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Jones polynomial J(q,K ) - Knot invariant discovered by J. F. R. Jones
(1984). Assigns to each oriented knot/link a Laurent polynomial in q
with integer coefficients.

Several descriptions for it found in the same period.

A. Tsuchiya and Y. Kanie (1987) – used 2D CFT to generalize Jones’
construction to the choice of
• simple Lie group G ;
• labeling of a knot by an irreducible representation R of G .
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Witten (1988) showed that Jones polynomial can be described in 3D
quantum gauge theory.

Characteristics of this approach:

• Topological invariance and 3D symmetry are manifest;
• Computation is unclear;
• Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don’t give a reason why does J(q,K ) have integer
coefficients.

Two new developments
1 Khovanov homology
2 Volume conjecture
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Summing up:

1 Interconnection between different areas of math and physics...
• Differential Geometry
• Knot Theory
• Conformal Field Theory, String Theory, Quantum Gravity
• Algebra
• low-dimensional Topology
• Functional Analysis

2 ... and has useful applications in these areas
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Jones polynomial

Knot
Embedding of a circle in R3. Two knots are considered equivalent if there
is an ambient isotopy between them.

“Vertex Model”
1 Project knot to R2

2 Label intervals between crossings, maxima, minima with + or −
3 Sum over all possible labellings with certain weight functions of

variable q

4 Sum is a Laurent polynomial in q – the Jones polynomial
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Example - Trefoil knot

Figure: R2 projection of trefoil knot
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Example - Weights of the vertex model
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Chern-Simons Theory

• G compact, simple, 1-connected Lie group;
• trivial G -bundle E →W , with W an oriented 3 dim’l manifold;
• A a connection on E .

Chern-Simons function:

CS(A) =
1
4π

∫
W

Tr
(
A ∧ dA +

2
3
A ∧ A ∧ A

)
with Tr an invariant, nondegenerate quadratic form on g = Lie(G ),
normalized for CS(A) to be gauge-invariant mod 2πZ.

For G = SU(n) (n ≥ 2), Tr taken to be the trace in the n-dim’l
representation of g.
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Feynman path integral – Partition function

Taking the Feynman path integral over the infinite dimensional space U
of connections:

Zk(W ) =
1

vol

∫
U
DA exp

(
ikCS(A)

)
with k ∈ Z for G = SU(n) and DA represents an integral over all gauge
orbits.
Problems of this approach:
• DA ill-defined as a measure;
• Oscillatory integrand.
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Feynman Path integral – Including knots

How to include a knot K ⊂W ?

I Define the holonomy of A around K – Hol(A,K )

I Pick R an irreducible representation of G

Wilson loop operator:

WR(K ) = TrRHol(A,K ) = TrRP exp
(
−
∮
K
A

)
Define natural invariant of the pair W ,K :

Zk(W ,K ,R) =
1

vol

∫
U
DA exp

(
ikCS(A)

)
WR(K )

for W = R3, G = SU(2) and R its 2-dim. representation, then
Zk(W ,K ,R) = J(q,K ) evaluated at q = exp (2πi/(k + 2)).
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How does Zk(W ) behave for large k?

Zk(W ) =
1

vol

∫
U
DA exp

(
ikCS(A)

)

Infinite dimensional analog of Airy function (k , t ∈ R)

F (k , t) =

∫ ∞
−∞

dx exp
(
ik
(
x3 + tx

) )
Taking k →∞ with t fixed
• If t > 0, F (k , t) vanishes exponentially fast due to rapid oscillations
of the exponent with no real critical points

• If t < 0 asymptotically a sum of oscillatory contributions from the
real critical points

For CS(A) we obtain F ≡ dA + A ∧ A = 0 at critical point.
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In the large k limit, the vol. conjecture arises when

W = R3, G = SU(2) and R its n-dimensional representation, k doesn’t
need to be an integer.

Zk(W ,K ,R) is the colored Jones polynomial.

Take k →∞ through noninteger values with fixed k/n.

Typical choice: k = k0 + n, k0 ∈ C and take n→∞.

Large n behavior sum of complex critical points.

=⇒ need to analytically continue CS(A)
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Analytic continuation of CS(A)

Replace
• G −→ GC

• G -bundle E →W −→ GC-bundle EC →W

• A connection on E −→ A complex connection on EC

• U −→ UC

CS(A) =
1
4π

∫
W

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)

Critical points are complex-valued flat connections corresponding to a
homomorphism

ρ : π1(W )→ GC
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Consider a general oscillatory integral in n dimensions:

I (k) =

∫
Rn

exp(ik f (x1, . . . , xn))

f is a real-valued generic polynomial with finitely many nondegenerate
critical points.

We wish to extend this integral for complex k .

To do so, analytically continue from Rn to Cn and replace Rn → Γ, so
that integral converges for any k
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Morse theory

• manifold M;
• generic smooth function h : M → R (Morse function);
• p a nondegenerate critical point of h;

• attach to p a cycle Γp in the homology of M which is defined by the
downward flow equation:

dx i

dt
= −g ij ∂h

∂x j

where g is a Riemannian metric on M and x i are coordinates on M.

Flow eq. solved on the half-line (−∞, 0] with condition x i (t) starts at p
at t = −∞.

Morse index of cycle Γp: number of directions one can flow downward.
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For our integral, h = Re(ikf ) = Re(I) – real part of a holomorphic
function =⇒ all critical points have Morse index n.

Take ds2 =
∑n

i=1 d |x i |2. Flow eqs. yield

dx i

dt
= − ∂I

∂x i
,

dx i

dt
= − ∂I

∂x i

From which we obtain that h = Re(I) decreases and Im(I) is conserved
along a flow.
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What is the homology cycle associated to Γp? Cn is not compact and h
is unbounded above and below.

We want it to be a cycle in which I (k) converges.

X−T = {p ∈ Cn : h < −T}

We are interested in integration cycles whose boundary at infinity is in
X−T −→ Γp ∈ Hn(Cn,X−T ).

For each α ∈ S , pα 7→ Γα which gives us a basis of Hn(Cn,X−T ). Any
reasonable integration cycle Γ will be given by

Γ =
∑
α∈S

nαΓα −→ I (k) =
∑
α∈S

nαIα(k)
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For each α ∈ S , pα 7→ Γα which gives us a basis of Hn(Cn,X−T ). Any
reasonable integration cycle Γ will be given by

Γ =
∑
α∈S

nαΓα −→ I (k) =
∑
α∈S

nαIα(k)

Pedro Aniceto Jones Polynomial and Gauge Theory 25 of October, 2017 24 / 36



How to compute nα?

Replace downward flow eqs. by upward flow equations

dx i

dt
=
∂I
∂x i

,
dx i

dt
=
∂I
∂x i

on the half-line (−∞, 0] with same boundary condition. Obtain Dα

upward flowing cycle associated to pα.

There exists natural pairing 〈Γα,Dβ〉 = δαβ =⇒ nα = 〈Γ,Dα〉.
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How to analytically continue for non-integer k in our case?

1 Define Γα’s in UC space of complex-valued connections
2 Replace integral over U with sum of integrals over Γα’s
3 Take Re (ikCS(A)) as Morse a function

A Riemmanian metric on W induces a Kahler metric on UC that is
invariant under G by

|δA|2 = −
∫
W

TrδA ∧ ?W δA

with ?W the Hodge star operator acting on differential forms on W .

Flow will be a differential equation on M = W × R.
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Take A = A + iφ with A a real connection on G -bundle E →W and
φ ∈ Ω1(W , ad(E)).

The associated Kahler two form on UC

ω =

∫
W

TrδA ∧ ?W δφ

Moment map for the G -valued local gauge transformations

µ = dA ?W φ

with dA = d + [A, · ]. This map is conserved along flows and in particular
can be fixed to vanish on U .

We will be interested only on Lefschetz thimbles on which µ = 0.
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KW equations

Finally, we apply the flow equation and simplify to obtain

F − φ ∧ φ = ?MdAφ

dA ?M φ = 0

Equations for a pair A, φ with A a real connection on G -bundle E → M
and φ ∈ Ω1(M, ad(E )).

Nonetheless, these may continue to be viewed as flow equations for A on
W .
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We can now define the Lefschetz thimble for any choice of flat
connection Aρ (our “critical point”) on M = W × R+ associated to
homomorphism ρ : π1(M)→ GC.

Γρ consists of all A that are boundary values (on W × {0} ⊂ M) of
solutions of the KW eqs. on M which approach Aρ at infinity.

Since π1(R3) = 0 any flat A on R3 is gauge-equivalent to the trivial one
=⇒ ∃! Γ0.
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The Jones polynomial then is

Zk(R3,K ,R) =
1

vol

∫
Γ0

DA exp
(
ikCS(A)

)
WR(K )

with Γ0 space of solutions of KW eqs. on M that vanish on R3 × {∞}
and A is the restriction to W × {0}.

Here WR(K ) is evaluated on Γ0.

Figure: Knot embedded in boundary of M
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What can be said of this formula for the Jones polynomial?

Zk(R3,K ,R) =
1

vol

∫
Γ0

DA exp
(
ikCS(A)

)
WR(K )

KW equations also arise in a twisted version of N = 4 super Yang-Mills
theory in 4D which localizes on the space of solutions of the KW eqs.

This space, if we require A → 0 at R3 × {∞}, is simply Γ0.

=⇒ Jones polynomial for K in R3 can be computed by a path integral
of N = 4 super Yang-Mills on M with a certain boundary condition on
R3 × {0}.

However, this is still an infinite-dimensional integration.
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Electric-magnetic duality

N = 4 supersymmetric Yang-Mills theory with gauge group G and
coupling parameter τ

⇐⇒

Same theory with gauge group GV (Langlands or GNO dual of G ) and
coupling parameter τV = −1/ngτ .

Dual boundary condition described by Gaiotto and Witten – has the effect
of reducing to finite-dimensional spaces of solutions of the KW eqs.
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In this case, after the duality transformation, the moduli space of
solutions has dimension 0.

To evaluate Zk(K ,R), count the number bn, with signs, of solutions for a
given value n of the instanton number (= second Chern class).

Jones polynomial is

Zq(K ,R) =
∑
n

bnq
n

with q = exp(2πi/(k + 2)).
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