Jones Polynomial and Gauge Theory

Pedro Aniceto

25 of October, 2017

Outline

(1) Motivation
(2) Jones Polynomial

Vertex model construction Witten's construction
(3) Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem
(4) Electric-magnetic duality

(1) Motivation

(2) Jones Polynomial

(3) Analytic continuation
(4) Electric-magnetic duality

Jones polynomial $J(q, K)$ - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Jones polynomial $J(q, K)$ - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Several descriptions for it found in the same period.

Jones polynomial $J(q, K)$ - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Several descriptions for it found in the same period.
A. Tsuchiya and Y. Kanie (1987) - used 2D CFT to generalize Jones' construction to the choice of

- simple Lie group G;
- labeling of a knot by an irreducible representation R of G.

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does $J(q, K)$ have integer coefficients.

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does $J(q, K)$ have integer coefficients.

Two new developments
(1) Khovanov homology

Witten (1988) showed that Jones polynomial can be described in 3D quantum gauge theory.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does $J(q, K)$ have integer coefficients.

Two new developments
(1) Khovanov homology
(2) Volume conjecture

Summing up:
(1) Interconnection between different areas of math and physics...

- Differential Geometry
- Knot Theory
- Conformal Field Theory, String Theory, Quantum Gravity
- Algebra
- low-dimensional Topology
- Functional Analysis
(2) ... and has useful applications in these areas

(1) Motivation

(2) Jones Polynomial

Vertex model construction Witten's construction

(3) Analytic continuation

(4) Electric-magnetic duality

Outline

(1) Motivation
(2) Jones Polynomial

Vertex model construction
Witten's construction
(3) Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem
(4) Electric-magnetic duality

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"
(1) Project knot to \mathbb{R}^{2}

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

(1) Project knot to \mathbb{R}^{2}
(2) Label intervals between crossings, maxima, minima with + or -

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

(1) Project knot to \mathbb{R}^{2}
(2) Label intervals between crossings, maxima, minima with + or -
(3) Sum over all possible labellings with certain weight functions of variable q

Jones polynomial

Knot

Embedding of a circle in \mathbb{R}^{3}. Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

(1) Project knot to \mathbb{R}^{2}
(2) Label intervals between crossings, maxima, minima with + or -
(3) Sum over all possible labellings with certain weight functions of variable q
(4) Sum is a Laurent polynomial in q - the Jones polynomial

Example - Trefoil knot

Figure: \mathbb{R}^{2} projection of trefoil knot

Example - Weights of the vertex model

$$
\begin{aligned}
& +\-i q^{-1 / 4}+\left(>-i q^{-1 / 4}\right. \\
& -\+-i q^{1 / 4} \quad-\prod+-i q^{1 / 4}
\end{aligned}
$$

Outline

(1) Motivation
(2) Jones Polynomial

Vertex model construction
Witten's construction
(3) Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem
(4) Electric-magnetic duality

Chern-Simons Theory

- G compact, simple, 1-connected Lie group;
- trivial G-bundle $E \rightarrow W$, with W an oriented 3 dim'l manifold;
- A a connection on E.

Chern-Simons Theory

- G compact, simple, 1-connected Lie group;
- trivial G-bundle $E \rightarrow W$, with W an oriented 3 dim'l manifold;
- A a connection on E.

Chern-Simons function:

$$
\mathrm{CS}(A)=\frac{1}{4 \pi} \int_{W} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

with Tr an invariant, nondegenerate quadratic form on $\mathfrak{g}=\operatorname{Lie}(G)$, normalized for $\operatorname{CS}(A)$ to be gauge-invariant $\bmod 2 \pi \mathbb{Z}$.

For $G=S U(n)(n \geq 2)$, Tr taken to be the trace in the n-dim'l representation of \mathfrak{g}.

Feynman path integral - Partition function

Taking the Feynman path integral over the infinite dimensional space \mathcal{U} of connections:

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{\mathcal{U}} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

with $k \in \mathbb{Z}$ for $G=S U(n)$ and $\mathcal{D} A$ represents an integral over all gauge orbits.
Problems of this approach:

- DA ill-defined as a measure;
- Oscillatory integrand.

Feynman Path integral - Including knots

How to include a knot $K \subset W$?

Feynman Path integral - Including knots

How to include a knot $K \subset W$?

- Define the holonomy of A around $K-\operatorname{Hol}(A, K)$
- Pick R an irreducible representation of G

Feynman Path integral - Including knots

How to include a knot $K \subset W$?

- Define the holonomy of A around $K-\operatorname{Hol}(A, K)$
- Pick R an irreducible representation of G

Wilson loop operator:

$$
\mathcal{W}_{R}(K)=\operatorname{Tr}_{R} \operatorname{Hol}(A, K)=\operatorname{Tr}_{R} \mathcal{P} \exp \left(-\oint_{K} A\right)
$$

Feynman Path integral - Including knots

How to include a knot $K \subset W$?

- Define the holonomy of A around $K-\operatorname{Hol}(A, K)$
- Pick R an irreducible representation of G

Wilson loop operator:

$$
\mathcal{W}_{R}(K)=\operatorname{Tr}_{R} \operatorname{Hol}(A, K)=\operatorname{Tr}_{R} \mathcal{P} \exp \left(-\oint_{K} A\right)
$$

Define natural invariant of the pair W, K :

$$
Z_{k}(W, K, R)=\frac{1}{\operatorname{vol}} \int_{\mathcal{U}} \mathcal{D} A \exp (i k \operatorname{CS}(A)) \mathcal{W}_{R}(K)
$$

Feynman Path integral - Including knots

How to include a knot $K \subset W$?

- Define the holonomy of A around $K-\operatorname{Hol}(A, K)$
- Pick R an irreducible representation of G

Wilson loop operator:

$$
\mathcal{W}_{R}(K)=\operatorname{Tr}_{R} \operatorname{Hol}(A, K)=\operatorname{Tr}_{R} \mathcal{P} \exp \left(-\oint_{K} A\right)
$$

Define natural invariant of the pair W, K :

$$
Z_{k}(W, K, R)=\frac{1}{\operatorname{vol}} \int_{\mathcal{U}} \mathcal{D} A \exp (i k \operatorname{CS}(A)) \mathcal{W}_{R}(K)
$$

for $W=\mathbb{R}^{3}, G=S U(2)$ and R its 2-dim. representation, then $Z_{k}(W, K, R)=J(q, K)$ evaluated at $q=\exp (2 \pi i /(k+2))$.
(3) Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

(4) Electric-magnetic duality

How does $Z_{k}(W)$ behave for large k ?

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{U} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

How does $Z_{k}(W)$ behave for large k ?

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{U} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$
F(k, t)=\int_{-\infty}^{\infty} d x \exp \left(i k\left(x^{3}+t x\right)\right)
$$

How does $Z_{k}(W)$ behave for large k ?

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{U} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$
F(k, t)=\int_{-\infty}^{\infty} d x \exp \left(i k\left(x^{3}+t x\right)\right)
$$

Taking $k \rightarrow \infty$ with t fixed

- If $t>0, F(k, t)$ vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points

How does $Z_{k}(W)$ behave for large k ?

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{U} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$
F(k, t)=\int_{-\infty}^{\infty} d x \exp \left(i k\left(x^{3}+t x\right)\right)
$$

Taking $k \rightarrow \infty$ with t fixed

- If $t>0, F(k, t)$ vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points
- If $t<0$ asymptotically a sum of oscillatory contributions from the real critical points

How does $Z_{k}(W)$ behave for large k ?

$$
Z_{k}(W)=\frac{1}{\operatorname{vol}} \int_{U} \mathcal{D} A \exp (i k \operatorname{CS}(A))
$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$
F(k, t)=\int_{-\infty}^{\infty} d x \exp \left(i k\left(x^{3}+t x\right)\right)
$$

Taking $k \rightarrow \infty$ with t fixed

- If $t>0, F(k, t)$ vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points
- If $t<0$ asymptotically a sum of oscillatory contributions from the real critical points

For $\operatorname{CS}(A)$ we obtain $F \equiv d A+A \wedge A=0$ at critical point.

In the large k limit, the vol. conjecture arises when
$W=\mathbb{R}^{3}, G=S U(2)$ and R its n-dimensional representation, k doesn't need to be an integer.
$Z_{k}(W, K, R)$ is the colored Jones polynomial.

In the large k limit, the vol. conjecture arises when
$W=\mathbb{R}^{3}, G=S U(2)$ and R its n-dimensional representation, k doesn't need to be an integer.
$Z_{k}(W, K, R)$ is the colored Jones polynomial.
Take $k \rightarrow \infty$ through noninteger values with fixed k / n.
Typical choice: $k=k_{0}+n, k_{0} \in \mathbb{C}$ and take $n \rightarrow \infty$.

In the large k limit, the vol. conjecture arises when
$W=\mathbb{R}^{3}, G=S U(2)$ and R its n-dimensional representation, k doesn't need to be an integer.
$Z_{k}(W, K, R)$ is the colored Jones polynomial.
Take $k \rightarrow \infty$ through noninteger values with fixed k / n.
Typical choice: $k=k_{0}+n, k_{0} \in \mathbb{C}$ and take $n \rightarrow \infty$.
Large n behavior sum of complex critical points.

In the large k limit, the vol. conjecture arises when
$W=\mathbb{R}^{3}, G=S U(2)$ and R its n-dimensional representation, k doesn't need to be an integer.
$Z_{k}(W, K, R)$ is the colored Jones polynomial.
Take $k \rightarrow \infty$ through noninteger values with fixed k / n.
Typical choice: $k=k_{0}+n, k_{0} \in \mathbb{C}$ and take $n \rightarrow \infty$.
Large n behavior sum of complex critical points.
\Longrightarrow need to analytically continue $\operatorname{CS}(A)$

Analytic continuation of $\mathrm{CS}(A)$

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- G-bundle $E \rightarrow W \longrightarrow G_{\mathbb{C}}$-bundle $E_{\mathbb{C}} \rightarrow W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$
- $\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$

Analytic continuation of $\operatorname{CS}(A)$

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- G-bundle $E \rightarrow W \longrightarrow G_{\mathbb{C}}$-bundle $E_{\mathbb{C}} \rightarrow W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$
- $\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$

$$
\operatorname{CS}(\mathcal{A})=\frac{1}{4 \pi} \int_{W} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

Analytic continuation of $\mathrm{CS}(A)$

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- G-bundle $E \rightarrow W \longrightarrow G_{\mathbb{C}}$-bundle $E_{\mathbb{C}} \rightarrow W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$
- $\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$

$$
\mathrm{CS}(\mathcal{A})=\frac{1}{4 \pi} \int_{W} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

Critical points are complex-valued flat connections corresponding to a homomorphism

$$
\rho: \pi_{1}(W) \rightarrow G_{\mathbb{C}}
$$

Outline

(1) Motivation

(2) Jones Polynomial

Vertex model construction
Witten's construction
(3) Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem
(4) Electric-magnetic duality

Consider a general oscillatory integral in n dimensions:

$$
I(k)=\int_{\mathbb{R}^{n}} \exp \left(i k f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

f is a real-valued generic polynomial with finitely many nondegenerate critical points.

We wish to extend this integral for complex k.

Consider a general oscillatory integral in n dimensions:

$$
I(k)=\int_{\mathbb{R}^{n}} \exp \left(i k f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

f is a real-valued generic polynomial with finitely many nondegenerate critical points.

We wish to extend this integral for complex k.
To do so, analytically continue from \mathbb{R}^{n} to \mathbb{C}^{n} and replace $\mathbb{R}^{n} \rightarrow \Gamma$, so that integral converges for any k

Morse theory

- manifold M;
- generic smooth function $h: M \rightarrow \mathbb{R}$ (Morse function);
- p a nondegenerate critical point of h;

Morse theory

- manifold M;
- generic smooth function $h: M \rightarrow \mathbb{R}$ (Morse function);
- p a nondegenerate critical point of h;
- attach to p a cycle Γ_{p} in the homology of M which is defined by the downward flow equation:

$$
\frac{d x^{i}}{d t}=-g^{i j} \frac{\partial h}{\partial x^{j}}
$$

where g is a Riemannian metric on M and x^{i} are coordinates on M.

Morse theory

- manifold M;
- generic smooth function $h: M \rightarrow \mathbb{R}$ (Morse function);
- p a nondegenerate critical point of h;
- attach to p a cycle Γ_{p} in the homology of M which is defined by the downward flow equation:

$$
\frac{d x^{i}}{d t}=-g^{i j} \frac{\partial h}{\partial x^{j}}
$$

where g is a Riemannian metric on M and x^{i} are coordinates on M.
Flow eq. solved on the half-line $(-\infty, 0]$ with condition $x^{i}(t)$ starts at p at $t=-\infty$.

Morse index of cycle Γ_{p} : number of directions one can flow downward.

For our integral, $h=\operatorname{Re}(i k f)=\operatorname{Re}(\mathcal{I})$ - real part of a holomorphic function \Longrightarrow all critical points have Morse index n.

Take $d s^{2}=\sum_{i=1}^{n} d\left|x^{i}\right|^{2}$. Flow eqs. yield

$$
\frac{d x^{i}}{d t}=-\frac{\partial \overline{\mathcal{I}}}{\partial \overline{x^{i}}}, \quad \frac{d \overline{x^{i}}}{d t}=-\frac{\partial \mathcal{I}}{\partial x^{i}}
$$

For our integral, $h=\operatorname{Re}(i k f)=\operatorname{Re}(\mathcal{I})$ - real part of a holomorphic function \Longrightarrow all critical points have Morse index n.

Take $d s^{2}=\sum_{i=1}^{n} d\left|x^{i}\right|^{2}$. Flow eqs. yield

$$
\frac{d x^{i}}{d t}=-\frac{\partial \overline{\mathcal{I}}}{\partial \overline{x^{i}}}, \quad \frac{d \overline{x^{i}}}{d t}=-\frac{\partial \mathcal{I}}{\partial x^{i}}
$$

From which we obtain that $h=\operatorname{Re}(\mathcal{I})$ decreases and $\operatorname{Im}(\mathcal{I})$ is conserved along a flow.

What is the homology cycle associated to $\Gamma_{p} ? \mathbb{C}^{n}$ is not compact and h is unbounded above and below.

What is the homology cycle associated to $\Gamma_{p} ? \mathbb{C}^{n}$ is not compact and h is unbounded above and below.

We want it to be a cycle in which $I(k)$ converges.

$$
X_{-T}=\left\{p \in \mathbb{C}^{n}: h<-T\right\}
$$

We are interested in integration cycles whose boundary at infinity is in $X_{-T} \longrightarrow \Gamma_{p} \in H_{n}\left(\mathbb{C}^{n}, X_{-T}\right)$.

What is the homology cycle associated to $\Gamma_{p} ? \mathbb{C}^{n}$ is not compact and h is unbounded above and below.

We want it to be a cycle in which $I(k)$ converges.

$$
X_{-T}=\left\{p \in \mathbb{C}^{n}: h<-T\right\}
$$

We are interested in integration cycles whose boundary at infinity is in $X_{-T} \longrightarrow \Gamma_{p} \in H_{n}\left(\mathbb{C}^{n}, X_{-T}\right)$.

For each $\alpha \in S, p_{\alpha} \mapsto \Gamma_{\alpha}$ which gives us a basis of $H_{n}\left(\mathbb{C}^{n}, X_{-T}\right)$. Any reasonable integration cycle Γ will be given by

$$
\Gamma=\sum_{\alpha \in S} n_{\alpha} \Gamma_{\alpha} \longrightarrow I(k)=\sum_{\alpha \in S} n_{\alpha} I_{\alpha}(k)
$$

How to compute n_{α} ?
Replace downward flow eqs. by upward flow equations

$$
\frac{d x^{i}}{d t}=\frac{\partial \overline{\mathcal{I}}}{\partial \overline{x^{i}}}, \quad \frac{d \overline{x^{i}}}{d t}=\frac{\partial \mathcal{I}}{\partial x^{i}}
$$

on the half-line $(-\infty, 0]$ with same boundary condition. Obtain \mathcal{D}_{α} upward flowing cycle associated to p_{α}.

There exists natural pairing $\left\langle\Gamma_{\alpha}, \mathcal{D}_{\beta}\right\rangle=\delta_{\alpha \beta} \Longrightarrow n_{\alpha}=\left\langle\Gamma, \mathcal{D}_{\alpha}\right\rangle$.

Outline

(1) Motivation

(2) Jones Polynomial

Vertex model construction
Witten's construction
(3) Analytic continuation

Review of Morse theory for finite-dimensional case
Application to our problem
(4) Electric-magnetic duality

How to analytically continue for non-integer k in our case?

How to analytically continue for non-integer k in our case?
(1) Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections

How to analytically continue for non-integer k in our case?
(1) Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
(2) Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's

How to analytically continue for non-integer k in our case?
(1) Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
(2) Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
(3) Take $\operatorname{Re}(i k \operatorname{CS}(\mathcal{A}))$ as Morse a function

How to analytically continue for non-integer k in our case?
(1) Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
(2) Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
(3) Take $\operatorname{Re}(i k \operatorname{CS}(\mathcal{A}))$ as Morse a function

A Riemmanian metric on W induces a Kahler metric on $\mathcal{U}_{\mathbb{C}}$ that is invariant under G by

$$
|\delta \mathcal{A}|^{2}=-\int_{W} \operatorname{Tr} \delta \mathcal{A} \wedge \star{ }_{W} \delta \overline{\mathcal{A}}
$$

with \star_{w} the Hodge star operator acting on differential forms on W.

How to analytically continue for non-integer k in our case?
(1) Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
(2) Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
(3) Take $\operatorname{Re}(i k \operatorname{CS}(\mathcal{A}))$ as Morse a function

A Riemmanian metric on W induces a Kahler metric on $\mathcal{U}_{\mathbb{C}}$ that is invariant under G by

$$
|\delta \mathcal{A}|^{2}=-\int_{W} \operatorname{Tr} \delta \mathcal{A} \wedge \star{ }_{W} \delta \overline{\mathcal{A}}
$$

with \star_{w} the Hodge star operator acting on differential forms on W.
Flow will be a differential equation on $M=W \times \mathbb{R}$.

Take $\mathcal{A}=A+i \phi$ with A a real connection on G-bundle $E \rightarrow W$ and $\phi \in \Omega^{1}(W, \operatorname{ad}(\mathrm{E}))$.

Take $\mathcal{A}=A+i \phi$ with A a real connection on G-bundle $E \rightarrow W$ and $\phi \in \Omega^{1}(W, \operatorname{ad}(\mathrm{E}))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$
\omega=\int_{W} \operatorname{Tr} \delta A \wedge \star{ }_{W} \delta \phi
$$

Take $\mathcal{A}=A+i \phi$ with A a real connection on G-bundle $E \rightarrow W$ and $\phi \in \Omega^{1}(W, \operatorname{ad}(\mathrm{E}))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$
\omega=\int_{W} \operatorname{Tr} \delta A \wedge \star{ }_{W} \delta \phi
$$

Moment map for the G-valued local gauge transformations

$$
\mu=d_{A} \star W \phi
$$

with $d_{A}=d+[A, \cdot]$.

Take $\mathcal{A}=A+i \phi$ with A a real connection on G-bundle $E \rightarrow W$ and $\phi \in \Omega^{1}(W, \operatorname{ad}(\mathrm{E}))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$
\omega=\int_{W} \operatorname{Tr} \delta A \wedge \star{ }_{W} \delta \phi
$$

Moment map for the G-valued local gauge transformations

$$
\mu=d_{A} \star W \phi
$$

with $d_{A}=d+[A, \cdot]$. This map is conserved along flows and in particular can be fixed to vanish on \mathcal{U}.

Take $\mathcal{A}=A+i \phi$ with A a real connection on G-bundle $E \rightarrow W$ and $\phi \in \Omega^{1}(W, \operatorname{ad}(\mathrm{E}))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$
\omega=\int_{W} \operatorname{Tr} \delta A \wedge \star w \delta \phi
$$

Moment map for the G-valued local gauge transformations

$$
\mu=d_{A} \star W \phi
$$

with $d_{A}=d+[A, \cdot]$. This map is conserved along flows and in particular can be fixed to vanish on \mathcal{U}.

We will be interested only on Lefschetz thimbles on which $\mu=0$.

KW equations

Finally, we apply the flow equation and simplify to obtain

$$
\begin{aligned}
F-\phi \wedge \phi & =\star_{M} d_{A} \phi \\
d_{A} \star_{M} \phi & =0
\end{aligned}
$$

Equations for a pair A, ϕ with A a real connection on G-bundle $E \rightarrow M$ and $\phi \in \Omega^{1}(M, \operatorname{ad}(E))$.

Nonetheless, these may continue to be viewed as flow equations for \mathcal{A} on W.

We can now define the Lefschetz thimble for any choice of flat connection \mathcal{A}_{ρ} (our "critical point") on $M=W \times \mathbb{R}^{+}$associated to homomorphism $\rho: \pi_{1}(M) \rightarrow G_{\mathbb{C}}$.
Γ_{ρ} consists of all \mathcal{A} that are boundary values (on $\mathcal{W} \times\{0\} \subset M$) of solutions of the KW eqs. on M which approach \mathcal{A}_{ρ} at infinity.

We can now define the Lefschetz thimble for any choice of flat connection \mathcal{A}_{ρ} (our "critical point") on $M=W \times \mathbb{R}^{+}$associated to homomorphism $\rho: \pi_{1}(M) \rightarrow G_{\mathbb{C}}$.
Γ_{ρ} consists of all \mathcal{A} that are boundary values (on $W \times\{0\} \subset M$) of solutions of the KW eqs. on M which approach \mathcal{A}_{ρ} at infinity.

Since $\pi_{1}\left(\mathbb{R}^{3}\right)=0$ any flat \mathcal{A} on \mathbb{R}^{3} is gauge-equivalent to the trivial one $\Longrightarrow \exists!\Gamma_{0}$.

The Jones polynomial then is

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \operatorname{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

with Γ_{0} space of solutions of KW eqs. on M that vanish on $\mathbb{R}^{3} \times\{\infty\}$ and \mathcal{A} is the restriction to $W \times\{0\}$.

The Jones polynomial then is

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \mathrm{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

with Γ_{0} space of solutions of KW eqs. on M that vanish on $\mathbb{R}^{3} \times\{\infty\}$ and \mathcal{A} is the restriction to $W \times\{0\}$.

Here $\mathcal{W}_{R}(K)$ is evaluated on Γ_{0}.

Figure: Knot embedded in boundary of M

(1) Motivation

(2) Jones Polynomial

(3) Analytic continuation
(4) Electric-magnetic duality

What can be said of this formula for the Jones polynomial?

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \operatorname{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

What can be said of this formula for the Jones polynomial?

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \operatorname{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

KW equations also arise in a twisted version of $\mathcal{N}=4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

What can be said of this formula for the Jones polynomial?

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \operatorname{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

KW equations also arise in a twisted version of $\mathcal{N}=4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

This space, if we require $\mathcal{A} \rightarrow 0$ at $\mathbb{R}^{3} \times\{\infty\}$, is simply Γ_{0}.
\Longrightarrow Jones polynomial for K in \mathbb{R}^{3} can be computed by a path integral of $\mathcal{N}=4$ super Yang-Mills on M with a certain boundary condition on $\mathbb{R}^{3} \times\{0\}$.

What can be said of this formula for the Jones polynomial?

$$
Z_{k}\left(\mathbb{R}^{3}, K, R\right)=\frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D} \mathcal{A} \exp (i k \operatorname{CS}(\mathcal{A})) \mathcal{W}_{R}(K)
$$

KW equations also arise in a twisted version of $\mathcal{N}=4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

This space, if we require $\mathcal{A} \rightarrow 0$ at $\mathbb{R}^{3} \times\{\infty\}$, is simply Γ_{0}.
\Longrightarrow Jones polynomial for K in \mathbb{R}^{3} can be computed by a path integral of $\mathcal{N}=4$ super Yang-Mills on M with a certain boundary condition on $\mathbb{R}^{3} \times\{0\}$.

However, this is still an infinite-dimensional integration.

Electric-magnetic duality

$\mathcal{N}=4$ supersymmetric Yang-Mills theory with gauge group G and coupling parameter τ

Same theory with gauge group G^{V} (Langlands or GNO dual of G) and coupling parameter $\tau^{V}=-1 / n_{\mathfrak{g}} \tau$.

Electric-magnetic duality

$\mathcal{N}=4$ supersymmetric Yang-Mills theory with gauge group G and coupling parameter τ

Same theory with gauge group G^{V} (Langlands or GNO dual of G) and coupling parameter $\tau^{V}=-1 / n_{\mathfrak{g}} \tau$.

Dual boundary condition described by Gaiotto and Witten - has the effect of reducing to finite-dimensional spaces of solutions of the KW eqs.

In this case, after the duality transformation, the moduli space of solutions has dimension 0 .

To evaluate $Z_{k}(K, R)$, count the number b_{n}, with signs, of solutions for a given value n of the instanton number ($=$ second Chern class).

In this case, after the duality transformation, the moduli space of solutions has dimension 0 .

To evaluate $Z_{k}(K, R)$, count the number b_{n}, with signs, of solutions for a given value n of the instanton number ($=$ second Chern class).
Jones polynomial is

$$
Z_{q}(K, R)=\sum_{n} b_{n} q^{n}
$$

with $q=\exp (2 \pi i /(k+2))$.

Bibliography

- E. Witten, "Quantum Field Theory And The Jones Polynomial," Commun. Math. Phys. 121 (1989): 351-399.
- E. Witten, "Analytic continuation of Chern-Simons theory," AMS/IP Stud. Adv. Math. 50 (2011): 347-446. arXiv:1001.2933.
- E. Witten, "Khovanov Homology And Gauge Theory," (2012), arXiv:1108.3103.
- E. Witten, "Two Lectures On The Jones Polynomial And Khovanov Homology," (2014), arXiv:1401.6996.

