X, \iota_{0}^{X}: X \rightarrow X \times \mathbb{I}$ is the map $x \mapsto(x, 0)$.)
We say that $i: A \rightarrow X$ is a cofibration if i satisfies the homotopy extension property for all spaces Y.

Cofibrant cospans

Cofibrant cospans

Cofibrant cospans

Example

Let X be a space. The cospan $\operatorname{id}_{X}: X \rightarrow X \leftarrow X: \operatorname{id}_{X}$ is not a cofibrant cospan, unless $X=\varnothing$.

Cofibrant cospans

Proposition

For X a topological space, the cospan $\iota_{0}^{X}: X \rightarrow X \times \mathbb{I} \leftarrow X: \iota_{1}^{X}$ is a cofibrant cospan (where $\iota_{a}^{X}: X \rightarrow X \times \mathbb{I}$ is the map $x \mapsto(x, a)$).

Proof sketch

Suppose there exists a homotopy $h:(X \sqcup X) \times \mathbb{I} \rightarrow K$, and a map $f: X \times \mathbb{I} \rightarrow K$, such that $h((x, 0), 0)=f(x, 0)$ and $h((x, 1), 0)=f(x, 1)$. Composition with below retraction gives homotopy $H:(X \times \mathbb{I}) \times \mathbb{I} \rightarrow K$.

Cofibrant cospans

Proposition

A concrete cobordism canonically defines a cofibrant cospan.
Precisely, let X, Y and M be smooth oriented manifolds, and let M be a concrete cobordism from X to Y. Hence there exists a diffeomorphism $\phi: \bar{X} \sqcup Y \rightarrow \partial M$. Define maps $i(x)=\phi(x, 0)$ and $j(y)=\phi(y, 1)$. Then, using X, Y and M to denote the underlying topological spaces, $i: X \rightarrow M \leftarrow Y: j$ is a cofibrant cospan.

Example

Any CW complex together with a pair of disjoint subcomplexes and inclusions gives a cofibrant cospan.

Composition of cofibrant cospans

Lemma

(I) For any spaces X, Y and Z in $O b(\mathbf{T o p})$ there is a composition of cofibrant cospans

$$
\begin{aligned}
& \cdot: \operatorname{Cof} \operatorname{Cos}(X, Y) \times \operatorname{Cof} \operatorname{Cos}(Y, Z) \rightarrow \operatorname{Cof} \operatorname{Cos}(X, Z)
\end{aligned}
$$

where $\tilde{i}=p_{M} \circ i$ and $\tilde{I}=p_{N} \circ I$ are obtained via the following diagram

the middle square of which is the pushout of $j: M \leftarrow Y \rightarrow N: k$ in Top.

Equivalence classes cofibrant cospans

Lemma
For each pair $X, Y \in \operatorname{Ob}(\operatorname{CofCos})$, we define a relation on $\operatorname{Cof} \operatorname{Cos}(X, Y)$ by

$$
\left(\begin{array}{ccc}
X & & \\
i_{\searrow} & \swarrow_{j} \\
& M
\end{array}\right) \stackrel{\stackrel{y}{\sim}}{\sim}\left(\begin{array}{cc}
X & \\
i^{\prime} & \\
& \swarrow_{j^{\prime}}
\end{array}\right)
$$

if there exists a commuting diagram

where ψ is a homotopy equivalence. For each pair $X, Y \in$ Top the relations $(\operatorname{Cof} \operatorname{Cos}(X, Y), \stackrel{c h}{\sim})$ are a congruence on CofCos.

Category of cofibrant cospans

Theorem (T.)
The quadruple

$$
\operatorname{CofCos}=\left(\operatorname{Ob}(\text { Top }), \operatorname{Cof} \operatorname{Cos}(X, Y) / \stackrel{c h}{\sim}, \cdot\left[\begin{array}{ccc}
X & & \\
\iota_{0}^{X \searrow} & & X \\
{ }_{0}^{K} & X \times \mathbb{I} & \iota_{1}^{X}
\end{array}\right]_{c h}\right)
$$

is a category.

Category of cofibrant cospans

Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
If ${ }^{X}{ }_{i}{ }_{M}{ }^{K_{j}}{ }^{Y},{ }_{i^{\prime} \searrow}^{X}{ }_{N} \swarrow_{j^{\prime}}^{Y}$ are cospans such that $\langle i, j\rangle: X \sqcup Y \rightarrow M$ and
$\left\langle i^{\prime}, j^{\prime}\right\rangle: X \sqcup Y \rightarrow N$ are cofibrations, then the set of homotopy equivalences ψ such that

commutes, is in bijective correspondence with the set of ψ^{\prime} such that there exists $\phi: N \rightarrow M$ with $\psi^{\prime} \circ \phi$ and $\phi \circ \psi^{\prime}$ homotopic to identity through maps commuting with cospans.

Monoidal category of cofibrant cospans

There is a functor $\Phi:$ Top $^{h}{ }_{Y}$ CofCos which sends a homeomorphism $f: X \rightarrow Y$ to the cospan

Theorem (T.)
There is a monoidal category ($\left.\operatorname{CofCos}, \otimes, \varnothing, \alpha_{X, Y, Z}, \lambda_{X}, \rho_{X}, \beta_{X, Y}\right)$ where

All other maps are the images of the corresponding maps in (Top, \sqcup).

Category of homotopy cobordisms

Definition

A space X is called homotopically 1-finitely generated if $\pi(X, A)$ is finitely generated for all finite sets of basepoints A.
Let χ denote the class of all homotopically 1 -finitely generated spaces.
Theorem (T.)
There is a (symmetric monoidal) subcategory of CofCos

$$
\operatorname{HomCob}=\left(\chi, \operatorname{HomCob}(X, Y), \cdot,\left[\begin{array}{lll}
X & & \\
\iota_{0}^{\chi \searrow} & & X \\
{ }_{0} & & X \times \mathbb{I}_{\iota_{1}^{X}}^{X}
\end{array}\right]_{\mathrm{ch}}\right) .
$$

Motion groupoids

Motion groupoids

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \boldsymbol{T o p}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Definition

Fix a $\underline{M}=(M, A)$. A motion in \underline{M} is a triple $f: N \backsim N^{\prime}$ consisting of a pre-motion $f \in \operatorname{Flow}_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)=N^{\prime}$.

Motion groupoids

Motion groupoids

Theorem (.T, Faria Martins, Martin)
Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, *,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{m}\right) .
$$

- The motion subgroupoid of a configuration of n points in the disk is isomorphic to the n strand Artin braid group.
- The motion subgroupoid of a configuration of n unknotted unlinked loops in the 3-ball is isomorphic to the loop braid group with n loops.

Motion groupoids

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
\mathbf{W}\left(f: N G N^{\prime}\right)=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Let $\mathbf{W}^{\prime}\left(f: N \backsim N^{\prime}\right)=(M \times \mathbb{I}) \backslash\left(\mathbf{W}\left(f: N \backsim N^{\prime}\right)\right)$.

Theorem (T.)

Let M be a manifold. There is a well-defined functor

$$
\mathcal{M O T}_{M}^{A}: \operatorname{hfMot}_{\underline{M}} \rightarrow \mathrm{HomCob}^{\text {Hen }}
$$

which sends an object $N \in O b\left(\operatorname{hfMot}_{\underline{M}}\right)$ to $M \backslash N$, and which sends a morphism $\left[f: N \backsim N^{\prime}\right]_{m}$ to the cospan homotopy equivalence class of

where $\iota_{f_{t}}: M \backslash f_{t}(N) \rightarrow \mathbf{W}^{\prime}\left(f: N \backsim N^{\prime}\right), m \mapsto(m, t)$.

$\mathrm{Z}_{G}:$ HomCob \rightarrow Vect $_{\mathbb{C}}$

Definition

Let χ be the set of pairs $\left(X, X_{0}\right)$ such that X is in χ and X_{0} is a finite representative subset.
Let $\left(X, X_{0}\right),\left(Y, Y_{0}\right)$ and $\left(M, M_{0}\right)$ be in χ. A based homotopy cobordism from $\left(X, X_{0}\right)$ to $\left(Y, Y_{0}\right)$ is a diagram $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ such that:

1. $i: X \rightarrow M \rightarrow Y: j$ is a homotopy cobordism.
2. i and j are maps of pairs.
3. $M_{0} \cap i(X)=i\left(X_{0}\right)$ and $M_{0} \cap j(Y)=j\left(Y_{0}\right)$.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{C}$

Let G be a group.
For a pair $\left(X, X_{0}\right) \in \chi$, define

$$
\mathrm{Z}_{G}^{!}\left(X, X_{0}\right)=\mathbb{C}\left(\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right)\right) .
$$

Example

$\pi\left(X, X_{0}\right) \cong(\mathbb{Z} * \mathbb{Z}) \sqcup\{*\} \sqcup\{*\}$. Maps from $\pi\left(X, X_{0}\right)$ to G are determined by pairs in $G \times G$, whose elements respectively denote the images of the equivalence classes of the loops marked x_{1} and x_{2} in the figure, so we have $Z_{G}^{!}\left(X, X_{0}\right) \cong \mathbb{C}(G \times G)$.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Let $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ be a based homotopy cobordism, we define a matrix

$$
Z_{G}^{!}\left({ }^{\left(X, X_{0}\right)}{ }_{\left(M, M_{0}\right)^{\circ}}^{\stackrel{(Y, Y}{j}_{\left(Y_{0}\right)}^{)}}\right): Z_{G}^{!}\left(X, X_{0}\right) \rightarrow Z_{G}^{!}\left(Y, Y_{0}\right)
$$

as follows. Let $f \in Z_{G}^{!}\left(X, X_{0}\right)$ and $g \in Z_{G}^{!}\left(Y, Y_{0}\right)$ be basis elements, then

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

The map $Z_{G}^{!}$preserves composition, extended in the obvious way to a composition of based cospans.

Proof

Thm.9.1.2, Topology and Groupoids, Brown gives that middle square is a push out.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let X be a topological space, G a group, $X_{0} \subseteq X$ a finite representative subset and $y \in X$ a point with with $y \notin X_{0}$. There is a non-canonical bijection of sets

$$
\begin{aligned}
\Theta_{\gamma}: \operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right) \times G & \rightarrow \operatorname{Grpd}\left(\pi\left(X, X_{0} \cup\{y\}\right), G\right) \\
(f, g) & \mapsto F
\end{aligned}
$$

where γ is a choice of a path from some $x \in X_{0}$ to y and F is the extension along γ and g.

$\mathrm{Z}_{G}: \mathrm{HomCob}^{\boldsymbol{H}}$ Vect $_{\mathbb{C}}$

Consider a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$. It follows

$$
Z_{G}^{!}\left(M, M_{0} \cup\{m\}\right)=|G| Z_{G}^{!}\left(M, M_{0}\right) .
$$

It follows that for all M_{0}^{\prime} and M_{0}, we can write

$$
Z_{G}^{!}\left(M, M_{0}^{\prime} \cup M_{0}\right)=|G|^{\left(\left|M_{0}^{\prime} \cup M_{0}\right|-\left|M_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}\right)
$$

and

$$
Z_{G}^{!}\left(M, M_{0}^{\prime} \cup M_{0}\right)=|G|^{\left(\left|M_{0}^{\prime} \cup M_{0}\right|-\left|M_{0}^{\prime}\right|\right)} Z_{G}^{!}\left(M, M_{0}^{\prime}\right)
$$

which together imply

$$
|G|^{-\left|M_{0}\right|} Z_{G}^{!}\left(M, M_{0}\right)=|G|^{-\left|M_{0}^{\prime}\right|} Z_{G}^{!}\left(M, M_{0}^{\prime}\right)
$$

and that

$$
|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}\right)=|G|^{-\left(\left|M_{0}^{\prime}\right|-\left|X_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}^{\prime}\right) .
$$

Lemma

We redefine the linear map we assign to a concrete based homotopy cobordisms as

$$
Z_{\underline{G}}^{!!}\left({ }^{\left(X, X_{0}\right)}{ }_{\left.\left(M, M_{0}\right)^{2}\right)}^{\left(Y, Y_{0}\right)}\right)=|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} Z_{G}^{!}\left({ }_{\left.i, X_{0}\right)}^{\left.i_{\left(M, M_{0}\right)}\right)^{\left(Y, Y_{0}\right)}}\right) .
$$

The map $Z_{G}^{!!}$does not depend on the choice of subset $M_{0} \subseteq M$, and this preserves composition. When the relevant cospan is clear, we will refer to this as $Z_{G}^{!!}\left(M, X_{0}, Y_{0}\right)$ to highlight the dependence on X_{0} and Y_{0}.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

There is a contravariant functor

$$
\mathcal{V}_{X}: \text { FinSet }^{*}(X) \rightarrow \text { Set }
$$

constructed as follows. Let $X_{\alpha}, X_{\beta} \in \operatorname{Ob}\left(\operatorname{FinSet}^{*}(X)\right)$ with $X_{\beta} \subseteq X_{\alpha}$. Let $\mathcal{V}_{X}\left(X_{\alpha}\right)=\operatorname{Grpd}\left(\pi\left(X, X_{\alpha}\right), G\right)$. For any $v_{\alpha} \in \mathcal{V}_{X}\left(X_{\alpha}\right)$ we have a commuting triangle

$$
\begin{aligned}
& \pi\left(X, X_{\beta}\right) \stackrel{\iota_{\beta \alpha}}{\longrightarrow} \\
& \cdots\left(X, X_{\alpha}\right) \\
& v_{\alpha} \circ \iota_{\beta \alpha} \\
& \\
& \downarrow^{v_{\alpha}}
\end{aligned}
$$

Now let $\mathcal{V}_{X}\left(\iota_{\beta \alpha}: X_{\beta} \rightarrow X_{\alpha}\right)=\phi_{\alpha \beta}$ where $\phi_{\alpha \beta}: \mathcal{V}_{X}\left(X_{\alpha}\right) \rightarrow \mathcal{V}_{X}\left(X_{\beta}\right), v_{\alpha} \mapsto v_{\alpha} \circ \iota_{\alpha \beta}$.

Definition

For $X \in \chi$ define

$$
\mathrm{Z}_{G}(X)=\operatorname{colim}\left(\mathcal{V}_{X}^{\prime}\right)=\mathbb{C}\left(\operatorname{colim}\left(\mathcal{V}_{X}\right)\right)
$$

where $\mathcal{V}_{X}^{\prime}=F_{V_{\mathbb{C}}} \circ \mathcal{V}_{X}$ and $\mathcal{V}_{X}:$ FinSet $^{*}(X) \rightarrow$ Set.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism. Fix a choice of $Y_{\alpha^{\prime}} \subseteq Y$ such that $\left(Y, Y_{\alpha^{\prime}}\right) \in \chi$. For each pair $X_{\alpha}, X_{\beta} \subseteq X$ such that $\left(X, X_{\alpha}\right),\left(X, X_{\beta}\right) \in \chi$ we have the following diagram

Lemma
The assignment

$$
\mathrm{Z}_{G}\left(\begin{array}{ccc}
X & & \\
& \\
& \searrow & \\
& \swarrow_{j}
\end{array}\right)=\phi_{\alpha^{\prime}}^{Y} d_{\alpha^{\prime}}^{M}
$$

does not depend on the choice of $Y_{\alpha^{\prime}}$.
Theorem (T.)
Z_{G} is a functor.

$\mathrm{Z}_{G}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ a choice of concrete based homotopy cobordism, and $[f] \in \mathrm{Z}_{G}(X)$ and $[g] \in \mathrm{Z}_{G}(Y)$ be basis elements (so $[f]$, for example, is an equivalence class in $\operatorname{colim}\left(\mathcal{V}_{X}\right)$), then

$$
\begin{aligned}
\langle[g]| Z_{G}(M)|[f]\rangle & =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{\gamma-1}([g])} \mid\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, X_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)}=g\right\} \\
& =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{\gamma-1}([g])}\langle g| Z_{G}^{!}\left(M, M_{0}\right)|f\rangle
\end{aligned}
$$

where $\phi_{0}^{Y}: \mathrm{Z}_{G}^{!}\left(Y, Y_{0}\right) \rightarrow \mathrm{Z}_{G}(Y)$ is the map into colim $\left(\mathcal{V}_{Y}^{\prime}\right)$.

$\mathrm{Z}_{G}: \operatorname{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ a choice of concrete based homotopy cobordism, and $[f] \in \mathrm{Z}_{G}(X)$ and $[g] \in \mathrm{Z}_{G}(Y)$ be basis elements (so $[f]$, for example, is an equivalence class in $\operatorname{colim}\left(\mathcal{V}_{X}\right)$), then

$$
\begin{aligned}
\langle[g]| Z_{G}(M)|[f]\rangle & =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{\gamma-1}([g])} \mid\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, X_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)}=g\right\} \\
& =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{\gamma-1}([g])}\langle g| Z_{G}^{!}\left(M, M_{0}\right)|f\rangle
\end{aligned}
$$

where $\phi_{0}^{Y}: Z_{G}^{!}\left(Y, Y_{0}\right) \rightarrow Z_{G}(Y)$ is the map into colim $\left(\mathcal{V}_{Y}^{\prime}\right)$. Equivalently
$\langle[g]| Z_{G}(M)|[f]\rangle=|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)}\left|\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, X_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)} \sim g\right\}\right|$

$$
\mathcal{V}\left(X_{\alpha}\right) / \cong \stackrel{p_{\alpha}}{\cong} \mathcal{V}\left(X_{\alpha}\right) \xrightarrow{\phi_{\alpha \beta}} \mathcal{V}\left(X_{\beta}\right)
$$

Theorem (T.)

For X a space, the map $\hat{\phi}_{\alpha}$ is an isomorphism. Hence, for a homotopically 1-finitely generated space $X \in \chi$

$$
\mathrm{Z}_{G}(X)=\mathbb{C}\left(\left(\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right) / \cong\right)\right.
$$

for any choice $X_{0} \subset X$ of finite representative subset, where \cong denotes taking maps up to natural transformation.
Further,

$$
\mathrm{Z}_{G}(X)=\mathbb{C}((\operatorname{Grpd}(\pi(X), G) / \cong)
$$

Let X be the complement of the embedding of two circles shown. Letting $X_{0} \subset X$ be the subset shown, $\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right)=G \times G$ as discussed previously. Since all objects are mapped to the unique object in G, taking maps up to natural transformation is means taking maps up to conjugation by elements of G at each basepoint, hence in this case maps are labelled by pairs of elements of G, up to simultaneous conjugation, so we have $Z_{G}(X)=\mathbb{C}((G \times G) / G)$.

Example

$\left.\right|_{X} ^{Y}$

Basis elements in $Z_{G}(X)$ are given by equivalence classes $\left[\left(f_{1}, f_{2}\right)\right]$ where $f_{1}, f_{2} \in G$ and [] denotes simultaneous conjugation by the same element of G.
Basis elements in $Z_{G}(Y)$ are given by elements of g taken up to conjugation, denoted [g_{1}]. We have

$$
\begin{aligned}
\left\langle\left[g_{1}\right]\right| Z_{G}(M)\left|\left[\left(f_{1}, f_{2}\right)\right]\right\rangle & =|G|^{-2}\left\{a, b, c, d, e \in G \mid a=f_{1}, b=f_{2}, g_{1} \sim e b a e^{-1}\right\} \\
& =\left\{e \in G \mid g_{1} \sim e f_{1} f_{2} e^{-1}\right\} \\
& = \begin{cases}|G| & \text { if } g_{1} \sim f_{1} f_{2} \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Let $x \in X$ be the basepoint which is in the connected component of X homotopy equivalent to the punctured disk, and $x^{\prime} \in X$ some choice of basepoint in the other connected component. There is a bijection sending a map $h \in \operatorname{Grpd}\left(\pi\left(M, M_{0}\right), G\right)$ to a quadruple $\left(h^{\prime}, h\left(\gamma_{1}\right), h\left(\gamma_{2}\right), h\left(\gamma_{3}\right)\right) \in \operatorname{Grpd}\left(\pi\left(M,\left\{x, x^{\prime}\right\}\right) \times G \times G \times G\right.$, where h^{\prime} is the restriction of h to $\pi\left(M,\left\{x, x^{\prime}\right\}\right)$. Now $\pi\left(M,\left\{x, x^{\prime}\right\}\right)$ is the disjoint union of the groupoids $\pi\left(M_{1},\{x\}\right)$ and $\pi\left(M_{2},\left\{x^{\prime}\right\}\right)$ where M_{1} is the path connected component of M containing x, and M_{2} is the path connected component containing x^{\prime}. The group $\pi\left(M_{2},\left\{x^{\prime}\right\}\right)$ is trivial, so there is one unique map into G. The group $\pi\left(M_{1},\{x\}\right)$ is isomorphic to the twice punctured disk, which has fundamental group isomorphic to the free product $\mathbb{Z} * \mathbb{Z}$. This isomorphism can be realised by sending the loop x_{1} to the 1 in the first copy of \mathbb{Z} and x_{2} to the 1 in the second copy of \mathbb{Z}. Thus we can label elements in $\operatorname{Grpd}\left(\pi\left(M_{1},\{x\}\right), G\right)$ by elements of $G \times G$ where $g_{1} \in\left(g_{1}, g_{2}\right)$ corresponds to the image of x_{1}, and g_{2} the image of x_{2}. Hence a map in $\operatorname{Grpd}\left(\pi\left(M, M_{0}\right), G\right)$ is determined by a five tuple $(a, b, c, d, e) \in G \times G \times G \times G \times G$ where a corresponds to the image of x_{1}, b to the image of x_{2}, and c, d and e correspond to the images of γ_{1}, γ_{2} and γ_{3} respectively.

