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Asymptotic behaviour. Basic facts

Cauchy initial value problem for the cubic wave equation
B2

t u ´ ∆u “ u3, t P I, x P R3,
u|t“0 “ u0 “ pu0, 9u0q (initial data).

Notation: uptq “ pupt, ¨q, Btupt, ¨qq, Hs “ 9Hs ˆ 9Hs´1.
I Ď R maximal time of existence. Blow-up occurs ðñ I Ĺ R.
Example: u “

?
2pT ˘ tq´1 for T ě 0.

E “
1
2∥uptq∥2

H1pR3q ´
1
4∥upt, ¨q∥4

L4pR3q (conserved energy).

L.W.P. for u0 P Hs with s ě 1
2 (s “ 1

2 is scaling-critical).
If ∥u0∥H1{2 is small, then I “ R and u is asymptotic to a linear
solution at t Ñ ˘8 (scattering).
Those u0 that scatter are an open set in H1{2 (scattering is stable).
(Dodson-Lawrie 2015) If ∥uptq∥H1{2 ă C for all t P I, then I “ R and u
scatters.



The new result in pictures. Future(+) times
There is a threshold function β : R Ñ R such that, letting

uX ,Y
0 pxq –

ˆ

X
1 ` |x |2

,
Y

p1 ` |x |2q2

˙

, for pX , Y q P R2,

we have the pictured behaviours for future times t ě 0:

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

Y=ß(X)

Y=-ß(-X)

Blow-up

Scattering

Blow-up

At the threshold Y “ ˘βp˘X q: non-scattering, p`q-global (r0, 8q Ď I).



The complete picture. Future(+) & past(-)
Remark 1.

?
X 2 ` Y 2 “ ∥uX ,Y

0 ∥H1{2 .
Remark 2. All our solutions are finite energy.
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Figure: 9 behaviours. Red dots: p˘q-global, non-scattering solutions.



The global, non-scattering solutions at the threshold

In this talk, we will focus on the threshold solutions only.

Let u “ uX ,Y be a threshold solution for t Ñ `8.

Inside light cone - ODE:
u “

?
2

t ` Opt´3q.

∥upt, xq ´
?

2
t 1|x |ďt∥Lp

x pR3q À t
2
p ´1,

p ą 3
2 .

Outside light cone - Scattering:
∥uptq ´ vLptq∥H1p|x |ątq Ñ 0,
where vL solves B2

t vL “ ∆vL.
Grow-up at 8 (recall Dodson–Lawrie):

∥uptq∥2
H1{2 ě C log t ` Op

?
log tq. |x |

t t “ |x |

u –
?

2
t

u – linear sol.



Comparison with known results (only for B
2
t u ´ ∆u “ u3 on R1`3)

Bizoń–Zenginoğlu’s 2009 conjecture (numerical)

The general threshold between scattering and blowup should be given by
codimension-1 global solutions u such that, (up to symmetries)

u “

?
2

t ` Opt´4q, t Ñ 8.

Donninger–Zenginoğlu 2014
There is a codimension-4 manifold of global non-scattering u such that∥∥∥∥∥u ´

?
2

t

∥∥∥∥∥
L4pQt q

“ Opt´ 1
2 `ϵq. t

2t
Qt

|x |

Remark 1. DZ solutions: not finite energy, other Initial Value Problem.
Remark 2. Our solutions: first theoretical example of global,
non-scattering solutions for Cauchy IVP (to the best of our knowledge).



Main ingredient of proof: conformal invariance
Recall. Conformal =(Lorentzian) angle-preserving.
Consider a conformal coordinate change P with factor Ω, i.e.:

pt̃, x̃q “ Ppt, xq, Ω “ |det DP|
1
4 , P : R1`3 Ñ R1`3.

Fundamental property:

Conformal change of the D’Alembert operator

pB2
t ´ ∆qu “ Ω3pB2

t̃ ´ ∆̃qpΩ´1uq.

So letting ũpt̃, x̃q :“ pΩ´1uqpt, xq, we have u3 “ Ω3ũ3 and

pB2
t ´ ∆qu “ u3 ðñ Ω3pB2

t̃ ´ ∆̃qũ “ Ω3ũ3.

This can be done with manifold-valued P : R1`3 Ñ R ˆ M3, too.
We will have M3 “ S3. Thus the D’Alembertian is B2

t̃ ´ ∆S3 ` 1.

Remark
Cubic wave equation = conformal wave equation.



The Penrose map P : R1`3 Ñ R ˆ S3

r “ |x |

t
R1`3

r̃

t̃

´π

π

π

R ˆ S3

The map pt̃, r̃q “ Ppt, rq and the definition of r̃

t̃ “ arctanpt ` rq ` arctanpt ´ rq,

r̃ “ arctanpt ` rq ´ arctanpt ´ rq.

r̃

S3



Constructing our solutions

r “ |x |

t

I

R1`3

r̃

t̃

´π

π

π

T`

T´

R ˆ S3

Recall: ũ “ Ω´1u. Ansatz: ũ “ ũpt̃q. We get an ODE:

B2
t u ´ ∆u “ u3 ðñ ũ2 ` ũ “ ũ3.

Let pT´, T`q ODE time of existence of ũ. Then u exists for t P I (picture).

Behaviour of u as t Ñ `8

T` ă π : blows-up. T` ą π : scatters. T` “ π : threshold.


