BUILDING (AND BREAKING) MACHINES THAT THINK FAST AND SLOW

Tom Goldstein

OVERVIEW

What are adversarial attacks?

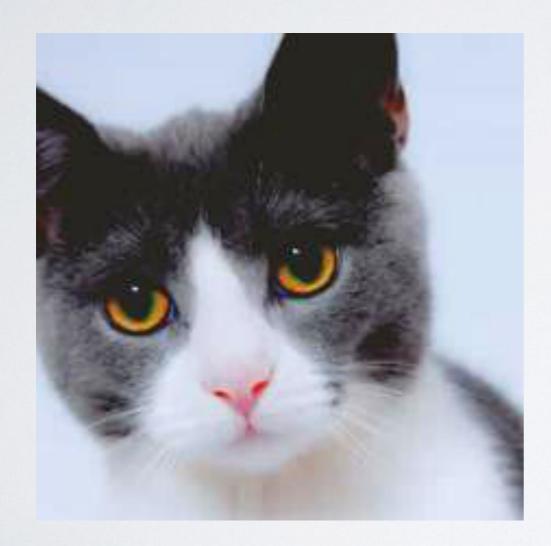
What can adversarial attacks do for you?

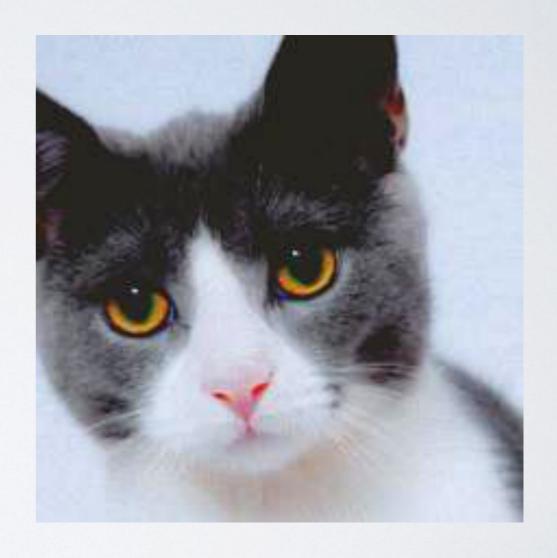
Can neural nets "think"?

ADVERSARIAL ATTACKS

"Egyptian Cat" 28%

"Traffic Light" 97%



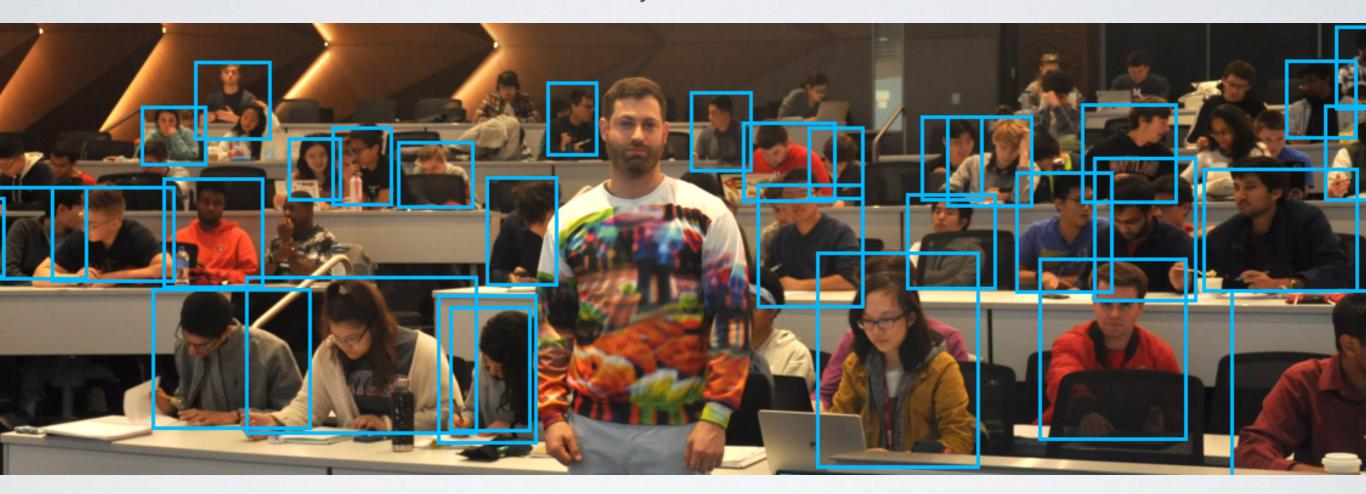


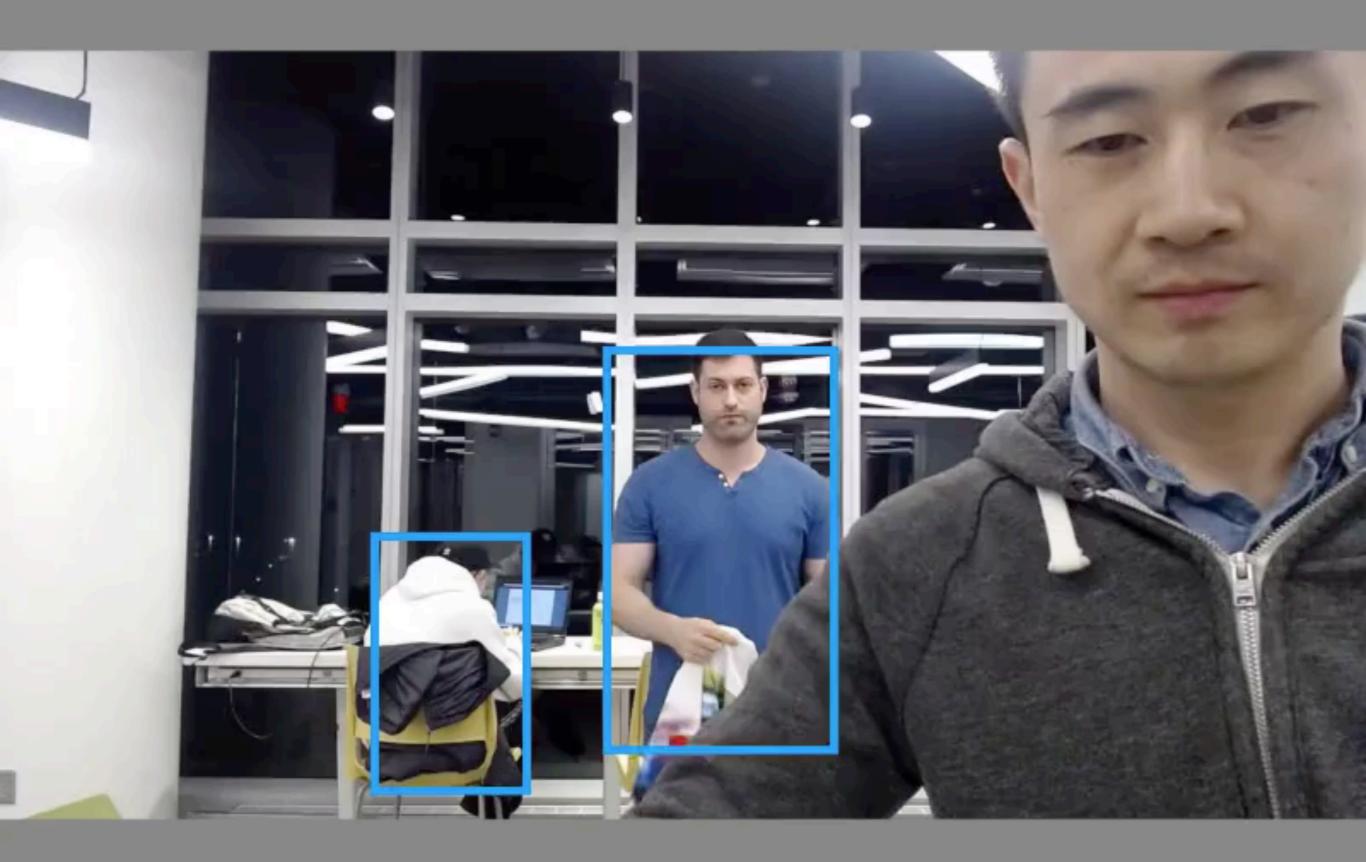
How far can these attacks go?

VS

ADVERSARIAL ATTACKS

Yolov2 Object Detections





"[The Cloak] looks like a baggy sweatshirt...
with garish colors in formless shapes."

THE TIMES

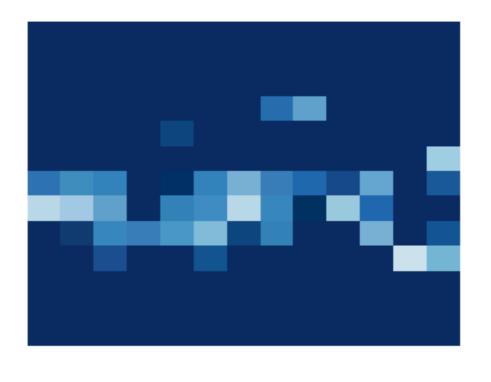
"This hideous jumper makes Professor Goldstein invisible...
...to the fashion curators at Vogue."

APPROACH

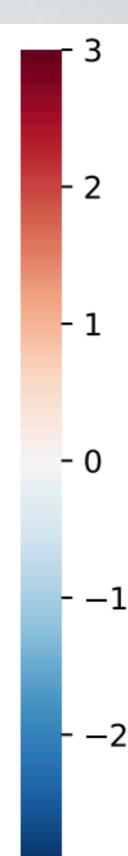
Original Image

Patched Image

Feature Maps

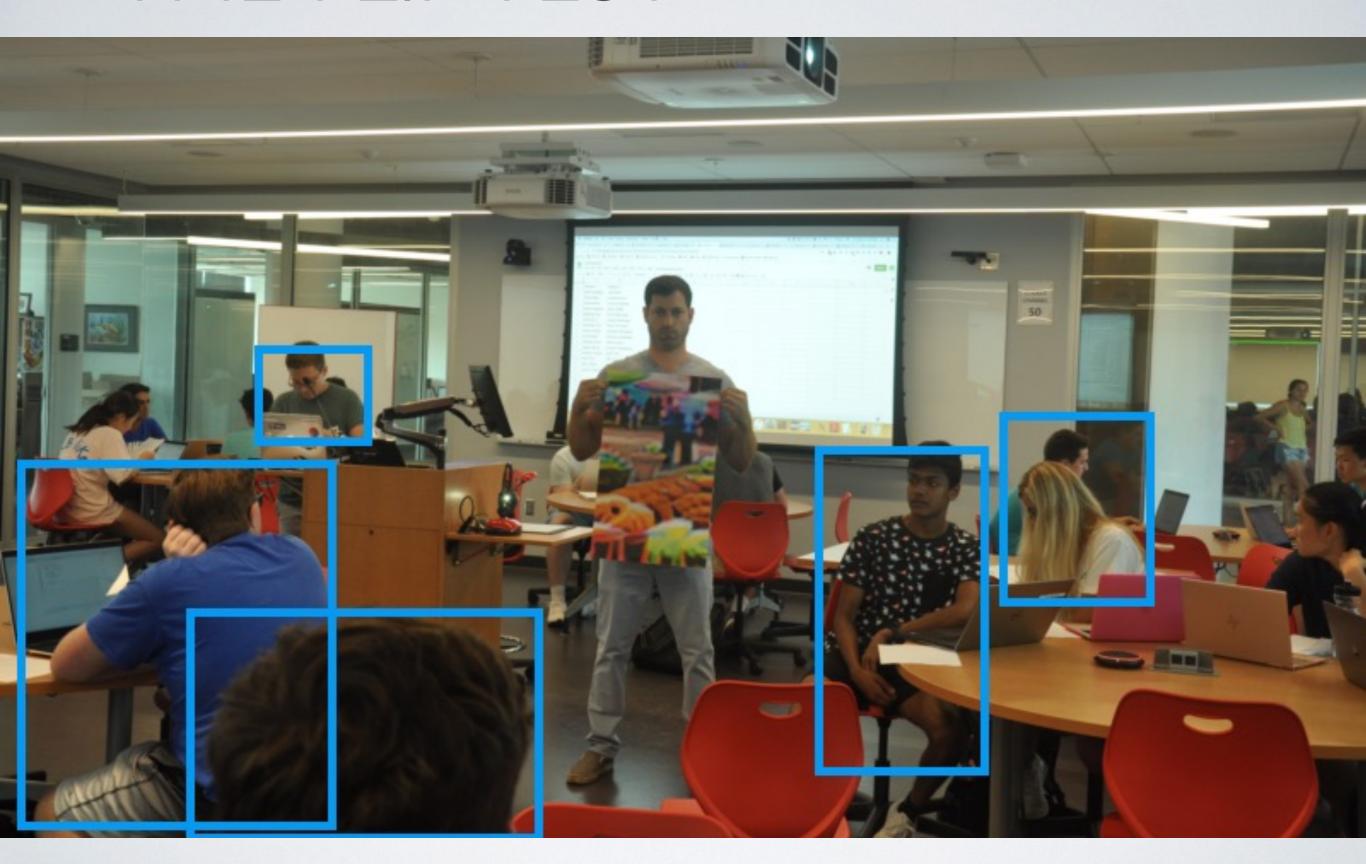


Feature Maps



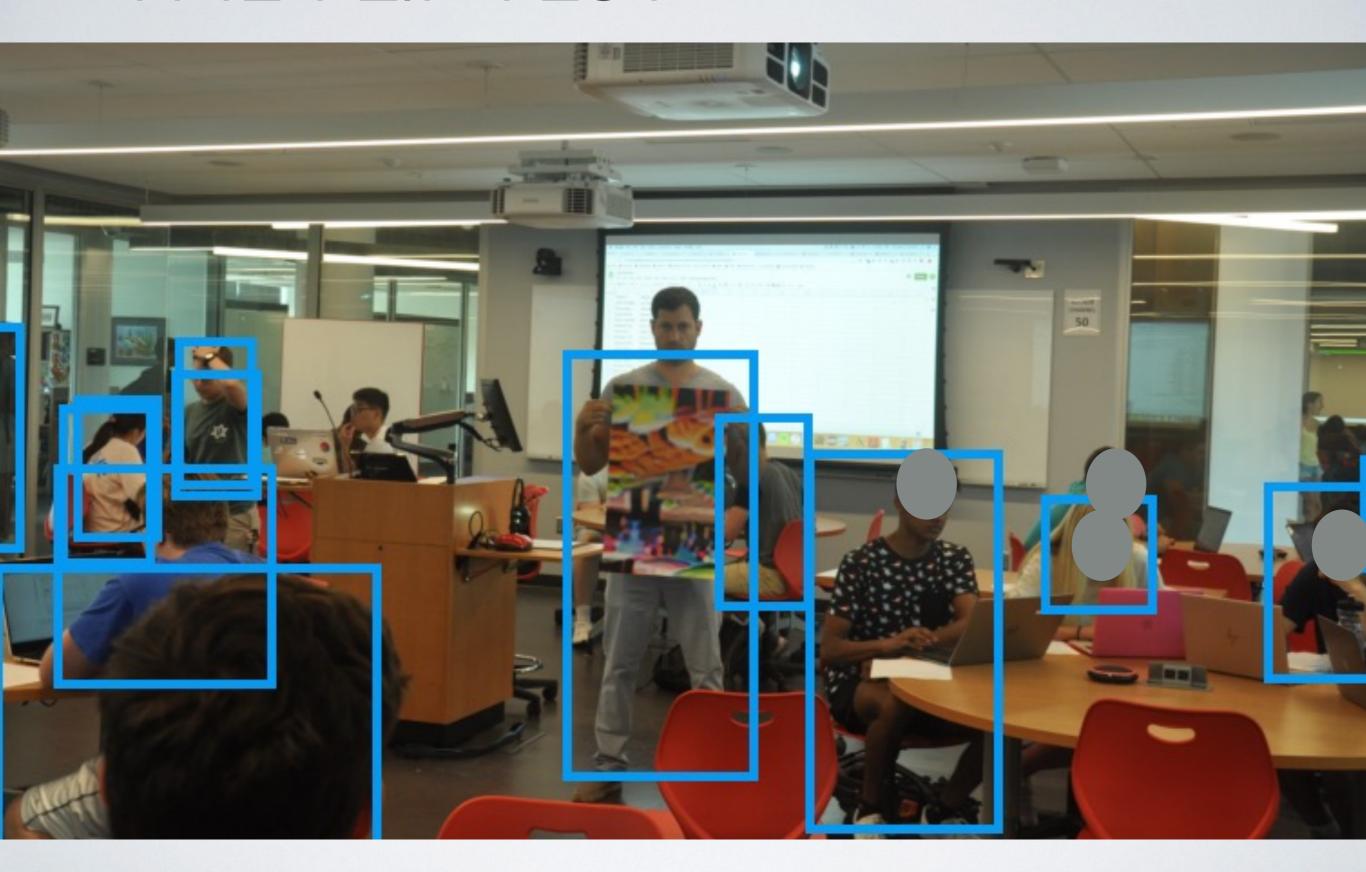
THE SWEATER TEST

THE FLIPTEST



Wu, Lim, Davis, G. "Building an invisibility cloak"

THE FLIPTEST



Wu, Lim, Davis, G. "Building an invisibility cloak"

Other work on breaking systems

Adversarial attacks on copyright systems

Saadatpanah, Shafahi, & Goldstein

Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching

Geiping, Fowl, Huang, Czaja, Taylor, Moeller, Goldstein

Adversarial Attacks on Machine Learning Systems for High-Frequency Trading

Goldblum, Schwarzschild, Patel, Goldstein

Can adversarial ML protect privacy?

More...

Tom Goldstein

Associate Professor at University of Maryland Washington, District Of Columbia · 263 connections ·

Contact info

University of Maryland

University of California, Los Angeles

About

Tom is an expert on large-scale and distributed optimization methods for machine learning, computer vision, and signal processing. Areas of focus include:

Machine learning and Al... see more

Linked in

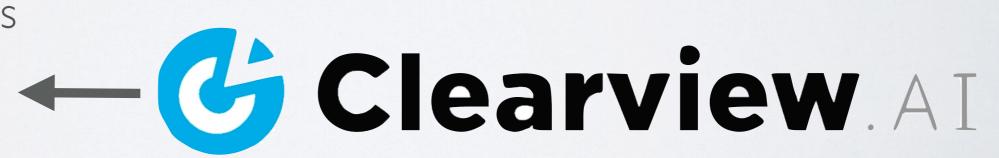
Tom Goldstein
Associate Professor at University of Maryland
Washington, District Of Columbia · 263 connections

Private companies
Political

organizations

Law enforcement

Foreign governments



Can we poison datasets so that they're useless?

Can we poison datasets so that they're useless?

Related work

Huang, Unlearnable Examples, 2021

Shen, TensorClog, 2021

Fowl & G, Preventing Unauthorized use, 2021

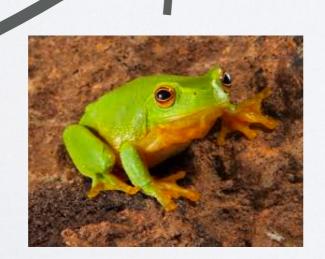
Yu, Indiscriminate Poisoning, 2022

Sandoval-Segura & G, Autoregressive Perturbations, 2022

TRAINING ON ADVERSARIAL EXAMPLES

Catland

Resnet50 boundary



Frogville

OVER/UNDER PARAMETERIZED DUALITY

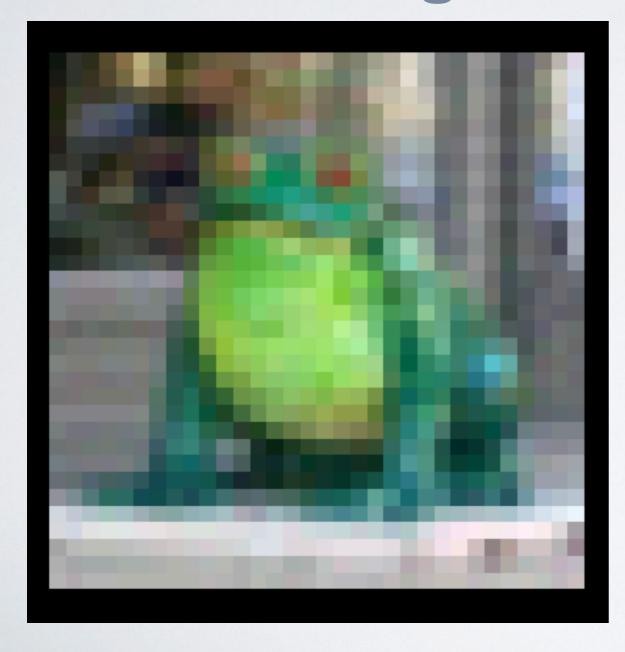
OVER/UNDER PARAMETERIZED DUALITY

Catland

Resnet50 boundary

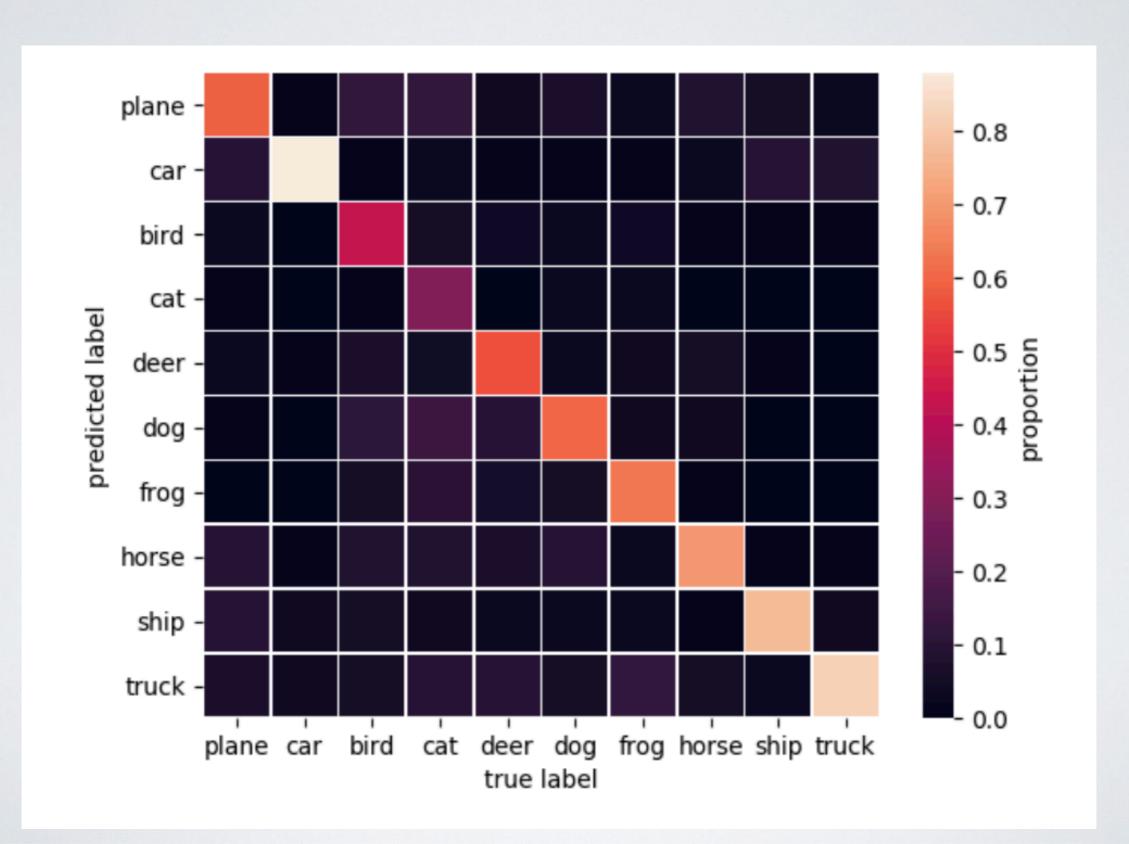
TRAIN ON ADVERSARIAL EXAMPLE TEST ON CLEAN DATA

Base image



Cat

TRAIN ON ADVERSARIAL EXAMPLE TEST ON CLEAN DATA



UNTRAINABLE IMAGENET?

Images that are labeled "right" to a human but "wrong" to a computer.

Catland

Resnet50 boundary

Frogville

Catland

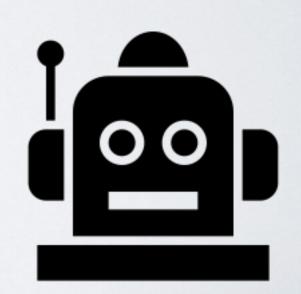
Resnet50 boundary

Frog

Cat

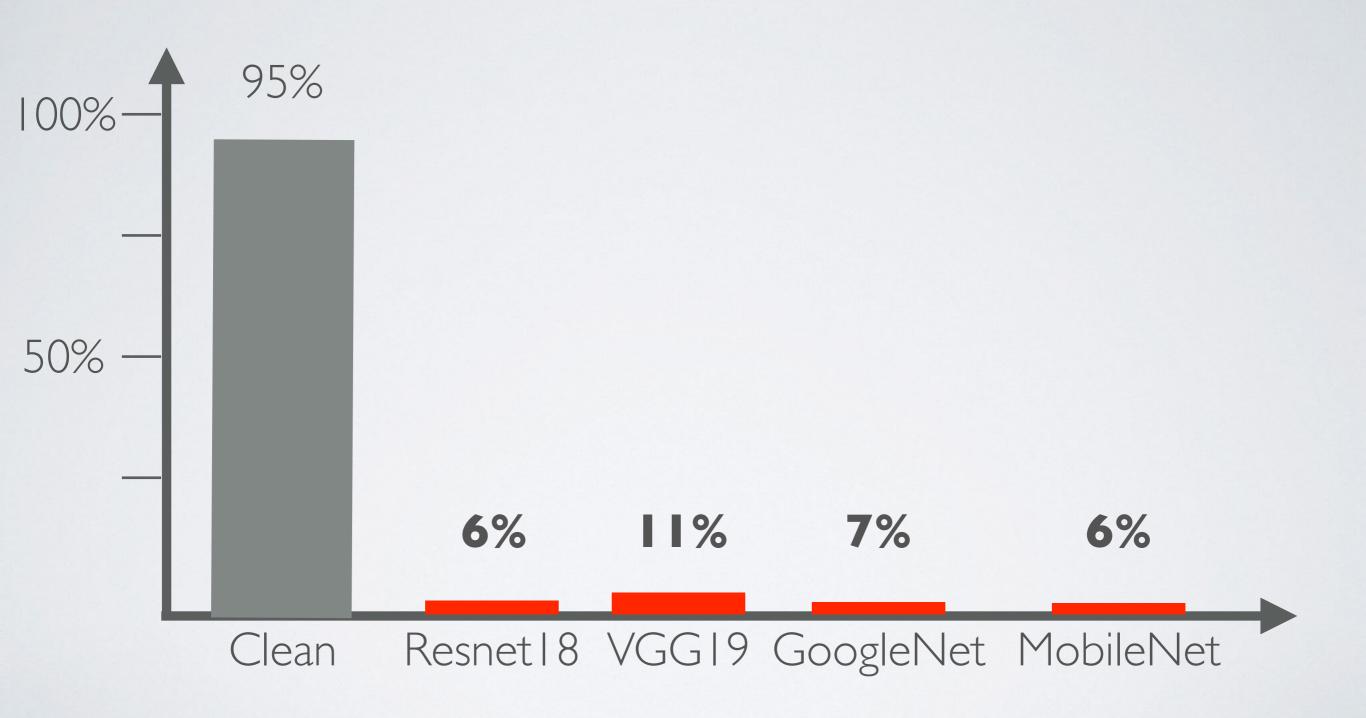
Frogville

"Hen"



Ostrich

CIFAR-10 Accuracy Poisoned with Resnet-18



"Adversarial examples make strong poisons"

Can you defeat poisoned data?

Adversarial Training

Table 4: Adversarial Training. CIFAR-10 test accuracy after adversarially training with different radii ρ_a . Top row shows performance of adversarial training on clean data. AR poisons remain effective for small ρ_a .

	$ ho_a$					
	0.125	0.25	0.50	0.75		
Clean Data	87.07	84.75	81.19	77.01		
• Error-Max [10]	$33.30_{\pm0.14}$	$72.27_{\pm 2.18}$	81.15_{\pm} 58	$78.73_{\pm 4.20}$		
• Error-Min [18]	$70.66_{\pm0.41}$	$84.80_{\pm 2.38}$	83.04_{\pm} $_{24}$	$79.11_{\pm 3.46}$		
Regions-4	$75.05_{\pm0.35}$	$81.23_{\pm 0.11}$	$79.71_{-0.05}$	$76.47_{\pm0.34}$		
o Regions-16	$47.99_{\pm 0.25}$	$71.43_{\pm 0.17}$	€0.10	$76.65_{\pm0.07}$		
 Random Noise 	$86.31_{\pm0.42}$	$84.17_{\pm 0.20}$	$\bf 80.11_{\pm 0.06}$	$\bf 76.26_{\pm 0.07}$		
• Autoregressive (Ours)	${\bf 33.22_{\pm 0.77}}$	$57.08_{\pm 0.75}$	$81.27_{\pm 2.61}$	$79.07_{\pm 3.47}$		

Can you defeat poisoned data?

Mix with clean data

Table 5: **Mixing Poisons with Clean Data.** CIFAR-10 test accuracy when a proportion of clean data is used in addition to a poison. Top row shows test accuracy when training on only the clean proportion of the data; *i.e.* no poisoned data is used.

	Clean Proportion						
	40%	30%	20%	10%	5%		
Clean Only	90.84	89.92	87.90	81.01	74.97		
• Error-Max [18]	$87.83_{\pm 0.74}$	$86.83_{\pm0.48}$	$84.70_{\pm 0.61}$	$81.63_{\pm 0.63}$	$76.48_{\pm 1.72}$		
• Error-Min [10]	$88.32_{\pm 1.57}$	$87.23_{\pm0.84}$	$84.56_{\pm0.88}$	$78.76_{\pm 1.83}$	$67.82_{\pm 1.92}$		
Regions-4	$88.94_{\pm0.85}$	$86.75_{\pm0.86}$	$83.52_{\pm 0.20}$	$78.23_{\pm 0.97}$	$70.19_{\pm 3.16}$		
o Regions-16	$88.03_{\pm 0.57}$	$86.23_{\pm0.68}$	$83.01_{\pm0.48}$	$76.52_{\pm 0.91}$	$67.24_{\pm 1.72}$		
 Random Noise 	$\bf 86.40_{\pm 1.24}$	$86.99_{\pm0.19}$	$84.98_{\pm 1.85}$	$78.08_{\pm0.94}$	$70.69_{\pm0.87}$		
• AR (Ours)	$87.63_{\pm 0.68}$	$\bf 85.62_{\pm 0.62}$	$83.28_{\pm0.90}$	$\bf 76.13_{\pm 2.34}$	$62.69_{\pm 5.58}$		

FEDERATED LEARNING

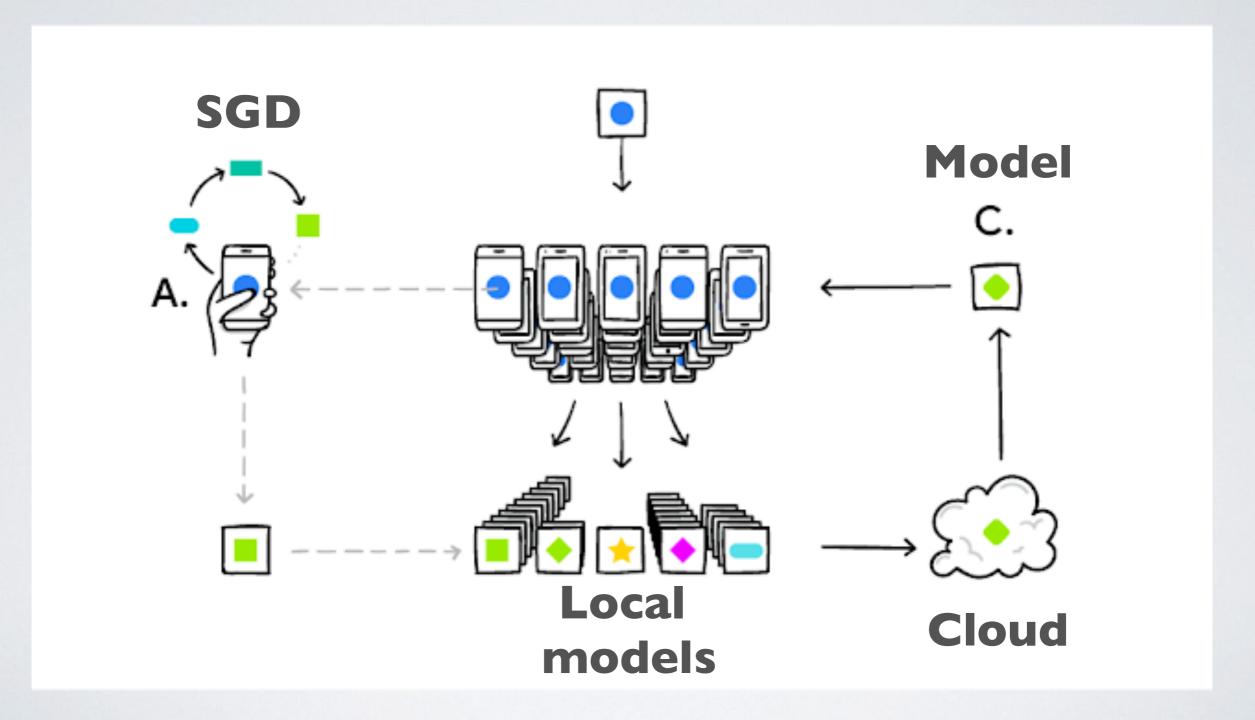
GBoard Predictive text

Image recognition API

App monitoring & marketing data

GOING BEYOND PATTERN MATCHING

WHAT'S FEDERATED LEARNING?



IS IT PRIVATE?

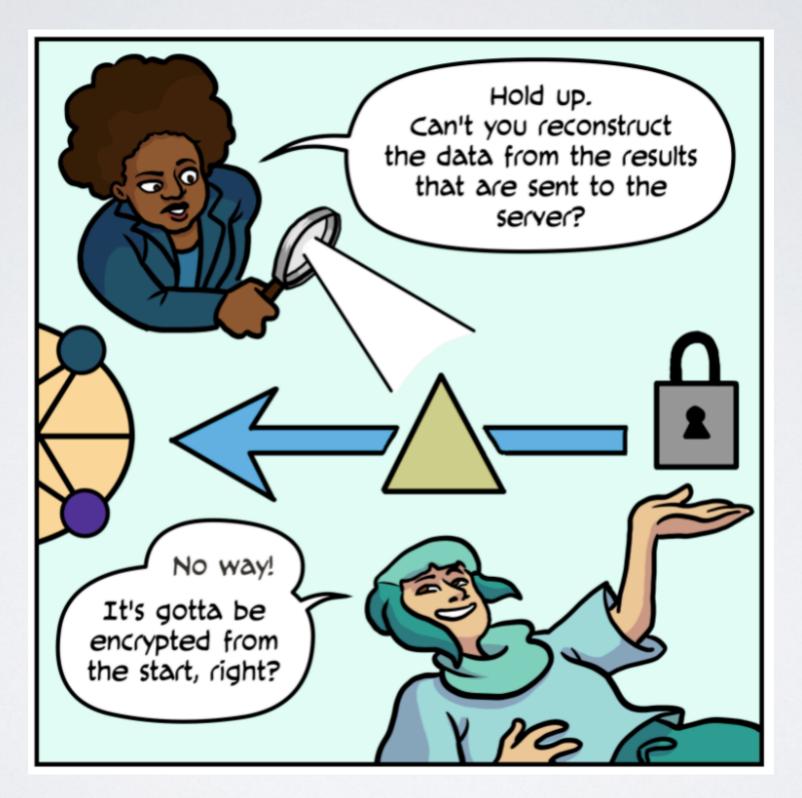


Figure stolen from https://federated.withgoogle.com/

A BIG LEAK

BIG SECURITY LEAK: LINEAR LAYERS

Linear layers

Downstream loss

$$z = Wx + b$$

$$\mathcal{L}(z)$$

Parameter gradients

$$\nabla_W \mathcal{L} = \nabla_z \mathcal{L}(z) x$$

$$\nabla_b \mathcal{L} = \nabla_z \mathcal{L}(z)$$

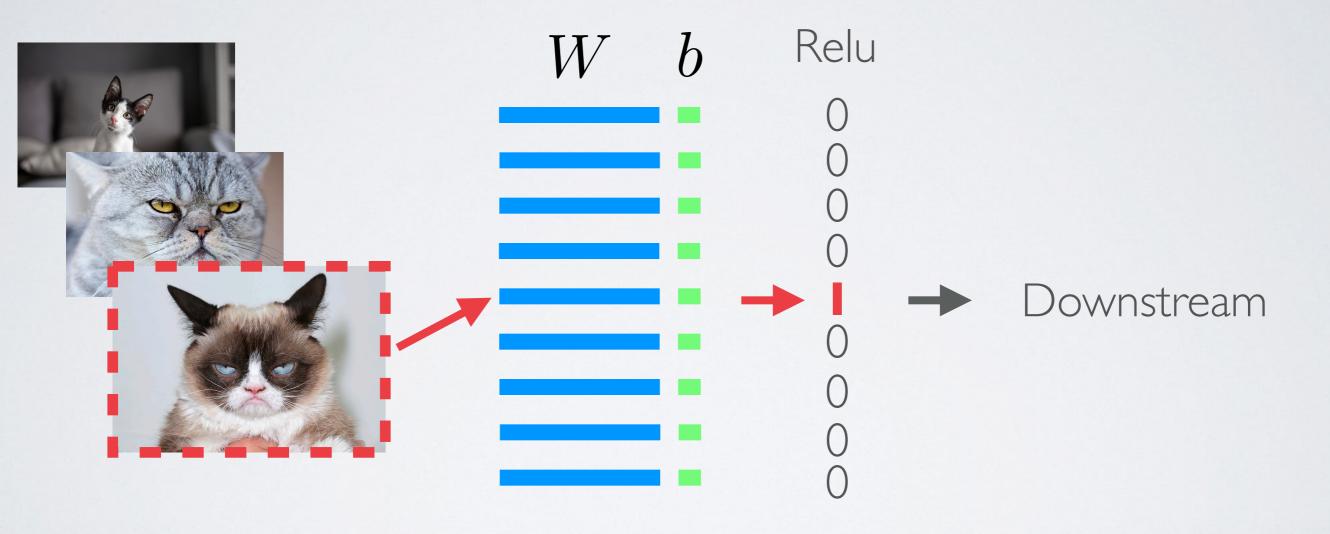
Uh oh.

$$x = \nabla_W \mathcal{L} / \nabla_b \mathcal{L}$$

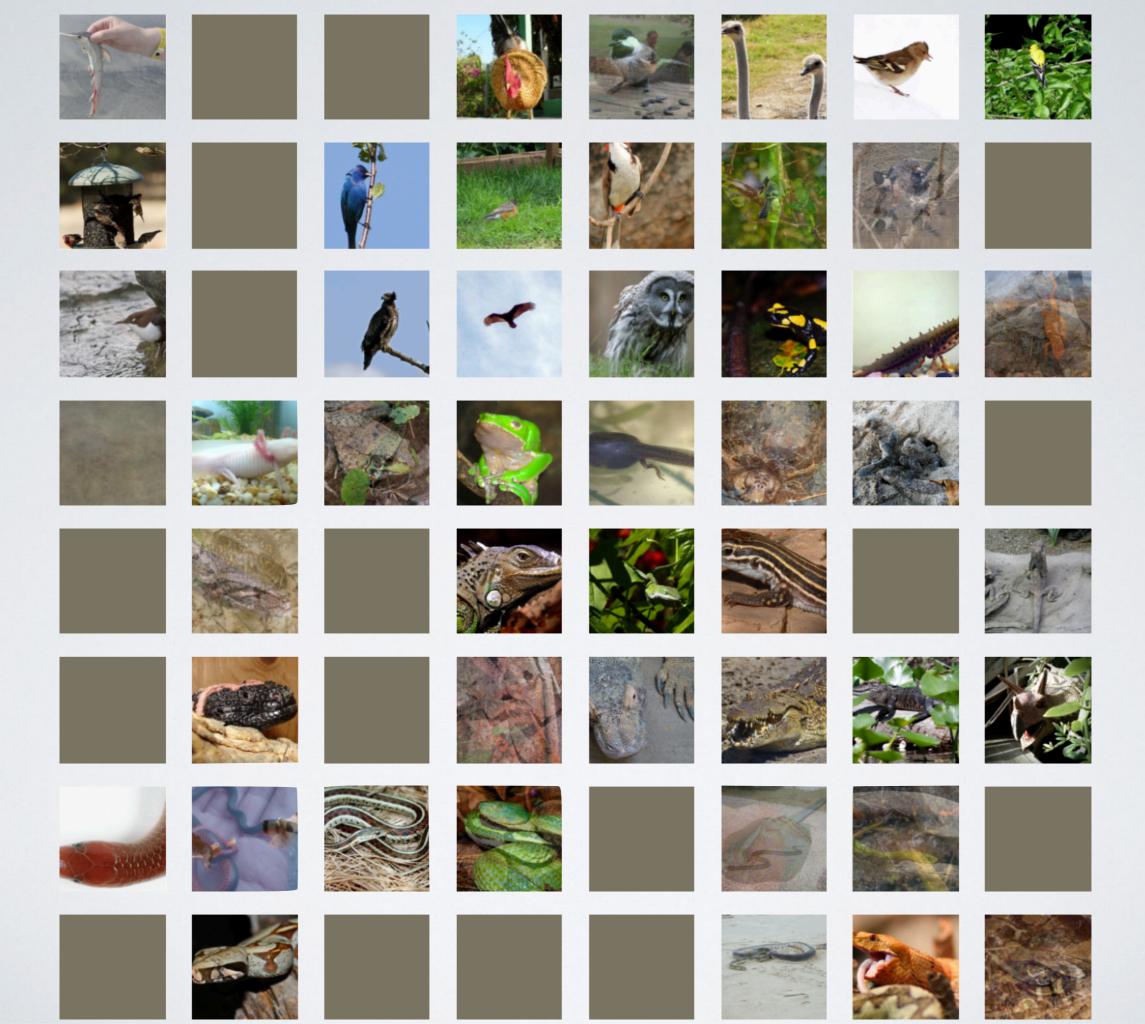
Fowl et al. "Robbing the Fed." 2021

BUT WE'RE PROTECTED BY BATCHING! ...RIGHT?

Linear layer filters



Fowl et al. "Robbing the Fed." 2021



EXAMPLE

batch size I6K

Original

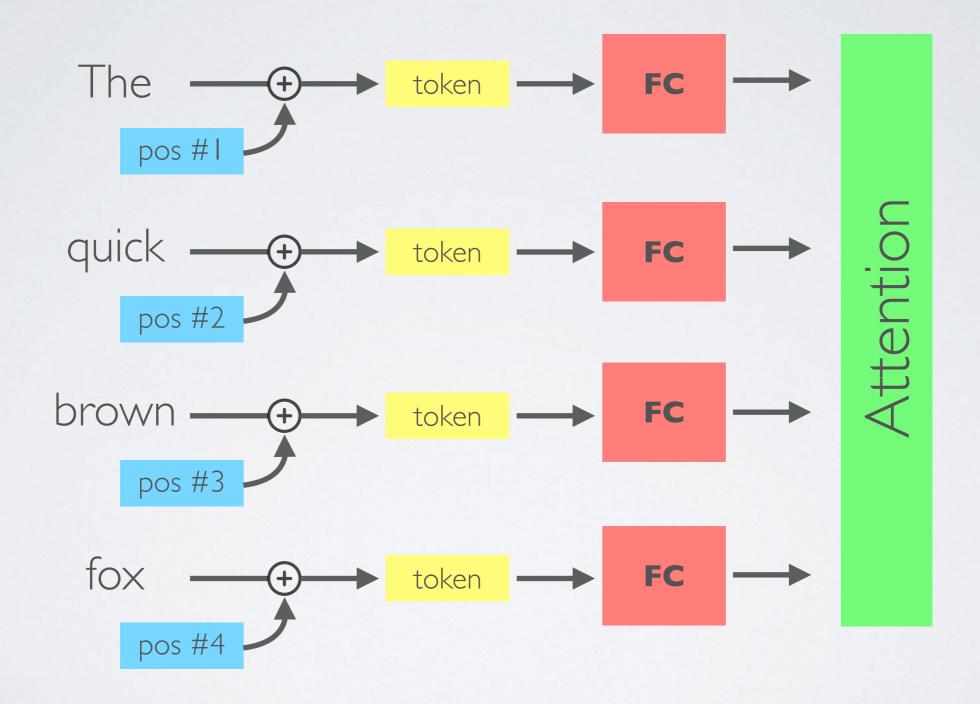
Imprinted

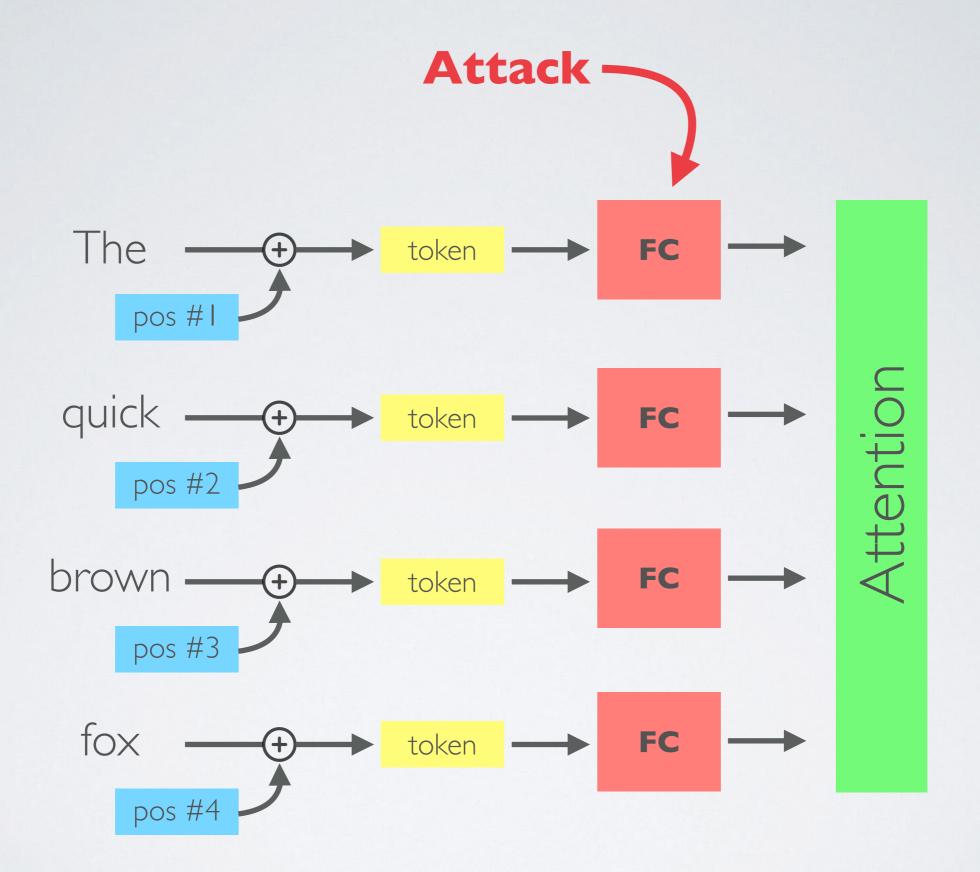
Fowl et al. "Robbing the Fed." 2021

But what about text?

Decepticons

Text transformers





	Batch Size = 1	Batch Size = 8	Batch Size = 16
Length 32	Ancient Egyptian deities Egypt the gods and goddesses worshipped. ancient gods are The beliefs of rituals surrounding these in	Ancient Egyptian deities are the gods and goddesses worshipped in ancient Egypt ph The beliefs and rituals surrounding these gods	Ancient for deities are the gods and goddesses worshipped in ancient Egypt. The beliefs and rituals surrounding these gods
Length 128	Ancient Egyptian deities are the gods and goddesses worshipped Egypt ancient constitu. The beliefs and rituals myths these gods	Ancient Egyptian deities are the gods and goddesses worshipped in ancient Egypt. The beliefs view rituals surrounding these gods	Ancient Egyptian deities are the gods and goddesses worshipped in ancient Egypt. The beliefs view rituals surrounding these continue
Length 512	Ancient Egyptian well are the gods and goddesses worshipped in ancient Egypt � The beliefs whereas ritualsies these gods formed	Ancient Egyptian deities are the gods and goddesses worshipped in ancient vague. "beliefs and tried these gods	Ancient Egyptian deities are the gods and goddess hours thoughts in ancient final conception divine beliefs and rituals and these

Building and breaking thinking systems

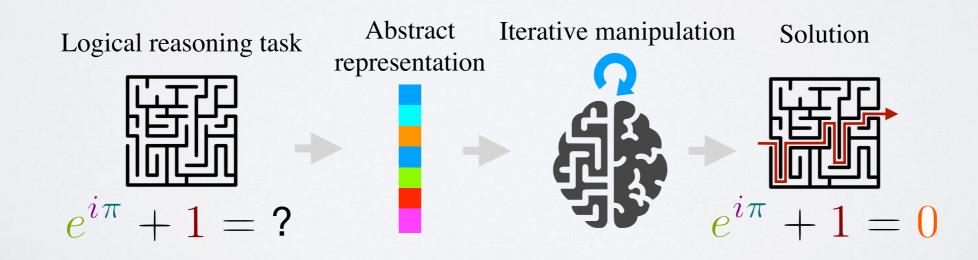
"Fast"/Type-I thinking

Pattern recognition task

Static-depth network

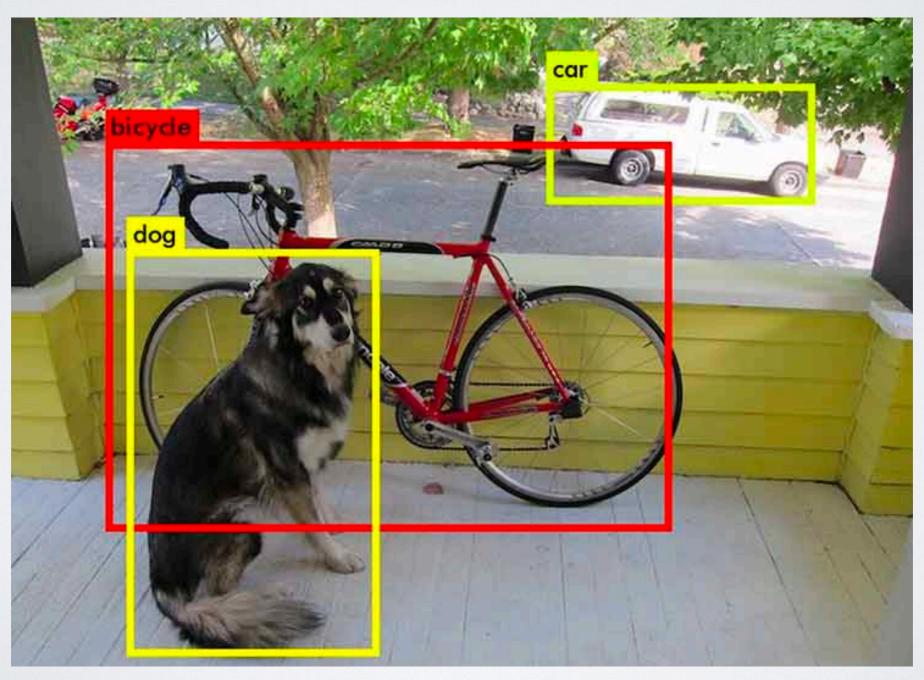
Solution

"Slow"/Type-II thinking



Machines are better than humans at...

Pattern matching "Type I thinking"



Type II thinking = logical reasoning

Human reasoning scales to problems of (potentially) unbounded difficulty

$$e^{i\pi} + 1 = 0$$

Humans handle domain shift well

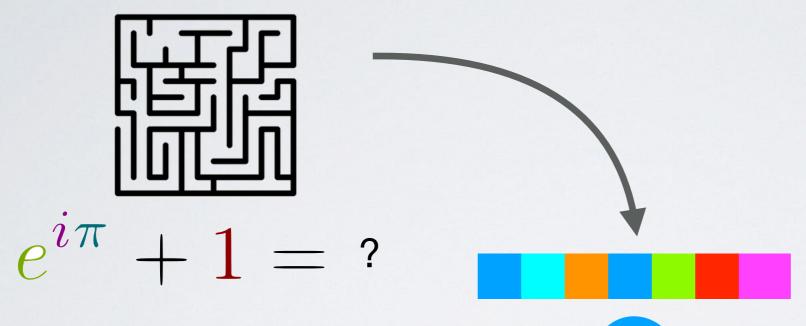
Humans can synthesize complex strategies from simple rules

Can neural networks exhibit logical extrapolation?

l.e., a system that solves problems of unlimited complexity just by "thinking for longer?"

Why can humans perform logical extrapolation?

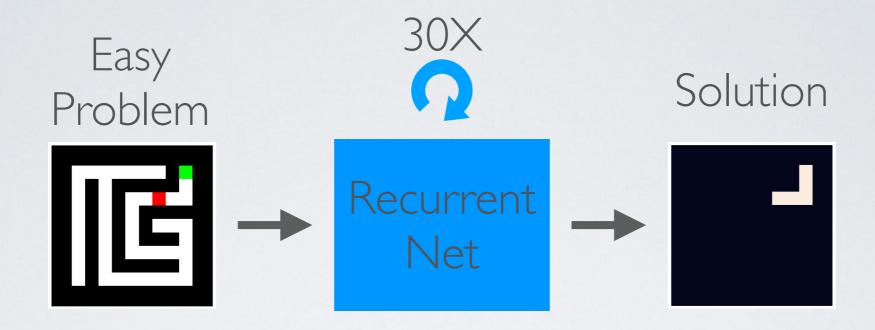
Logical reasoning task

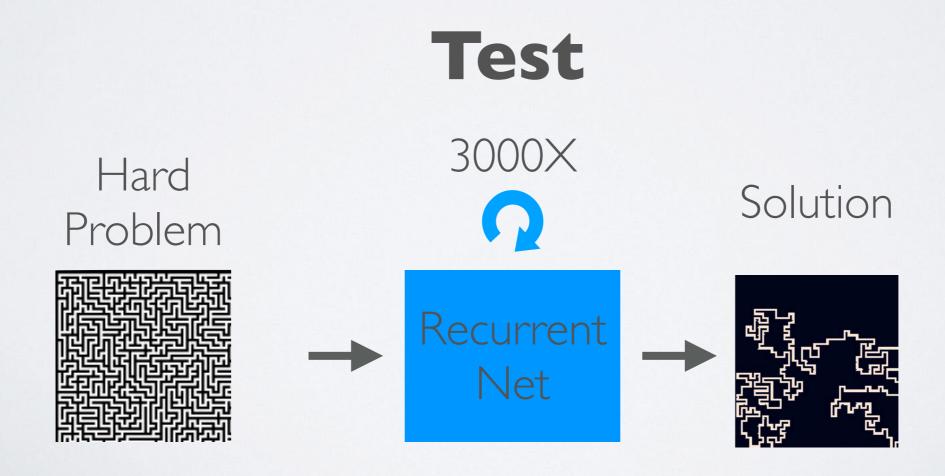


Working memory

Central executive

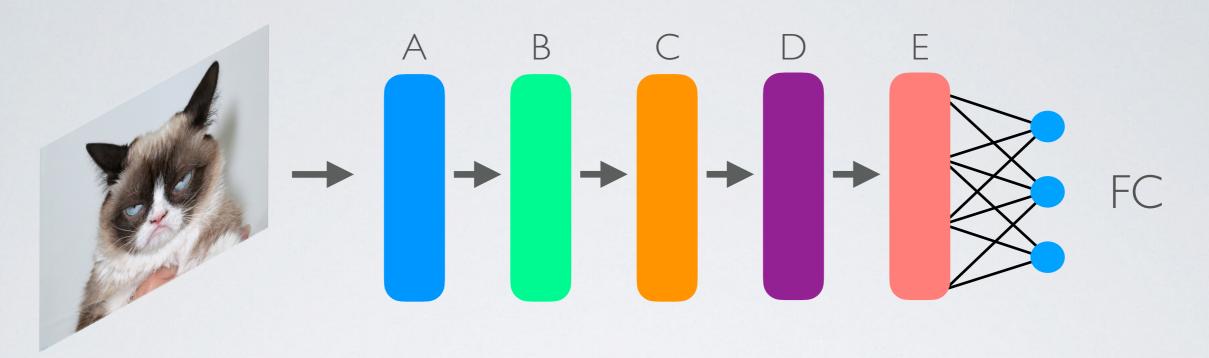
Train



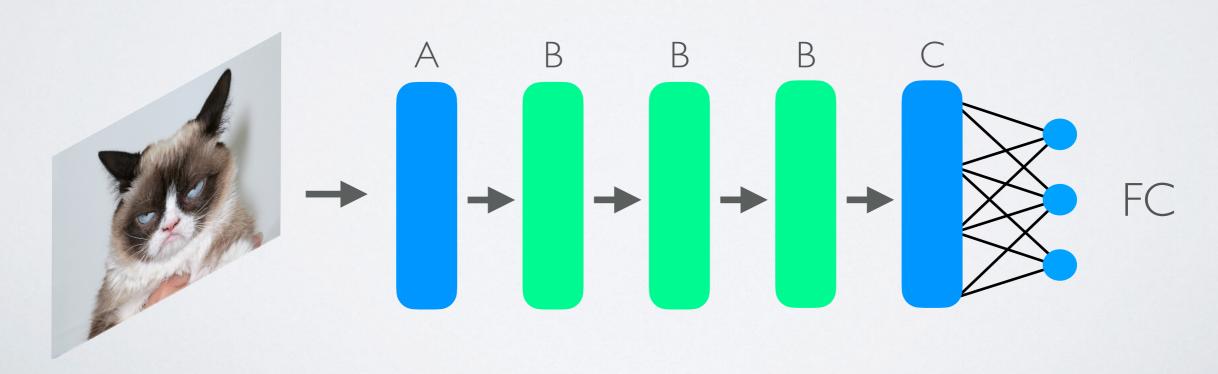


Getting started: Replace feed-forward computation with recurrence

Feedforward model



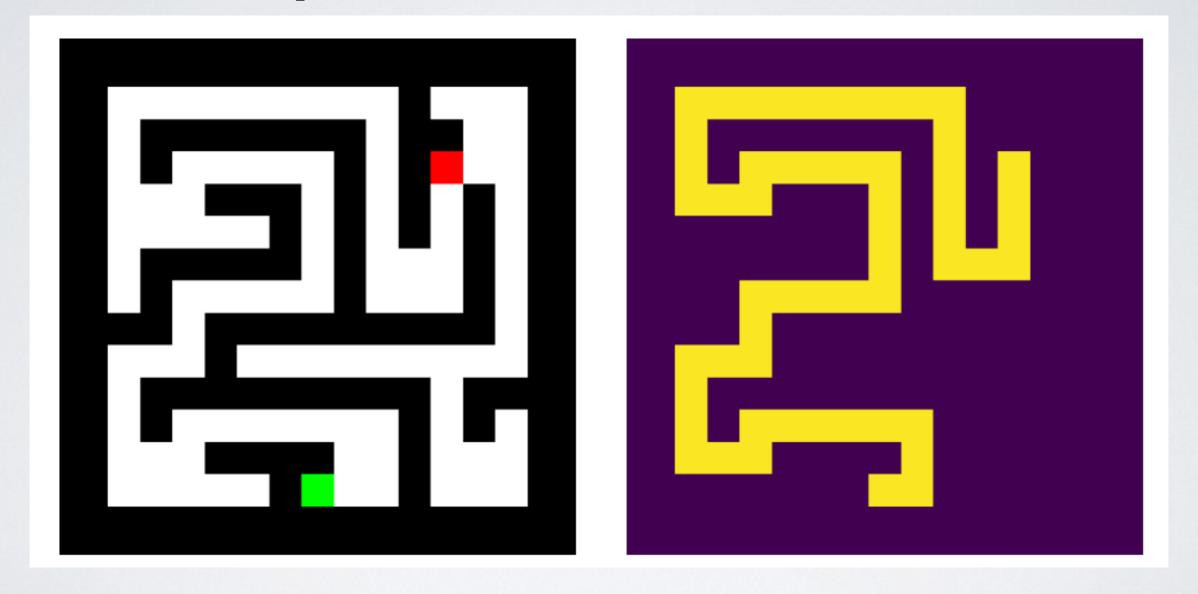
Recurrent model



Controlling the hardness of a problem

Procedurally generated mazes

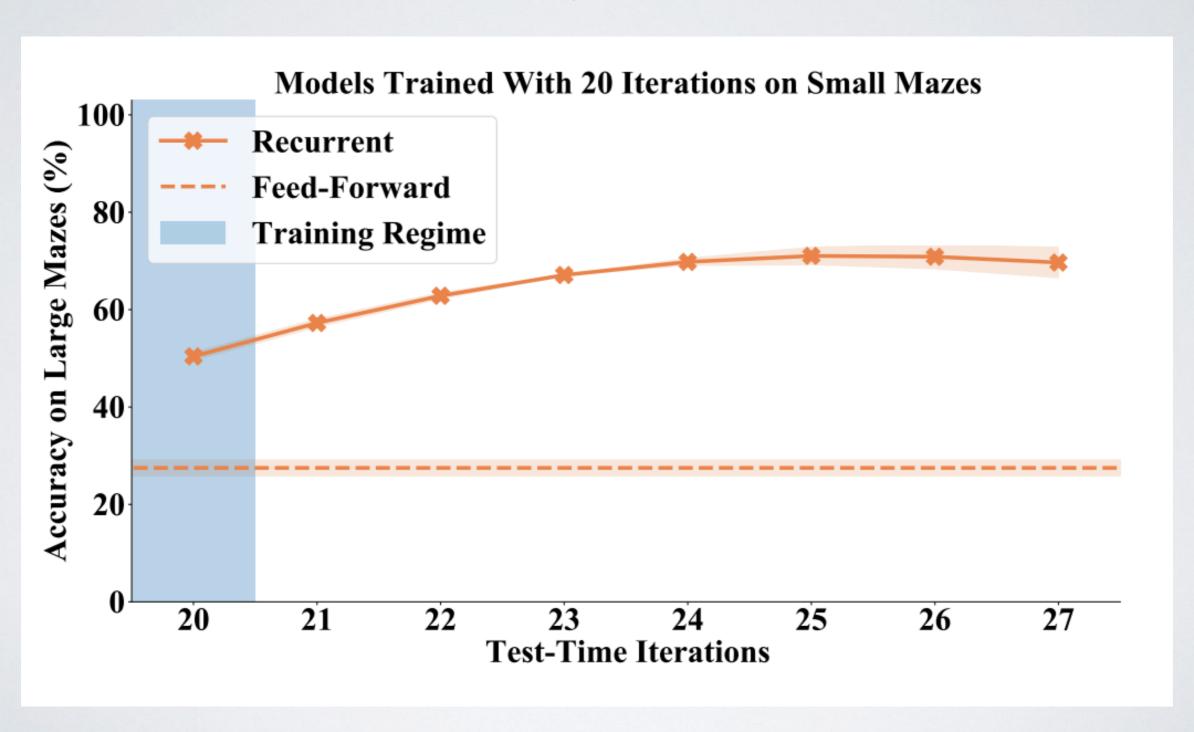
Input Label



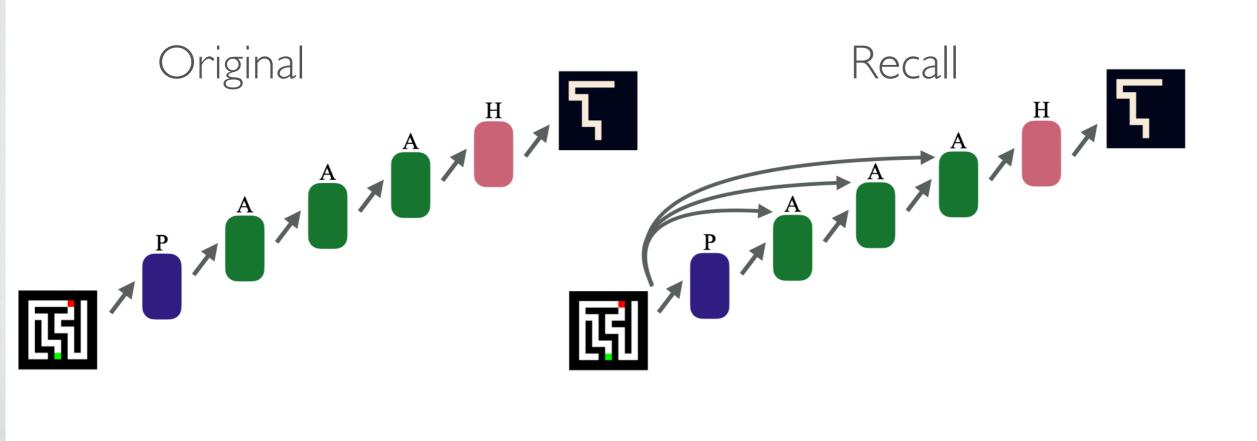
Schwarzschild et al. "Datasets for Studying Generalization from Easy to Hard Examples"

MAZES

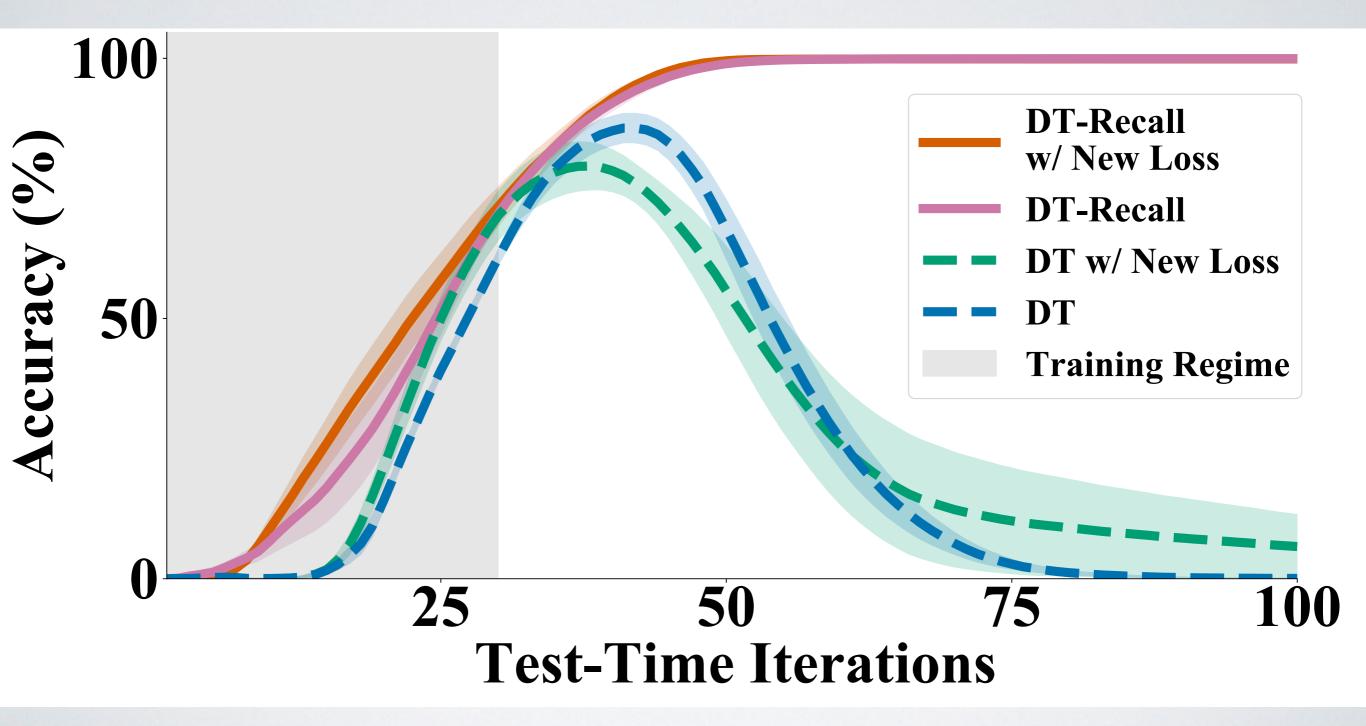
Train on 9x9, test on 13x13



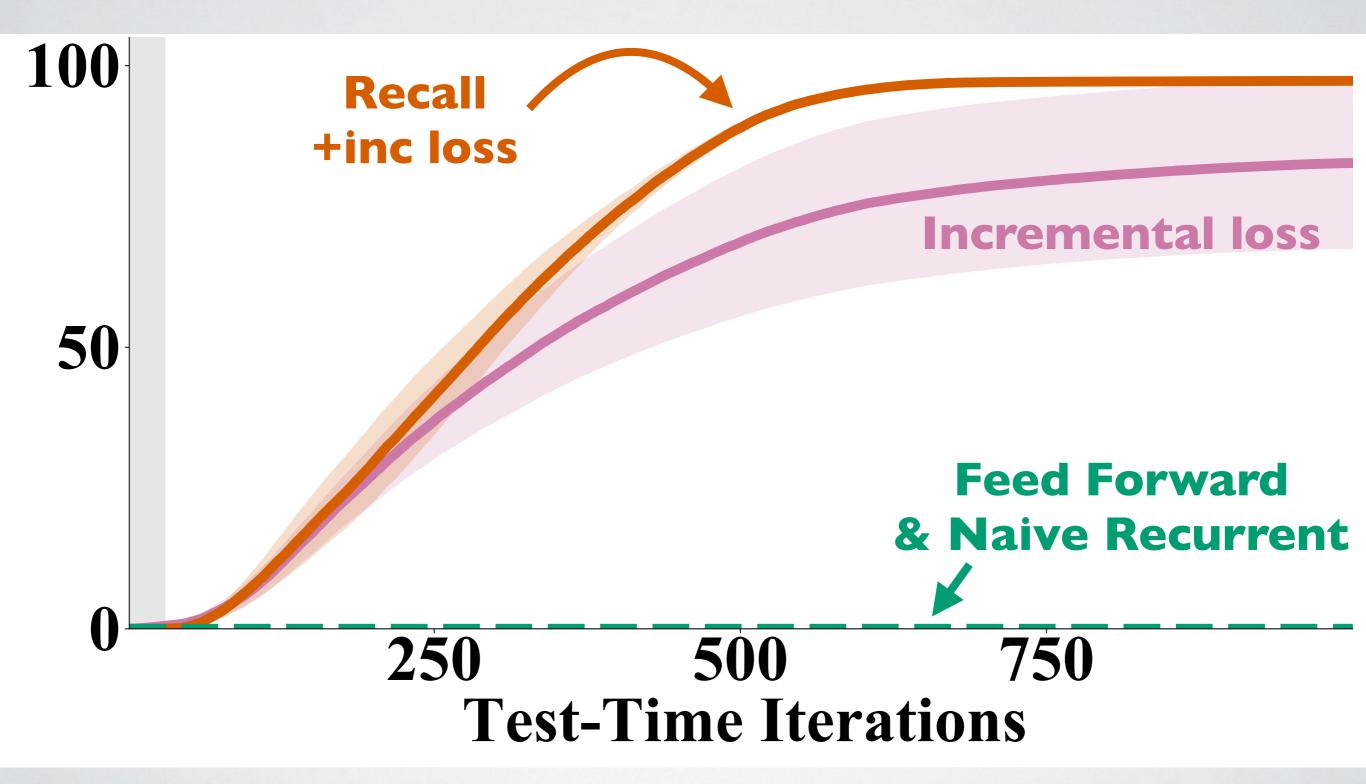
ARCHITECTURE IMPROVEMENT



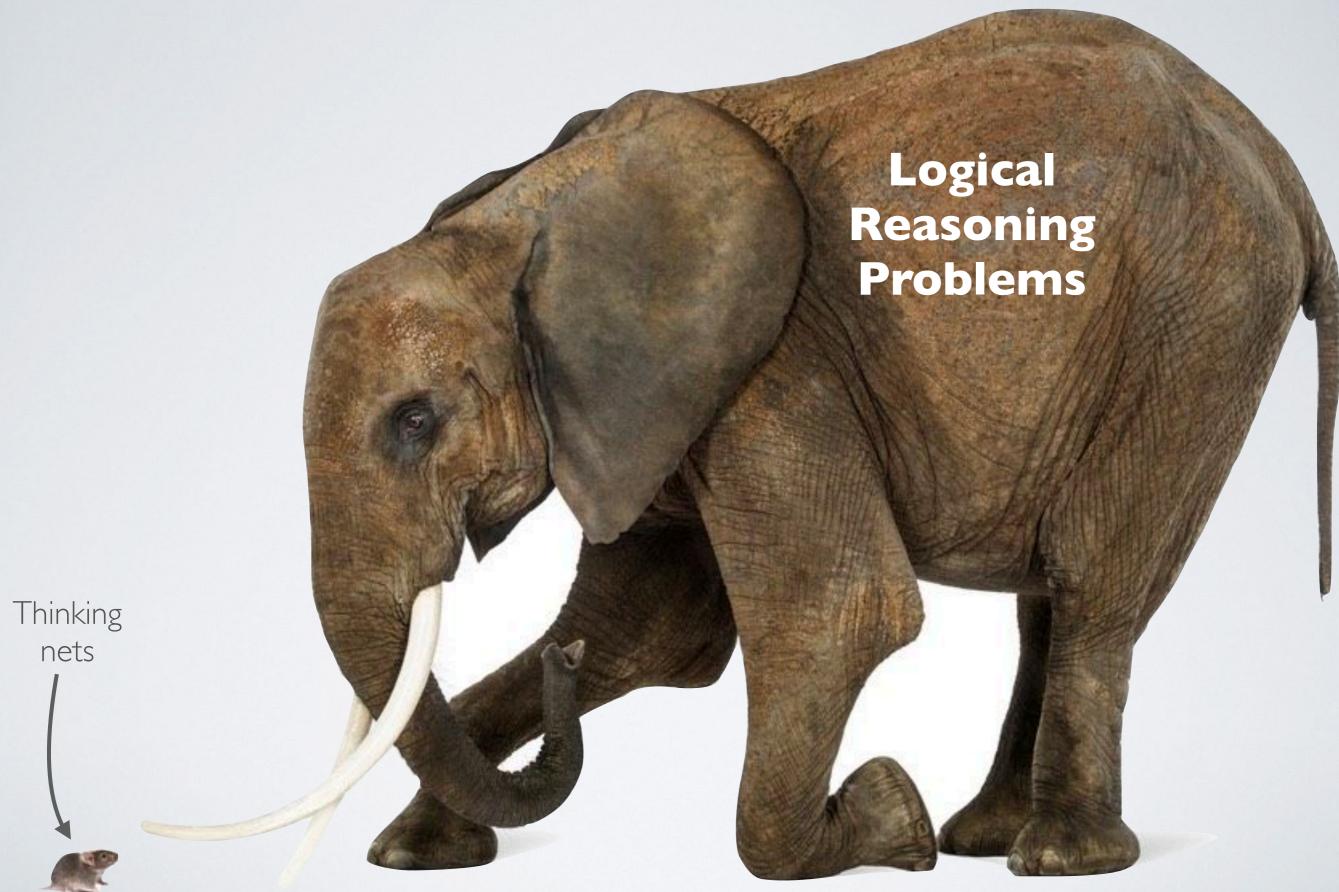
Train on $9x9 \rightarrow Test on 13x13$



Train on $9x9 \rightarrow Test on 59x59$



SCALING UP



A problem that can be solved by a simple "for" loop

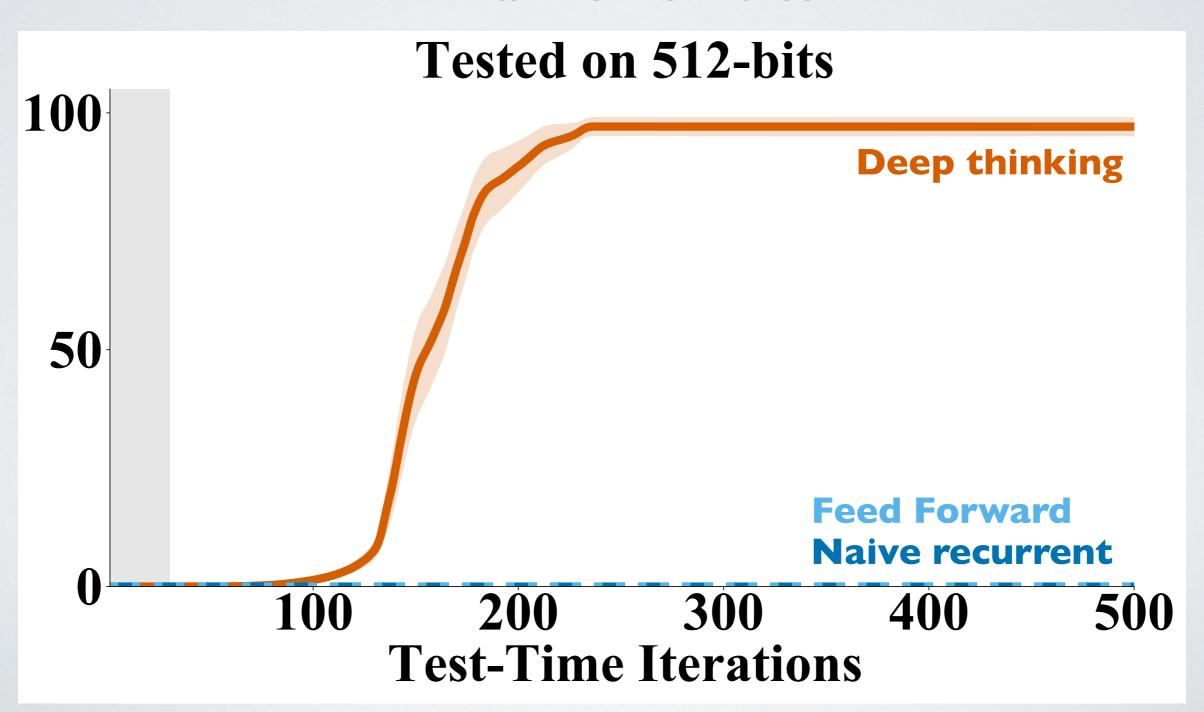
Test problem: Prefix sums

Goal: compute cumulative sum mod 2

```
\begin{array}{ll} \text{Input:} & [1,0,1,0,1,0,1,1,0,0,1,1,1,0,1,1] \\ \text{Target:} & [1,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0] \\ \text{Input:} & [1,0,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0] \\ \text{Target:} & [1,1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,1,1,1] \\ \end{array}
```

ARCHITECTURE IMPROVEMENT

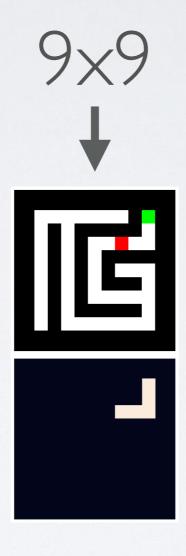
Train on 32 bits



A problem that requires branching

Train on this.

30 iterations

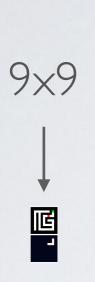


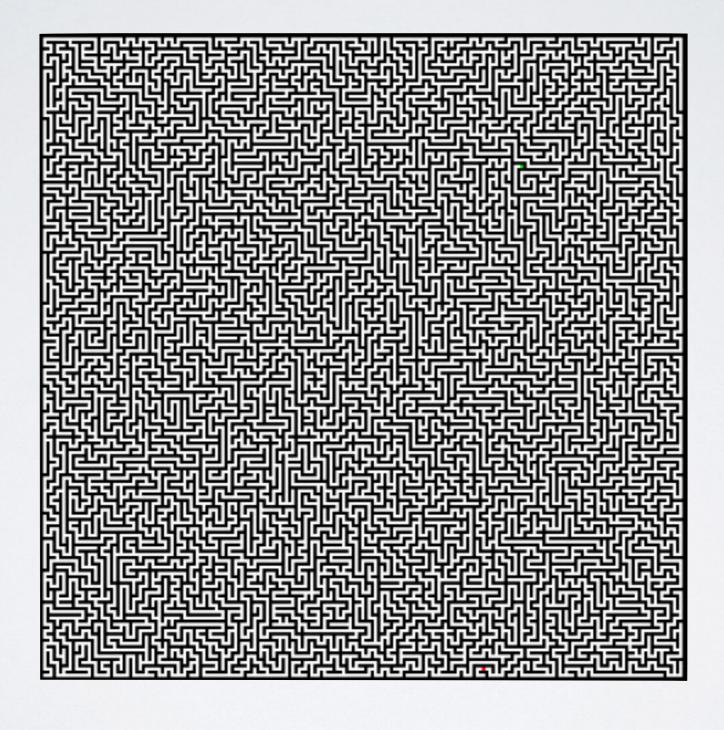
Train on 9x9

→Test on 201x201

30 iterations

2400 iterations

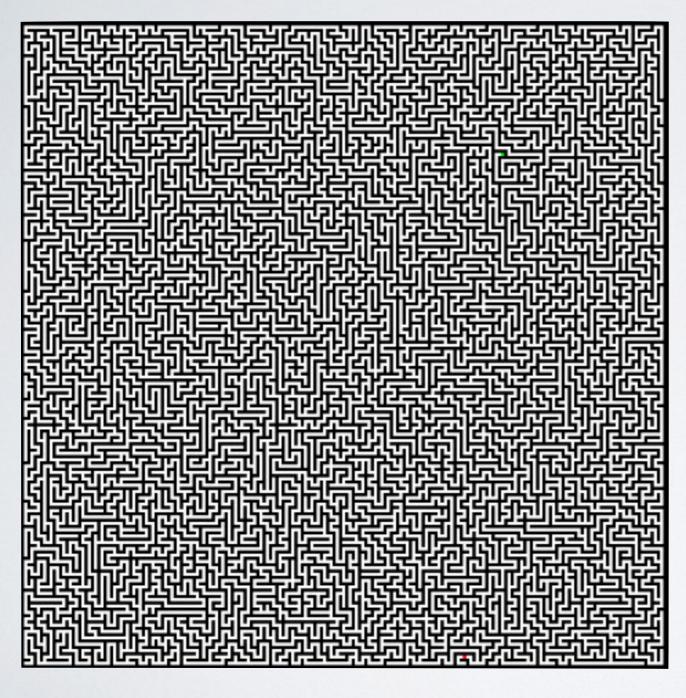


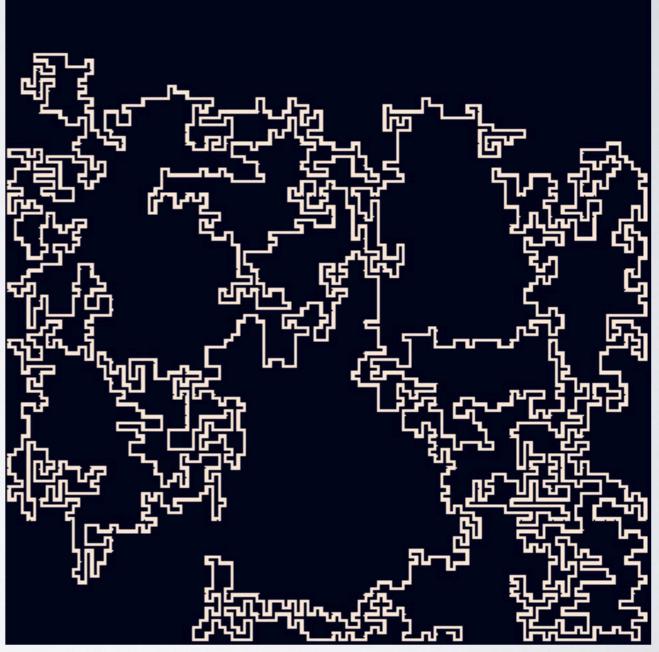


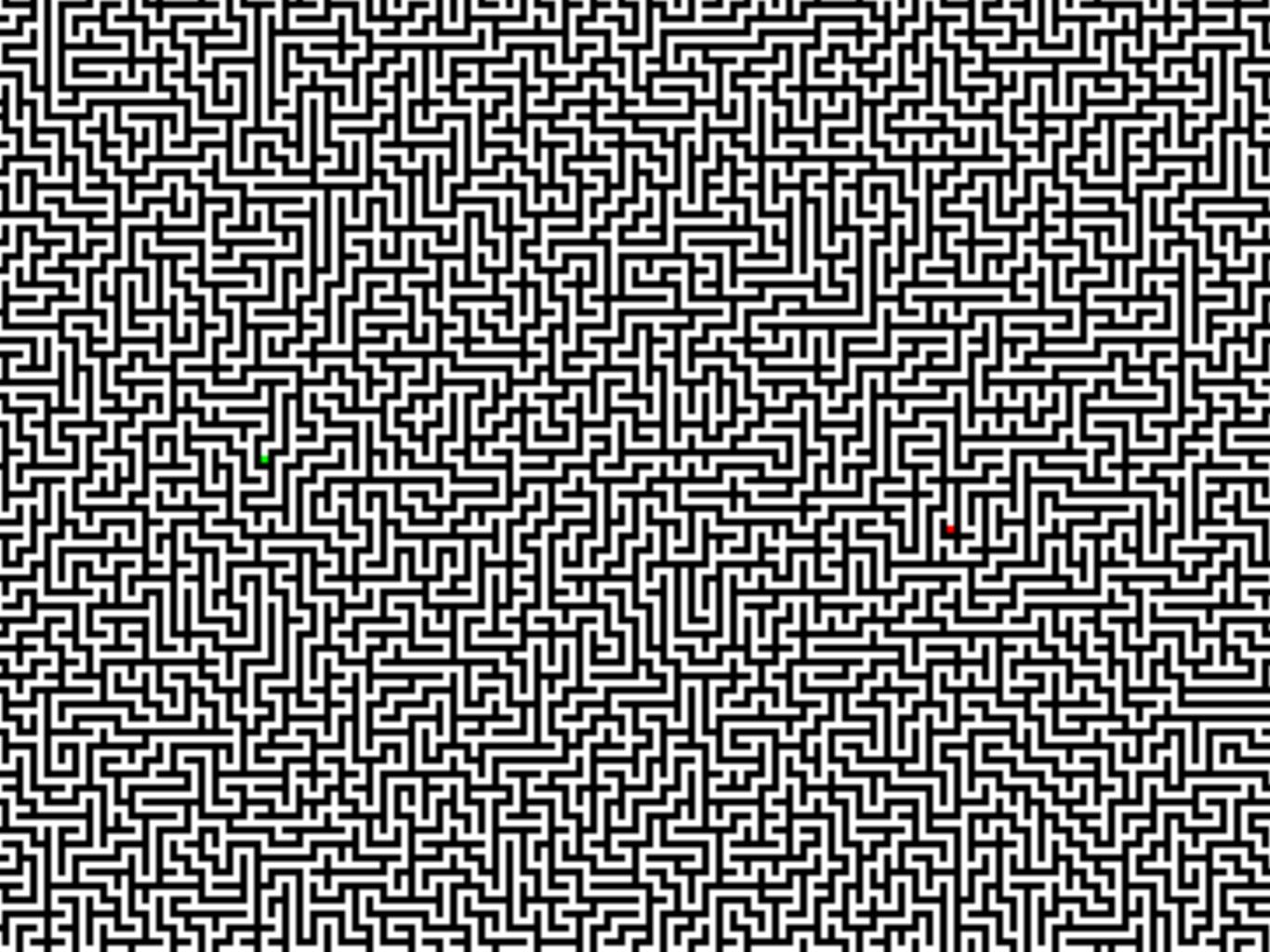
Train on $9x9 \rightarrow Test on 201x201$

30 iterations

2400 iterations







801x801



108x108

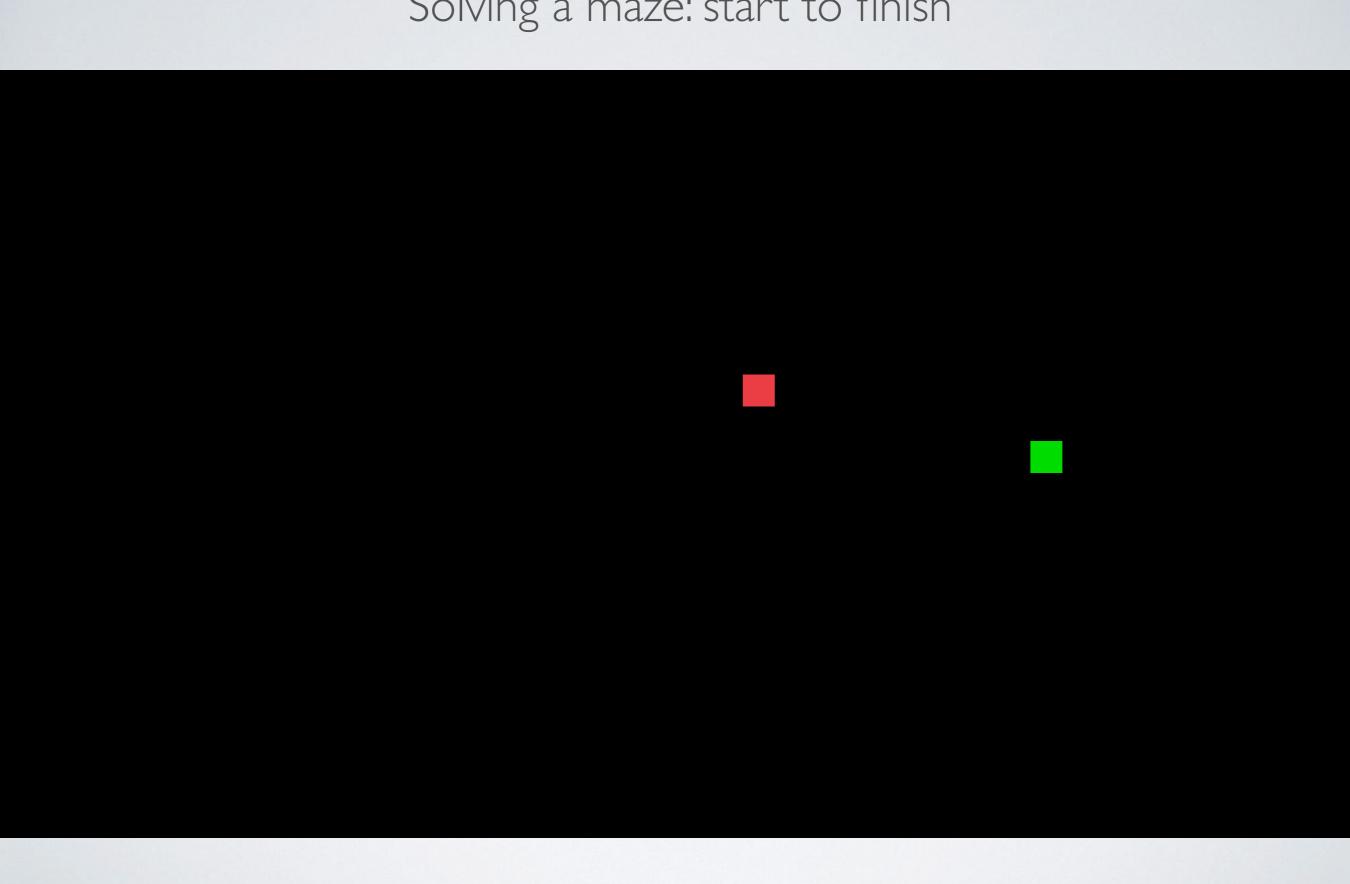
20,000 "thoughts"

100,004 layers

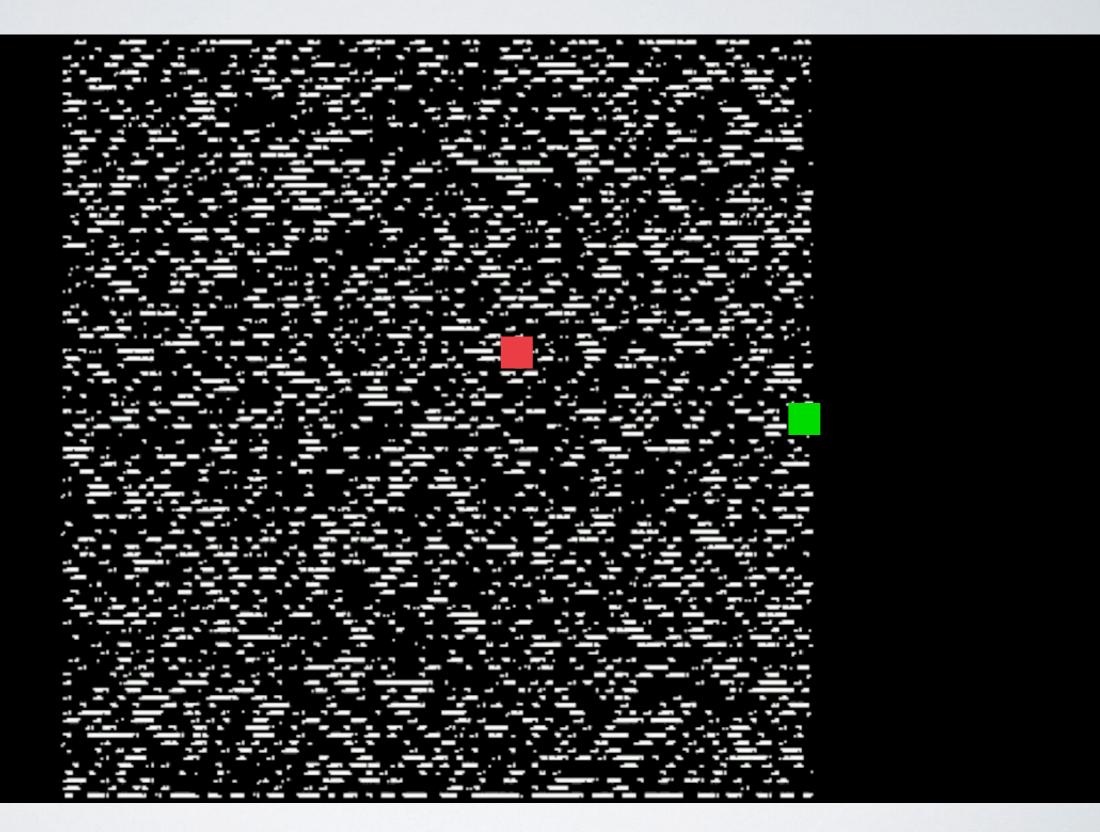
I (trivial) pixel error

Testing the **robustness** of thinking systems

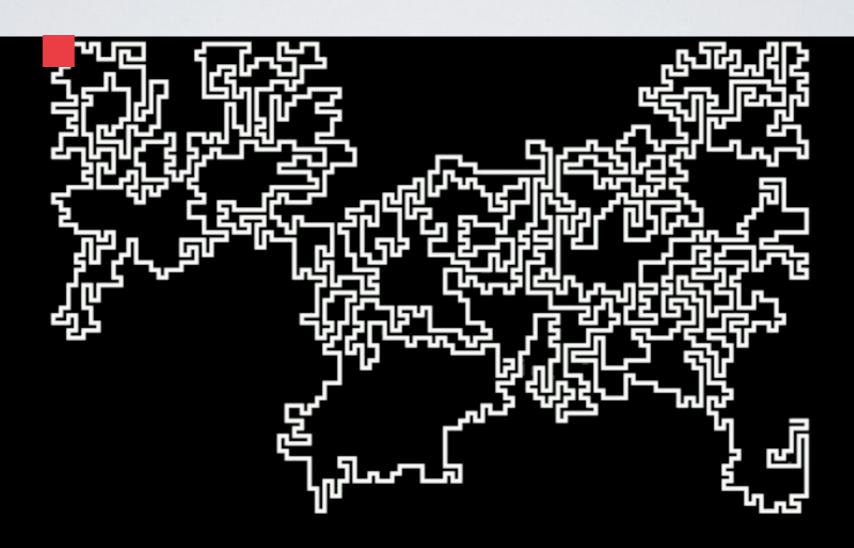
Solving a maze: start to finish



Corrupt memory with Gaussian noise



Change the maze entry and exit point



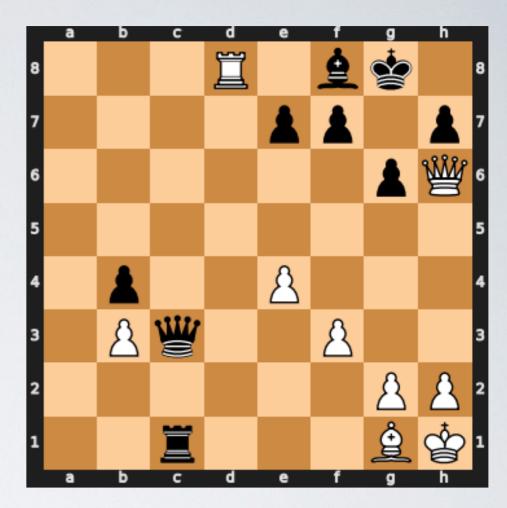
CHALLENGE PROBLEM

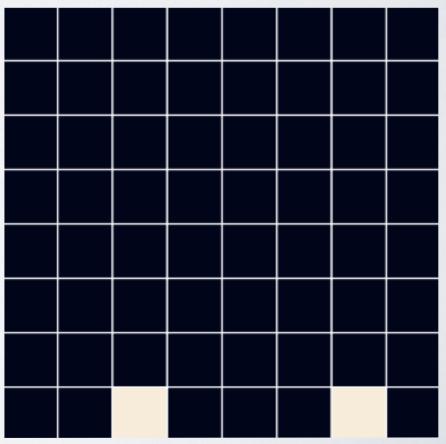
Chess

"Chess puzzles"

Game scenarios that have clear "best move".

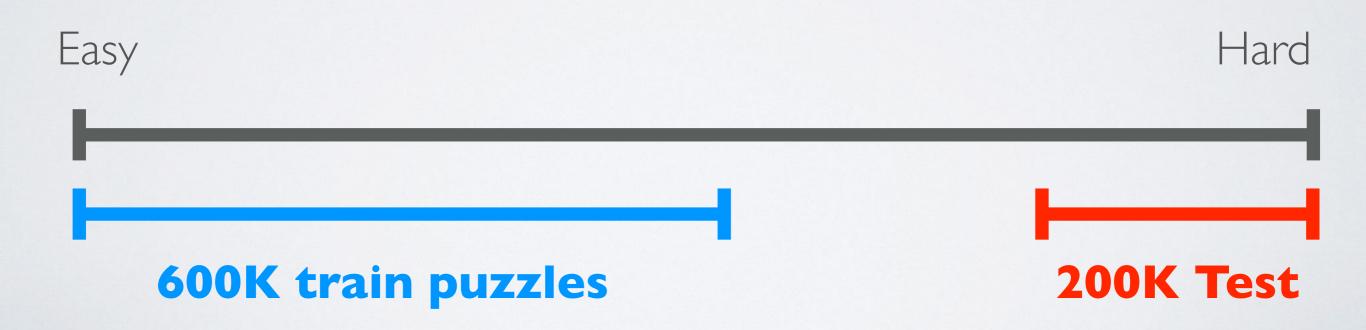
Each puzzle has an Elo rating from human play.



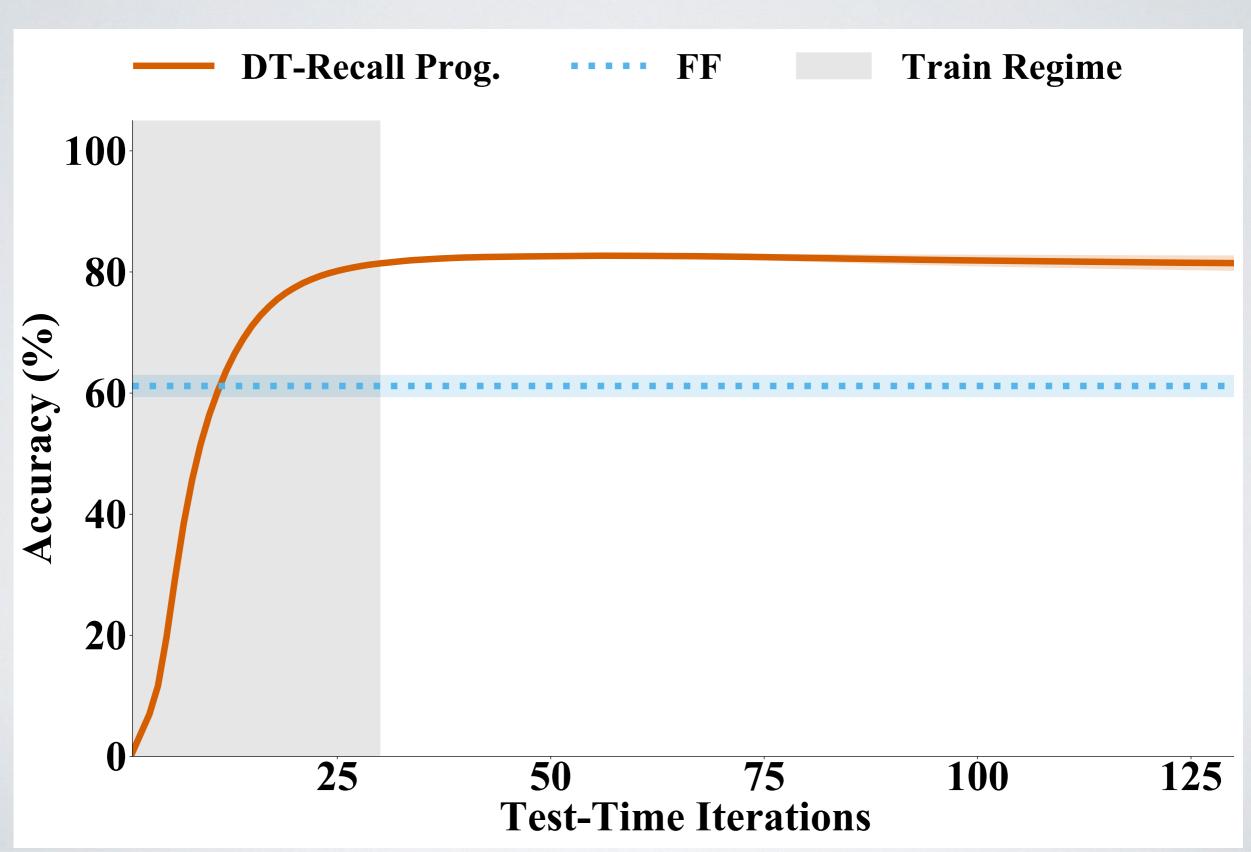


But what happens when they "think for longer?"

I million puzzles



Train on "easy", test on "hard" Chess



Some thoughts about thinking...

Thinking systems see only the problem and solution, and organically learn algorithms end-to-end.

Thinking systems generalize to "hard" problems that lie outside the training distribution.

Thinking systems can potentially replace hand-crafted algorithms in ML systems.

Thanks!