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1.1 Ehresmann connections

An Ehresmann connection on a surjective submersion p: E — M is a
smooth distribution H C TE such that

TE = H @ ker dp

For every p there always exists an Ehresmann connection H
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A connection H is complete if the horizontal lift is defined in the whole /
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1.2 The proper case

Lemma
If p: E — M admits a complete connection then it is locally trivial.

Proof.

Parallel transport along radial curves on a ball x € B C M. O
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1.2 The proper case

Lemma

If p: E — M admits a complete connection then it is locally trivial.
Proof.

Parallel transport along radial curves on a ball x € B C M. O

A continuous map p : E — M is proper if (tfae):
» Preimage of compact sets are compact (*)
» Every base-change is closed
» Map is closed and fibers are compact

Theorem [Ehresmann, 1950]

A proper submersion is locally trivial.

Proof.

If p: E — M is proper then every connection H is complete. O
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1.3 A tricky exercise

Theorem
A surjective submersion p : E — B admits a complete connection if and
only if it is locally trivial.

6/21



1.3 A tricky exercise

Theorem
A surjective submersion p : E — B admits a complete connection if and
only if it is locally trivial.

A shory history of the result:
» First appeared in [Wolf 1964] with first problematic proof
» Exercise in [Greub, Halperin, Vanstone 1972] without a proof

» Second problematic proof published in [Michor 1988, 1991, 2008]
and [Kolar, Michor, Slovak 1993] is attributed to Halperin
Complete connections are not closed under combex combinations

> Definite proof in [dH 2016]

> Generalization to Lie algebroid submersions [Frejlich 2019]
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1.4 The proof

Passing from local to global by convex combination via partition of 1
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1.5 The metric approach

A Riemannian submersion p : (E,ng) — (M, nu) is a surjective
submersion such that dp, : (ker dep)* — TpeyM is isometry Ve.

ne p-fibered

p:(E,ne) = (M,nm) Riemm. subm. <=
v = ps(ne)
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1.5 The metric approach

A Riemannian submersion p : (E,ng) — (M, nu) is a surjective
submersion such that dp, : (ker dep)* — TpeyM is isometry Ve.

ne p-fibered

p:(E,ne) = (M,nm) Riemm. subm. <=
v = ps(ne)

» Every manifold admits a complete metric: 7, = ﬁnx

» Every submersion admits a fibered metric: pick H connection and fix
nm, declare HL ker dp, set ng|q = p*nm, set 1e|ker dp arbitrary

Theorem
A surjective submersion p : E — B admits a complete and fibered metric
if and only if it is locally trivial.
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2. Riemannian stacks
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2.1 Groupoids and stacks

A Lie groupoid G = M consists of manifolds of objects M and arrows
G, submersions s, t : G — M and a multiplication with unit and inverse

m:GxyG—G6 (z&y,y& x)— (z &8 x)
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2.1 Groupoids and stacks
A Lie groupoid G = M consists of manifolds of objects M and arrows
G, submersions s, t : G — M and a multiplication with unit and inverse

m:GxyG—G6 (z&y,y& x)— (z &8 x)
> isotropy groups: G, = {x + x} are Lie groups
» orbits: O, = {y|3y < x} C M define singular foliation
» normal representation: G, ~ N,O = T,M/T,O.

A differentiable stack [M/G] is the class of a Lie groupoid modulo
morphisms inducing isomorphism on isotropy, homeomorphism on orbit
spaces and isomorphism on normal rep. [dH 2013]

Example

E— Msujsubm  ExyE=E [E/ExmE]l=M
K ~ M group action K x M= M [M/K x M] orbit space
F C TM foliation Hol(F) == M [M/Hol(F)] leaf space
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2.2 Riemannian groupoids and stacks

A Riemannian groupoid* is (G = M, n), n{) metric on G() such that
the following are Riemannian submersions [dH, Fernandes 2018]
Ust
—_—

GO Ze—=M

T t

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]
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2.2 Riemannian groupoids and stacks

A Riemannian groupoid* is (G = M, n), n{) metric on G() such that
the following are Riemannian submersions [dH, Fernandes 2018]

™
GO Ze—=M

T t

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]

A Riemannian stack is the class of Riemannian groupoid modulo
morphisms inducing isomorphism on isotropy, homeomorphism on orbit
spaces and isometry on normal rep. [dH, Fernandes 2019]

Example
» Riemannian manifolds and orbifolds [Thurston 1980]

> orbit spaces of isometric actions [Alekseevsky, Michor et al 2003]

> leaf spaces of Riem. foliations* [Alexandrino, Briquet, Toben 2013]
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2.3 Curves on Riemannian stacks

A stacky curve o : | — [M/G] is given by a cocycle of curves

(I=1) H/nﬂm/:;]_[l)ua" (G= M)

The speed ||c/(t)|| at a time t € [ is the norm of the normal component
of the velocity ||a},(t)||n
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2.3 Curves on Riemannian stacks

A stacky curve o : | — [M/G] is given by a cocycle of curves

(I=1) Hln+1m/:;]_[l)ua" (G= M)

The speed ||c/(t)|| at a time t € [ is the norm of the normal component
of the velocity ||a},(t)||n

Proposition

The speed ||&/(t)|| is continuous (but not smooth!)
We can integrate the speed to measure lengths of curves.

Theorem (dH, de Melo 2020)
Given (G =% M, n) Riemannian gpd and dy induced distance in M /G,

([, ]) = inf { 1l @l s a1 W76, a(0) = 4, a(1) = [y]}
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2.4 Geodesics on Riemannian stacks

A stacky geodesic «: | — [M/G] is a stacky curve that can be
presented by a cocycle of geodesics normal to the orbits a,

=1 ([t =TT 22 (6 = m)
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2.4 Geodesics on Riemannian stacks

A stacky geodesic «: | — [M/G] is a stacky curve that can be
presented by a cocycle of geodesics normal to the orbits a,

(I=1) HInHm/:Hl)Ua” (G= M)

> Local existence and local uniqueness hold easily

» Global uniqueness only if groupoid is proper
Counter-example: R?\ {0} — R

» Minimizing geodesics stay in a same stratum: G, (¢) = Gas,) Vto, t1

Theorem (dH, de Melo 2020)

A stacky curve a : | — [M/G] is a geodesic if and only if it is locally
minimizing at every t € |

13/21



2.5 Completeness of stacky metrics

A Riemannian stack [M/G] is geodesically complete if geodesics can
be extended to the whole real line.
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2.5 Completeness of stacky metrics

A Riemannian stack [M/G] is geodesically complete if geodesics can
be extended to the whole real line.

Theorem (dH, de Melo 2020)

A separated Riemannian stack [M/G] is geodesically complete if and
only if the normal distance dy makes M/G a complete metric space.

Corollary: Every stack [M/G] admits a complete stacky metric

Every Lie groupoid G = M admits a groupoid metric
but not every Lie groupoid admits a complete groupoid metric!
Mistake in [Pflaum, Posthuma, Tang 2014]

M

G=M) = |
[M/G]
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3. Invariant linearization
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3.1 Linearization of groupoids

Given G =% M a Lie groupoid and S C M invariant submanifold, there is
a linear model for G around S:

0— (TGs == TS) — (TGle, = TM|s) — (NGs = NS) — 0
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3.1 Linearization of groupoids

Given G =% M a Lie groupoid and S C M invariant submanifold, there is
a linear model for G around S:

0— (TGs == TS) — (TGle, = TM|s) — (NGs = NS) — 0

G = M is linearizable around S if there are opens nbhds U, V of S s.t.

(G = M)|u = (NGs = NS)|v

Theorem (dH, Fernandes 2018)

A proper groupoid is linearizable by exponential flows of groupoid metric.

» Simpler proof and stronger version of Linearization Theorem
[Weinstein 2001], [Zung 2004], [Crainic, Struchiner 2011]

» Generalizes Ehresmann Thm for submersions, Tube Thm for actions,
Reeb stability for foliations.
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3.2 The open problem

A linearization is invariant if we can take U, V invariant opens (stability)

(G = M)|y = (NGs = NS)|v
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3.2 The open problem

A linearization is invariant if we can take U, V invariant opens (stability)

(G = M)|y = (NGs = NS)|v

Example

Proper actions of Lie groups K ~ M (or their corresponding groupoids)
can are invariantly linearizable. It doesn't follows from groupoid result!

Question [Crainic, Struchiner 2011]
When a proper groupoid G = M is invariantly linearizable?

Conjecture [Crainic, Struchiner 2011]

When the source map s : G — M is trivial on an invariant nbh.
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3.3 A counter-example [dH, de Melo 2021]

!
Rw\“v@@
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0

based on [Meigniez 1995, 2002] and [Weinstein 2002]

(G = M) =(E xg E = E) x (SU(2) = )
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3.4 Sufficient condition

p: E — M Riemannian submersion, S ¢ M, S’ = p~1(S). Then:

> exp |y étale = exp |y étale (< if dp(U’) = U)
> exp |y injective = exp |y injective (<= if nE complete and
U = dp ()
NS' > U ——E
[
M

NSDU*>
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U = dp ()
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Theorem (dH, de Melo 2021)
If (G = M,n) is a proper Riemannian groupoid and n© js complete then
it is invariantly linearizable.
» Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]
» It includes the linearization of group actions as a particular case!
» Similar results for SRF appeared in [Mendes, Radeschi 2019] and
[Alexandrino, Inagaki, de Melo, Struchiner 2022]
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3.5 About necessity

Theorem (dH, de Melo 2021)

Let G = M be a proper groupoid that is invariantly linearizable around
its orbits. Then it admits a complete 0-metric n® on G = M.

» Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]
» The 0-metric n(® may a priori not extend to a groupoid metric 7!

» They do extend (and give a complete characterization of invariant
linearization) for regular groupoids.
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Obrigado!
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