Jones Polynomial and Gauge Theory

Pedro Aniceto

25 of October, 2017

Pedro Aniceto

Jones Polynomial and Gauge Theory

25 of October, 2017

1 / 36

3.5 3

Outline

Motivation

2 Jones Polynomial

Vertex model construction Witten's construction

3 Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

4 Electric-magnetic duality

1 Motivation

- **2** Jones Polynomial
- Analytic continuation
- ④ Electric-magnetic duality

Jones polynomial J(q, K) - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Jones polynomial J(q, K) - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Several descriptions for it found in the same period.

Jones polynomial J(q, K) - Knot invariant discovered by J. F. R. Jones (1984). Assigns to each oriented knot/link a Laurent polynomial in q with integer coefficients.

Several descriptions for it found in the same period.

A. Tsuchiya and Y. Kanie (1987) – used 2D CFT to generalize Jones' construction to the choice of

- simple Lie group *G*;
- labeling of a knot by an irreducible representation R of G.

Characteristics of this approach:

Characteristics of this approach:

• Topological invariance and 3D symmetry are manifest;

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does J(q, K) have integer coefficients.

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does J(q, K) have integer coefficients.

Two new developments

Khovanov homology

A B K A B K

Characteristics of this approach:

- Topological invariance and 3D symmetry are manifest;
- Computation is unclear;
- Does not shed much light on why it is a Laurent polynomial.

Moreover, approaches don't give a reason why does J(q, K) have integer coefficients.

Two new developments Khovanov homology Volume conjecture

* E • * E •

Summing up:

1 Interconnection between different areas of math and physics...

- Differential Geometry
- Knot Theory
- Conformal Field Theory, String Theory, Quantum Gravity
- Algebra
- low-dimensional Topology
- Functional Analysis
- 2 ... and has useful applications in these areas

Motivation

Jones Polynomial
 Vertex model construction
 Witten's construction

3 Analytic continuation

4 Electric-magnetic duality

Outline

Motivation

2 Jones Polynomial Vertex model construction

Witten's construction

Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

④ Electric-magnetic duality

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

1 Project knot to \mathbb{R}^2

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

- **1** Project knot to \mathbb{R}^2
- 2 Label intervals between crossings, maxima, minima with + or -

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

- **1** Project knot to \mathbb{R}^2
- 2 Label intervals between crossings, maxima, minima with + or -
- **3** Sum over all possible labellings with certain weight functions of variable q

Knot

Embedding of a circle in \mathbb{R}^3 . Two knots are considered equivalent if there is an ambient isotopy between them.

"Vertex Model"

- **1** Project knot to \mathbb{R}^2
- 2 Label intervals between crossings, maxima, minima with + or -
- **3** Sum over all possible labellings with certain weight functions of variable q
- **4** Sum is a Laurent polynomial in q the Jones polynomial

Example - Trefoil knot

Figure: \mathbb{R}^2 projection of trefoil knot

25 of October, 2017

- A 🖓

∃ ⊳

Example - Weights of the vertex model

Outline

Motivation

2 Jones Polynomial

Vertex model construction Witten's construction

3 Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

④ Electric-magnetic duality

Chern-Simons Theory

- *G* compact, simple, 1-connected Lie group;
- trivial *G*-bundle $E \rightarrow W$, with *W* an oriented 3 dim'l manifold;
- A a connection on E.

Chern-Simons Theory

- *G* compact, simple, 1-connected Lie group;
- trivial G-bundle $E \rightarrow W$, with W an oriented 3 dim'l manifold;
- A a connection on E.

Chern-Simons function:

$$\operatorname{CS}(A) = rac{1}{4\pi} \int_W \operatorname{Tr}\left(A \wedge dA + rac{2}{3}A \wedge A \wedge A\right)$$

with Tr an invariant, nondegenerate quadratic form on $\mathfrak{g} = \operatorname{Lie}(G)$, normalized for $\operatorname{CS}(A)$ to be gauge-invariant mod $2\pi\mathbb{Z}$.

For G = SU(n) $(n \ge 2)$, Tr taken to be the trace in the *n*-dim'l representation of g.

25 of October, 2017

Feynman path integral - Partition function

Taking the Feynman path integral over the infinite dimensional space $\ensuremath{\mathcal{U}}$ of connections:

$$Z_k(W) = rac{1}{\mathrm{vol}} \int_{\mathcal{U}} \mathcal{D}A \exp\left(ik \mathrm{CS}(A)
ight)$$

with $k \in \mathbb{Z}$ for G = SU(n) and $\mathcal{D}A$ represents an integral over all gauge orbits.

Problems of this approach:

- *DA* ill-defined as a measure;
- Oscillatory integrand.

How to include a knot $K \subset W$?

Pedro Aniceto

Image: A matrix

э

A B M A B M

How to include a knot $K \subset W$?

Pedro Aniceto

- Define the holonomy of A around K Hol(A, K)
- ▶ Pick *R* an irreducible representation of *G*

How to include a knot $K \subset W$?

- Define the holonomy of A around K Hol(A, K)
- Pick R an irreducible representation of G

Wilson loop operator:

$$\mathcal{W}_R(\mathcal{K}) = \mathrm{Tr}_R \mathrm{Hol}(\mathcal{A}, \mathcal{K}) = \mathrm{Tr}_R \mathcal{P} \exp\left(-\oint_{\mathcal{K}} \mathcal{A}\right)$$

How to include a knot $K \subset W$?

- Define the holonomy of A around K Hol(A, K)
- Pick R an irreducible representation of G

Wilson loop operator:

$$\mathcal{W}_R(\mathcal{K}) = \mathrm{Tr}_R \mathrm{Hol}(\mathcal{A}, \mathcal{K}) = \mathrm{Tr}_R \mathcal{P} \exp\left(-\oint_{\mathcal{K}} \mathcal{A}\right)$$

Define natural invariant of the pair W, K:

$$Z_k(W, K, R) = \frac{1}{\mathrm{vol}} \int_{\mathcal{U}} \mathcal{D}A \exp\left(ik \mathrm{CS}(A)\right) \mathcal{W}_R(K)$$

How to include a knot $K \subset W$?

- Define the holonomy of A around K Hol(A, K)
- Pick R an irreducible representation of G

Wilson loop operator:

$$\mathcal{W}_R(\mathcal{K}) = \mathrm{Tr}_R \mathrm{Hol}(\mathcal{A}, \mathcal{K}) = \mathrm{Tr}_R \mathcal{P} \exp\left(-\oint_{\mathcal{K}} \mathcal{A}\right)$$

Define natural invariant of the pair W, K:

$$Z_{k}(W, K, R) = \frac{1}{\mathrm{vol}} \int_{\mathcal{U}} \mathcal{D}A \exp\left(ik \mathrm{CS}(A)\right) \mathcal{W}_{R}(K)$$

for $W = \mathbb{R}^3$, G = SU(2) and R its 2-dim. representation, then $Z_k(W, K, R) = J(q, K)$ evaluated at $q = \exp(2\pi i/(k+2))$.

Motivation

Ø Jones Polynomial

3 Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

④ Electric-magnetic duality

How does $Z_k(W)$ behave for large k?

Pedro Aniceto

$$Z_k(W) = rac{1}{ ext{vol}} \int_U \mathcal{D}A \exp\left(ik ext{CS}(A)
ight)$$

イロト イポト イヨト イヨト

3

How does $Z_k(W)$ behave for large k?

$$Z_k(W) = \frac{1}{\operatorname{vol}} \int_U \mathcal{D}A \exp\left(ik \operatorname{CS}(A)\right)$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$F(k,t) = \int_{-\infty}^{\infty} dx \exp\left(ik\left(x^{3} + tx\right)\right)$$

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
How does $Z_k(W)$ behave for large k?

$$Z_k(W) = \frac{1}{\operatorname{vol}} \int_U \mathcal{D}A \exp\left(ik \operatorname{CS}(A)\right)$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$F(k,t) = \int_{-\infty}^{\infty} dx \exp\left(ik\left(x^{3} + tx\right)\right)$$

Taking $k \to \infty$ with t fixed

• If t > 0, F(k, t) vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points

17 / 36

How does $Z_k(W)$ behave for large k?

$$Z_k(W) = \frac{1}{\operatorname{vol}} \int_U \mathcal{D}A \exp\left(ik \operatorname{CS}(A)\right)$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$F(k,t) = \int_{-\infty}^{\infty} dx \exp\left(ik\left(x^{3} + tx\right)\right)$$

Taking $k \to \infty$ with t fixed

- If t > 0, F(k, t) vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points
- If *t* < 0 asymptotically a sum of oscillatory contributions from the real critical points

How does $Z_k(W)$ behave for large k?

$$Z_k(W) = \frac{1}{\operatorname{vol}} \int_U \mathcal{D}A \exp\left(ik \operatorname{CS}(A)\right)$$

Infinite dimensional analog of Airy function $(k, t \in \mathbb{R})$

$$F(k,t) = \int_{-\infty}^{\infty} dx \exp\left(ik\left(x^{3} + tx\right)\right)$$

Taking $k \to \infty$ with t fixed

- If t > 0, F(k, t) vanishes exponentially fast due to rapid oscillations of the exponent with no real critical points
- If *t* < 0 asymptotically a sum of oscillatory contributions from the real critical points

For CS(A) we obtain $F \equiv dA + A \land A = 0$ at critical point.

 $W = \mathbb{R}^3$, G = SU(2) and R its *n*-dimensional representation, k doesn't need to be an integer.

 $Z_k(W, K, R)$ is the colored Jones polynomial.

Pedro Aniceto

 $W = \mathbb{R}^3$, G = SU(2) and R its *n*-dimensional representation, *k* doesn't need to be an integer.

 $Z_k(W, K, R)$ is the colored Jones polynomial.

Take $k \to \infty$ through noninteger values with fixed k/n.

Typical choice: $k = k_0 + n$, $k_0 \in \mathbb{C}$ and take $n \to \infty$.

 $W = \mathbb{R}^3$, G = SU(2) and R its *n*-dimensional representation, k doesn't need to be an integer.

 $Z_k(W, K, R)$ is the colored Jones polynomial.

Take $k \to \infty$ through noninteger values with fixed k/n.

Typical choice: $k = k_0 + n$, $k_0 \in \mathbb{C}$ and take $n \to \infty$.

Large *n* behavior sum of complex critical points.

18 / 36

 $W = \mathbb{R}^3$, G = SU(2) and R its *n*-dimensional representation, k doesn't need to be an integer.

 $Z_k(W, K, R)$ is the colored Jones polynomial.

Take $k \to \infty$ through noninteger values with fixed k/n.

Typical choice: $k = k_0 + n$, $k_0 \in \mathbb{C}$ and take $n \to \infty$.

Large *n* behavior sum of complex critical points.

$$\implies$$
 need to analytically continue $CS(A)$

Analytic continuation of CS(A)

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- *G*-bundle $E o W \longrightarrow G_{\mathbb{C}}$ -bundle $E_{\mathbb{C}} \to W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$

• $\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$

(日) (四) (三) (三) (三)

Analytic continuation of CS(A)

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- *G*-bundle $E o W \longrightarrow G_{\mathbb{C}}$ -bundle $E_{\mathbb{C}} \to W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$

•
$$\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$$

 $\operatorname{CS}(\mathcal{A}) = \frac{1}{4\pi} \int_{W} \operatorname{Tr}\left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3}\mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)$

3

< □ ▶ < /₽

Analytic continuation of CS(A)

Replace

- $G \longrightarrow G_{\mathbb{C}}$
- *G*-bundle $E o W \longrightarrow G_{\mathbb{C}}$ -bundle $E_{\mathbb{C}} \to W$
- A connection on $E \longrightarrow \mathcal{A}$ complex connection on $E_{\mathbb{C}}$

•
$$\mathcal{U} \longrightarrow \mathcal{U}_{\mathbb{C}}$$

 $\operatorname{CS}(\mathcal{A}) = \frac{1}{4\pi} \int_{W} \operatorname{Tr}\left(\mathcal{A} \wedge d\mathcal{A} + \frac{2}{3}\mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)$

Critical points are complex-valued flat connections corresponding to a homomorphism

$$ho:\pi_1(W)
ightarrow G_{\mathbb C}$$

Outline

Motivation

Ø Jones Polynomial

Vertex model construction Witten's construction

3 Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

④ Electric-magnetic duality

э

Consider a general oscillatory integral in n dimensions:

$$I(k) = \int_{\mathbb{R}^n} \exp(ik f(x_1, \ldots, x_n))$$

 \boldsymbol{f} is a real-valued generic polynomial with finitely many nondegenerate critical points.

We wish to extend this integral for complex k.

21 / 36

Consider a general oscillatory integral in n dimensions:

$$I(k) = \int_{\mathbb{R}^n} \exp(ik f(x_1,\ldots,x_n))$$

f is a real-valued generic polynomial with finitely many nondegenerate critical points.

We wish to extend this integral for complex k.

To do so, analytically continue from \mathbb{R}^n to \mathbb{C}^n and replace $\mathbb{R}^n \to \Gamma$, so that integral converges for any k

25 of October, 2017

Morse theory

- manifold M;
- generic smooth function $h: M \to \mathbb{R}$ (Morse function);
- *p* a nondegenerate critical point of *h*;

- I A P

Morse theory

- manifold *M*;
- generic smooth function $h: M \to \mathbb{R}$ (Morse function);
- p a nondegenerate critical point of h;
- attach to p a cycle Γ_p in the homology of M which is defined by the downward flow equation:

$$\frac{dx^{i}}{dt} = -g^{ij}\frac{\partial h}{\partial x^{j}}$$

where g is a Riemannian metric on M and x^i are coordinates on M.

Morse theory

- manifold *M*;
- generic smooth function $h: M \to \mathbb{R}$ (Morse function);
- p a nondegenerate critical point of h;
- attach to p a cycle Γ_p in the homology of M which is defined by the downward flow equation:

$$\frac{dx^{i}}{dt} = -g^{ij}\frac{\partial h}{\partial x^{j}}$$

where g is a Riemannian metric on M and x^i are coordinates on M.

Flow eq. solved on the half-line $(-\infty, 0]$ with condition $x^i(t)$ starts at p at $t = -\infty$.

Morse index of cycle Γ_p : number of directions one can flow downward.

For our integral, $h = \operatorname{Re}(ikf) = \operatorname{Re}(\mathcal{I})$ – real part of a holomorphic function \implies all critical points have Morse index *n*.

Take $ds^2 = \sum_{i=1}^n d|x^i|^2$. Flow eqs. yield $\frac{dx^i}{dx^i} = -\frac{\partial \overline{\mathcal{I}}}{\partial \overline{\mathcal{I}}}, \quad \frac{dx^i}{\partial \overline{\mathcal{I}}} = -\frac{\partial \mathcal{I}}{\partial \overline{\mathcal{I}}}$

$$\frac{dx^{\prime}}{dt} = -\frac{\partial L}{\partial \overline{x^{\prime}}}, \quad \frac{dx^{\prime}}{dt} = -\frac{\partial L}{\partial x^{\prime}}$$

25 of October, 2017

23 / 36

▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

For our integral, $h = \operatorname{Re}(ikf) = \operatorname{Re}(\mathcal{I})$ – real part of a holomorphic function \implies all critical points have Morse index *n*.

Take
$$ds^2 = \sum_{i=1}^n d|x^i|^2$$
. Flow eqs. yield
 $\frac{dx^i}{dt} = -\frac{\partial \overline{\mathcal{I}}}{\partial \overline{x^i}}, \quad \frac{d\overline{x^i}}{dt} = -\frac{\partial \mathcal{I}}{\partial x^i}$

From which we obtain that $h = \operatorname{Re}(\mathcal{I})$ decreases and $\operatorname{Im}(\mathcal{I})$ is conserved along a flow.

25 of October, 2017

What is the homology cycle associated to Γ_p ? \mathbb{C}^n is not compact and h is unbounded above and below.

э

What is the homology cycle associated to Γ_p ? \mathbb{C}^n is not compact and h is unbounded above and below.

We want it to be a cycle in which I(k) converges.

$$X_{-T} = \{ p \in \mathbb{C}^n : h < -T \}$$

We are interested in integration cycles whose boundary at infinity is in $X_{-T} \longrightarrow \Gamma_p \in H_n(\mathbb{C}^n, X_{-T}).$

What is the homology cycle associated to Γ_p ? \mathbb{C}^n is not compact and h is unbounded above and below.

We want it to be a cycle in which I(k) converges.

$$X_{-T} = \{ p \in \mathbb{C}^n : h < -T \}$$

We are interested in integration cycles whose boundary at infinity is in $X_{-T} \longrightarrow \Gamma_p \in H_n(\mathbb{C}^n, X_{-T}).$

For each $\alpha \in S$, $p_{\alpha} \mapsto \Gamma_{\alpha}$ which gives us a basis of $H_n(\mathbb{C}^n, X_{-T})$. Any reasonable integration cycle Γ will be given by

$$\Gamma = \sum_{\alpha \in S} n_{\alpha} \Gamma_{\alpha} \longrightarrow I(k) = \sum_{\alpha \in S} n_{\alpha} I_{\alpha}(k)$$

How to compute n_{α} ?

Replace downward flow eqs. by upward flow equations

$$\frac{dx^{i}}{dt} = \frac{\partial \overline{\mathcal{I}}}{\partial \overline{x^{i}}}, \quad \frac{d\overline{x^{i}}}{dt} = \frac{\partial \mathcal{I}}{\partial x^{i}}$$

on the half-line $(-\infty, 0]$ with same boundary condition. Obtain \mathcal{D}_{α} upward flowing cycle associated to p_{α} .

There exists natural pairing $\langle \Gamma_{\alpha}, \mathcal{D}_{\beta} \rangle = \delta_{\alpha\beta} \implies n_{\alpha} = \langle \Gamma, \mathcal{D}_{\alpha} \rangle.$

Outline

Motivation

Ø Jones Polynomial

Vertex model construction Witten's construction

3 Analytic continuation

Review of Morse theory for finite-dimensional case Application to our problem

④ Electric-magnetic duality

э

Pedro Aniceto

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

1 Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections

Pedro Aniceto

1 Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections

2 Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's

Pedro Aniceto

- **1** Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
- **2** Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
- **3** Take $\operatorname{Re}(ik\operatorname{CS}(\mathcal{A}))$ as Morse a function

- **1** Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
- 2 Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
- **3** Take $\operatorname{Re}(ik\operatorname{CS}(\mathcal{A}))$ as Morse a function

A Riemmanian metric on W induces a Kahler metric on $\mathcal{U}_{\mathbb{C}}$ that is invariant under G by

$$|\delta \mathcal{A}|^2 = -\int_W \mathrm{Tr} \delta \mathcal{A} \wedge \star_W \delta \overline{\mathcal{A}}$$

with \star_W the Hodge star operator acting on differential forms on W.

- 1 Define Γ_{α} 's in $\mathcal{U}_{\mathbb{C}}$ space of complex-valued connections
- **2** Replace integral over \mathcal{U} with sum of integrals over Γ_{α} 's
- **3** Take $\operatorname{Re}(ik\operatorname{CS}(\mathcal{A}))$ as Morse a function

A Riemmanian metric on ${\cal W}$ induces a Kahler metric on ${\cal U}_{\mathbb C}$ that is invariant under G by

$$|\delta \mathcal{A}|^2 = -\int_W \mathrm{Tr} \delta \mathcal{A} \wedge \star_W \delta \overline{\mathcal{A}}$$

with \star_W the Hodge star operator acting on differential forms on W.

Flow will be a differential equation on $M = W \times \mathbb{R}$.

Take $\mathcal{A} = \mathcal{A} + i\phi$ with \mathcal{A} a real connection on G-bundle $E \to W$ and $\phi \in \Omega^1(W, \mathrm{ad}(E))$.

Pedro Aniceto

소문에 소문에

Take $\mathcal{A} = \mathcal{A} + i\phi$ with \mathcal{A} a real connection on G-bundle $E \to W$ and $\phi \in \Omega^1(W, \mathrm{ad}(E))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$\omega = \int_W \mathrm{Tr} \delta A \wedge \star_W \delta \phi$$

A B K A B K

Take $\mathcal{A} = A + i\phi$ with A a real connection on G-bundle $E \to W$ and $\phi \in \Omega^1(W, \mathrm{ad}(E))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$\omega = \int_W \mathrm{Tr} \delta A \wedge \star_W \delta \phi$$

Moment map for the G-valued local gauge transformations

$$\mu = d_A \star_W \phi$$

with $d_A = d + [A, \cdot]$.

ヨトィヨト

Take $\mathcal{A} = A + i\phi$ with A a real connection on G-bundle $E \to W$ and $\phi \in \Omega^1(W, \mathrm{ad}(E))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$\omega = \int_W \mathrm{Tr} \delta A \wedge \star_W \delta \phi$$

Moment map for the G-valued local gauge transformations

$$\mu = d_A \star_W \phi$$

with $d_A = d + [A, \cdot]$. This map is conserved along flows and in particular can be fixed to vanish on \mathcal{U} .

(*) *) *) *)

28 / 36

Take $\mathcal{A} = A + i\phi$ with A a real connection on G-bundle $E \to W$ and $\phi \in \Omega^1(W, \mathrm{ad}(E))$. The associated Kahler two form on $\mathcal{U}_{\mathbb{C}}$

$$\omega = \int_W \mathrm{Tr} \delta A \wedge \star_W \delta \phi$$

Moment map for the G-valued local gauge transformations

$$\mu = d_A \star_W \phi$$

with $d_A = d + [A, \cdot]$. This map is conserved along flows and in particular can be fixed to vanish on \mathcal{U} .

We will be interested only on Lefschetz thimbles on which $\mu = 0$.

25 of October, 2017

28 / 36

KW equations

Finally, we apply the flow equation and simplify to obtain

$$\begin{bmatrix} F - \phi \land \phi = \star_M d_A \phi \\ d_A \star_M \phi = 0 \end{bmatrix}$$

Equations for a pair A, ϕ with A a real connection on G-bundle $E \to M$ and $\phi \in \Omega^1(M, \mathrm{ad}(E))$.

Nonetheless, these may continue to be viewed as flow equations for ${\mathcal A}$ on ${\mathcal W}.$

We can now define the Lefschetz thimble for any choice of flat connection \mathcal{A}_{ρ} (our "critical point") on $M = W \times \mathbb{R}^+$ associated to homomorphism $\rho : \pi_1(M) \to G_{\mathbb{C}}$.

 Γ_{ρ} consists of all \mathcal{A} that are boundary values (on $W \times \{0\} \subset M$) of solutions of the KW eqs. on M which approach \mathcal{A}_{ρ} at infinity.
We can now define the Lefschetz thimble for any choice of flat connection \mathcal{A}_{ρ} (our "critical point") on $M = W \times \mathbb{R}^+$ associated to homomorphism $\rho : \pi_1(M) \to G_{\mathbb{C}}$.

 Γ_{ρ} consists of all \mathcal{A} that are boundary values (on $W \times \{0\} \subset M$) of solutions of the KW eqs. on M which approach \mathcal{A}_{ρ} at infinity.

Since $\pi_1(\mathbb{R}^3) = 0$ any flat \mathcal{A} on \mathbb{R}^3 is gauge-equivalent to the trivial one $\implies \exists ! \Gamma_0.$

The Jones polynomial then is

Pedro Aniceto

$$Z_{k}(\mathbb{R}^{3}, K, R) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D}\mathcal{A} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{R}(K)$$

with Γ_0 space of solutions of KW eqs. on M that vanish on $\mathbb{R}^3 \times \{\infty\}$ and \mathcal{A} is the restriction to $W \times \{0\}$.

ㅋㅋ ㅋㅋㅋ

э

The Jones polynomial then is

$$Z_{k}(\mathbb{R}^{3}, K, R) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D}\mathcal{A} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{R}(K)$$

with Γ_0 space of solutions of KW eqs. on M that vanish on $\mathbb{R}^3 \times \{\infty\}$ and \mathcal{A} is the restriction to $W \times \{0\}$.

Here $\mathcal{W}_R(K)$ is evaluated on Γ_0 .

Figure: Knot embedded in boundary of M

1 Motivation

- **2** Jones Polynomial
- 3 Analytic continuation
- **4** Electric-magnetic duality

3. 3

Pedro Aniceto

$$Z_{k}(\mathbb{R}^{3}, \mathcal{K}, \mathcal{R}) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{D}\mathcal{A} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{\mathcal{R}}(\mathcal{K})$$

э

∃ ⊳

$$Z_{k}(\mathbb{R}^{3}, K, R) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{DA} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{R}(K)$$

KW equations also arise in a twisted version of $\mathcal{N} = 4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

25 of October, 2017

$$Z_{k}(\mathbb{R}^{3}, K, R) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{DA} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{R}(K)$$

KW equations also arise in a twisted version of $\mathcal{N} = 4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

This space, if we require $\mathcal{A} \to 0$ at $\mathbb{R}^3 \times \{\infty\}$, is simply Γ_0 .

⇒ Jones polynomial for *K* in \mathbb{R}^3 can be computed by a path integral of $\mathcal{N} = 4$ super Yang-Mills on *M* with a certain boundary condition on $\mathbb{R}^3 \times \{0\}$.

33 / 36

$$Z_{k}(\mathbb{R}^{3}, K, R) = \frac{1}{\operatorname{vol}} \int_{\Gamma_{0}} \mathcal{DA} \exp\left(ik \operatorname{CS}(\mathcal{A})\right) \mathcal{W}_{R}(K)$$

KW equations also arise in a twisted version of $\mathcal{N} = 4$ super Yang-Mills theory in 4D which localizes on the space of solutions of the KW eqs.

This space, if we require $\mathcal{A} \to 0$ at $\mathbb{R}^3 \times \{\infty\}$, is simply Γ_0 .

⇒ Jones polynomial for *K* in \mathbb{R}^3 can be computed by a path integral of $\mathcal{N} = 4$ super Yang-Mills on *M* with a certain boundary condition on $\mathbb{R}^3 \times \{0\}$.

However, this is still an infinite-dimensional integration.

Electric-magnetic duality

 $\mathcal{N}=$ 4 supersymmetric Yang-Mills theory with gauge group ${\it G}$ and coupling parameter τ

Same theory with gauge group G^V (Langlands or GNO dual of G) and coupling parameter $\tau^V = -1/n_g \tau$.

34 / 36

 $\mathcal{N}=$ 4 supersymmetric Yang-Mills theory with gauge group ${\it G}$ and coupling parameter τ

Same theory with gauge group G^V (Langlands or GNO dual of G) and coupling parameter $\tau^V = -1/n_g \tau$.

Dual boundary condition described by Gaiotto and Witten – has the effect of reducing to finite-dimensional spaces of solutions of the KW eqs.

In this case, after the duality transformation, the moduli space of solutions has dimension 0.

To evaluate $Z_k(K, R)$, count the number b_n , with signs, of solutions for a given value *n* of the instanton number (= second Chern class).

In this case, after the duality transformation, the moduli space of solutions has dimension 0.

To evaluate $Z_k(K, R)$, count the number b_n , with signs, of solutions for a given value n of the instanton number (= second Chern class). Jones polynomial is

$$Z_q(K,R)=\sum_n b_n q^n$$

with $q = \exp(2\pi i/(k+2))$.

Bibliography

- E. Witten, "Quantum Field Theory And The Jones Polynomial," Commun. Math. Phys. **121** (1989): 351-399.
- E. Witten, "Analytic continuation of Chern-Simons theory," AMS/IP Stud. Adv. Math. **50** (2011): 347-446. arXiv:1001.2933.
- E. Witten, "Khovanov Homology And Gauge Theory," (2012), arXiv:1108.3103.
- E. Witten, "Two Lectures On The Jones Polynomial And Khovanov Homology," (2014), arXiv:1401.6996.