Completeness and linearization

Matias del Hoyo (UFF)

Geometria em Lisboa Seminar IST-Lisboa, November 2022

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents

1. Complete connections

2. Riemannian stacks

3. Invariant linearization

1. Complete connections

1.1 Ehresmann connections

An **Ehresmann connection** on a surjective submersion $p: E \rightarrow M$ is a smooth distribution $H \subset TE$ such that

 $TE = H \oplus \ker dp$

For every p there always exists an Ehresmann connection H

1.1 Ehresmann connections

An **Ehresmann connection** on a surjective submersion $p: E \rightarrow M$ is a smooth distribution $H \subset TE$ such that

 $TE = H \oplus \ker dp$

For every p there always exists an Ehresmann connection H

Fixed *H*, given $t_0 \in I \subset \mathbb{R}$, $\gamma : I \to M$ a curve and $e_0 \in E$ such that $p(e) = \gamma(t_0)$, there exists a locally defined **horizontal lift**

$$\tilde{\gamma}: J \to E, \ \tilde{\gamma}(t_0) = e_0, \ p \tilde{\gamma} = \gamma, \ \tilde{\gamma}'(t) \in H$$

イロン イロン イヨン イヨン 二日

4 / 21

1.1 Ehresmann connections

An **Ehresmann connection** on a surjective submersion $p: E \rightarrow M$ is a smooth distribution $H \subset TE$ such that

 $TE = H \oplus \ker dp$

For every p there always exists an Ehresmann connection H

Fixed *H*, given $t_0 \in I \subset \mathbb{R}$, $\gamma : I \to M$ a curve and $e_0 \in E$ such that $p(e) = \gamma(t_0)$, there exists a locally defined **horizontal lift**

$$\tilde{\gamma}: J \to E, \ \tilde{\gamma}(t_0) = e_0, \ p\tilde{\gamma} = \gamma, \ \tilde{\gamma}'(t) \in H$$

$$\begin{array}{c} * \stackrel{e_0}{\longrightarrow} E \\ t_0 \bigvee \stackrel{\tilde{\gamma} \checkmark }{\longrightarrow} M \\ I \stackrel{\tilde{\gamma} \checkmark }{\longrightarrow} M \end{array}$$

A connection *H* is **complete** if the horizontal lift is defined in the whole *I*

1.2 The proper case

Lemma

If $p: E \to M$ admits a complete connection then it is locally trivial.

Proof.

Parallel transport along radial curves on a ball $x \in B \subset M$.

1.2 The proper case

Lemma

If $p: E \to M$ admits a complete connection then it is locally trivial.

Proof.

Parallel transport along radial curves on a ball $x \in B \subset M$.

A continuous map $p: E \to M$ is **proper** if (tfae):

- Preimage of compact sets are compact (*)
- Every base-change is closed
- Map is closed and fibers are compact

1.2 The proper case

Lemma

If $p: E \to M$ admits a complete connection then it is locally trivial.

Proof.

Parallel transport along radial curves on a ball $x \in B \subset M$.

A continuous map $p: E \to M$ is **proper** if (tfae):

Preimage of compact sets are compact (*)

- Every base-change is closed
- Map is closed and fibers are compact

Theorem [Ehresmann, 1950]

A proper submersion is locally trivial.

Proof.

If $p: E \to M$ is **proper** then every connection H is complete.

イロト イヨト イヨト イヨト 三日

1.3 A tricky exercise

Theorem

A surjective submersion $p:E\to B$ admits a complete connection if and only if it is locally trivial.

1.3 A tricky exercise

Theorem

A surjective submersion $p: E \rightarrow B$ admits a complete connection if and only if it is locally trivial.

A shory history of the result:

- First appeared in [Wolf 1964] with first problematic proof
- Exercise in [Greub, Halperin, Vanstone 1972] without a proof
- Second problematic proof published in [Michor 1988, 1991, 2008] and [Kolar, Michor, Slovak 1993] is attributed to Halperin Complete connections are not closed under combex combinations
- Definite proof in [dH 2016]
- Generalization to Lie algebroid submersions [Frejlich 2019]

1.4 The proof

Passing from local to global by convex combination via partition of 1

1.5 The metric approach

A Riemannian submersion $p : (E, \eta_E) \to (M, \eta_M)$ is a surjective submersion such that $dp_e : (\ker d_e p)^{\perp} \to T_{p(e)}M$ is isometry $\forall e$.

 $p: (E, \eta_E) \to (M, \eta_M)$ Riemm. subm. $\iff \begin{cases} \eta_E \ p \text{-fibered} \\ \eta_M = p_*(\eta_E) \end{cases}$

1.5 The metric approach

A Riemannian submersion $p : (E, \eta_E) \to (M, \eta_M)$ is a surjective submersion such that $dp_e : (\ker d_e p)^{\perp} \to T_{p(e)}M$ is isometry $\forall e$.

$$p: (E, \eta_E) o (M, \eta_M)$$
 Riemm. subm. $\iff \begin{cases} \eta_E \ p ext{-fibered} \\ \eta_M = p_*(\eta_E) \end{cases}$

• Every manifold admits a complete metric: $\tilde{\eta}_x = \frac{1}{d(x,\infty)}\eta_x$

Every submersion admits a fibered metric: pick H connection and fix η_M , declare $H \perp \ker dp$, set $\eta_E|_H = p^* \eta_M$, set $\eta_E|_{\ker dp}$ arbitrary

1.5 The metric approach

A Riemannian submersion $p : (E, \eta_E) \to (M, \eta_M)$ is a surjective submersion such that $dp_e : (\ker d_e p)^{\perp} \to T_{p(e)}M$ is isometry $\forall e$.

$$p: (E, \eta_E) o (M, \eta_M)$$
 Riemm. subm. $\iff \begin{cases} \eta_E \ p ext{-fibered} \\ \eta_M = p_*(\eta_E) \end{cases}$

• Every manifold admits a complete metric: $\tilde{\eta}_x = \frac{1}{d(x,\infty)}\eta_x$

► Every submersion admits a fibered metric: pick *H* connection and fix η_M , declare $H \perp \ker dp$, set $\eta_E|_H = p^* \eta_M$, set $\eta_E|_{\ker dp}$ arbitrary

Theorem

A surjective submersion $p: E \rightarrow B$ admits a complete and fibered metric if and only if it is locally trivial.

2. Riemannian stacks

A **Lie groupoid** $G \rightrightarrows M$ consists of manifolds of objects M and arrows G, submersions $s, t : G \rightarrow M$ and a **multiplication** with unit and inverse

$$m: G \times_M G \to G \quad (z \xleftarrow{g_2} y, y \xleftarrow{g_1} x) \mapsto (z \xleftarrow{g_2g_1} x)$$

A **Lie groupoid** $G \rightrightarrows M$ consists of manifolds of objects M and arrows G, submersions $s, t : G \rightarrow M$ and a **multiplication** with unit and inverse

$$m: G \times_M G \to G \quad (z \xleftarrow{g_2} y, y \xleftarrow{g_1} x) \mapsto (z \xleftarrow{g_2g_1} x)$$

▶ isotropy groups: $G_x = \{x \leftarrow x\}$ are Lie groups

- orbits: $O_x = \{y | \exists y \leftarrow x\} \subset M$ define singular foliation
- normal representation: $G_x \cap N_x O = T_x M / T_x O$.

A **Lie groupoid** $G \rightrightarrows M$ consists of manifolds of objects M and arrows G, submersions $s, t : G \rightarrow M$ and a **multiplication** with unit and inverse

$$m: G \times_M G \to G \quad (z \xleftarrow{g_2} y, y \xleftarrow{g_1} x) \mapsto (z \xleftarrow{g_2g_1} x)$$

▶ isotropy groups: $G_x = \{x \leftarrow x\}$ are Lie groups

- orbits: $O_x = \{y | \exists y \leftarrow x\} \subset M$ define singular foliation
- normal representation: $G_x \cap N_x O = T_x M / T_x O$.

A differentiable stack [M/G] is the class of a Lie groupoid modulo morphisms inducing isomorphism on isotropy, homeomorphism on orbit spaces and isomorphism on normal rep. [dH 2013]

A **Lie groupoid** $G \rightrightarrows M$ consists of manifolds of objects M and arrows G, submersions $s, t : G \rightarrow M$ and a **multiplication** with unit and inverse

$$m: G \times_M G \to G \quad (z \xleftarrow{g_2} y, y \xleftarrow{g_1} x) \mapsto (z \xleftarrow{g_2g_1} x)$$

▶ isotropy groups: $G_x = \{x \leftarrow x\}$ are Lie groups

- orbits: $O_x = \{y | \exists y \leftarrow x\} \subset M$ define singular foliation
- normal representation: $G_x \cap N_x O = T_x M / T_x O$.

A differentiable stack [M/G] is the class of a Lie groupoid modulo morphisms inducing isomorphism on isotropy, homeomorphism on orbit spaces and isomorphism on normal rep. [dH 2013]

Example

E ightarrow M surj subm	$E \times_M E \rightrightarrows E$	$[E/E \times_M E] = M$
$K \curvearrowright M$ group action	$K \times M \rightrightarrows M$	$[M/K \times M]$ orbit space
$F \subset TM$ foliation	Hol(F) ightarrow M	[<i>M</i> / <i>Hol</i> (<i>F</i>)] leaf space

2.2 Riemannian groupoids and stacks

A **Riemannian groupoid**^{*} is $(G \Rightarrow M, \eta)$, $\eta^{(i)}$ metric on $G^{(i)}$ such that the following are Riemannian submersions [dH, Fernandes 2018]

$$G^{(2)} \xrightarrow[\pi_2]{\pi_1} G \xrightarrow[t]{s} M$$

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]

2.2 Riemannian groupoids and stacks

A **Riemannian groupoid**^{*} is $(G \Rightarrow M, \eta)$, $\eta^{(i)}$ metric on $G^{(i)}$ such that the following are Riemannian submersions [dH, Fernandes 2018]

$$G^{(2)} \xrightarrow[\pi_2]{\pi_1} G \xrightarrow[\pi_2]{s} M$$

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]

A **Riemannian stack** is the class of Riemannian groupoid modulo morphisms inducing isomorphism on isotropy, homeomorphism on orbit spaces and isometry on normal rep. [dH, Fernandes 2019]

2.2 Riemannian groupoids and stacks

A **Riemannian groupoid**^{*} is $(G \Rightarrow M, \eta)$, $\eta^{(i)}$ metric on $G^{(i)}$ such that the following are Riemannian submersions [dH, Fernandes 2018]

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]

A **Riemannian stack** is the class of Riemannian groupoid modulo morphisms inducing isomorphism on isotropy, homeomorphism on orbit spaces and isometry on normal rep. [dH, Fernandes 2019]

Example

- Riemannian manifolds and orbifolds [Thurston 1980]
- orbit spaces of isometric actions [Alekseevsky, Michor et al 2003]
- ▶ leaf spaces of Riem. foliations* [Alexandrino, Briquet, Toben 2013]

2.3 Curves on Riemannian stacks

A stacky curve $\alpha : I \rightarrow [M/G]$ is given by a *cocycle* of curves

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

The **speed** $||\alpha'(t)||$ at a time $t \in I$ is the norm of the normal component of the velocity $||a'_n(t)||_N$

2.3 Curves on Riemannian stacks

A stacky curve $\alpha : I \rightarrow [M/G]$ is given by a *cocycle* of curves

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

The **speed** $||\alpha'(t)||$ at a time $t \in I$ is the norm of the normal component of the velocity $||a'_n(t)||_N$

Proposition

The speed $||\alpha'(t)||$ is continuous (but not smooth!) We can integrate the speed to measure lengths of curves.

2.3 Curves on Riemannian stacks

A stacky curve $\alpha : I \rightarrow [M/G]$ is given by a *cocycle* of curves

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

The **speed** $||\alpha'(t)||$ at a time $t \in I$ is the norm of the normal component of the velocity $||a'_n(t)||_N$

Proposition

The speed $||\alpha'(t)||$ is continuous (but not smooth!) We can integrate the speed to measure lengths of curves.

Theorem (dH, de Melo 2020)

Given $(G
ightarrow M, \eta)$ Riemannian gpd and d_N induced distance in M/G,

$$d_N([x],[y]) = \inf\left\{\int_I ||\alpha'(t)||dt: \ \alpha: I \to [M/G], \ \alpha(0) = [x], \ \alpha(1) = [y]\right\}$$

2.4 Geodesics on Riemannian stacks

A stacky geodesic $\alpha : I \rightarrow [M/G]$ is a stacky curve that can be presented by a *cocycle* of geodesics normal to the orbits a_n

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

2.4 Geodesics on Riemannian stacks

A stacky geodesic $\alpha : I \to [M/G]$ is a stacky curve that can be presented by a *cocycle* of geodesics normal to the orbits a_n

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

Local existence and local uniqueness hold easily

 Global uniqueness only if groupoid is proper Counter-example: ℝ² \ {0} → ℝ

• Minimizing geodesics stay in a same stratum: $G_{\alpha(t_0)} \cong G_{\alpha(t_1)} \forall t_0, t_1$

2.4 Geodesics on Riemannian stacks

A stacky geodesic $\alpha : I \to [M/G]$ is a stacky curve that can be presented by a *cocycle* of geodesics normal to the orbits a_n

$$(I \rightrightarrows I) \leftarrow (\coprod I_{n+1} \cap I_n \rightrightarrows \coprod I_n) \xrightarrow{\coprod a_n} (G \rightrightarrows M)$$

Local existence and local uniqueness hold easily

 Global uniqueness only if groupoid is proper Counter-example: ℝ² \ {0} → ℝ

• Minimizing geodesics stay in a same stratum: $G_{\alpha(t_0)} \cong G_{\alpha(t_1)} \forall t_0, t_1$

Theorem (dH, de Melo 2020)

A stacky curve $\alpha : I \to [M/G]$ is a geodesic if and only if it is locally minimizing at every $t \in I$

2.5 Completeness of stacky metrics

A Riemannian stack [M/G] is **geodesically complete** if geodesics can be extended to the whole real line.

2.5 Completeness of stacky metrics

A Riemannian stack [M/G] is **geodesically complete** if geodesics can be extended to the whole real line.

Theorem (dH, de Melo 2020)

A separated Riemannian stack [M/G] is geodesically complete if and only if the normal distance d_N makes M/G a complete metric space.

Corollary: Every stack [M/G] admits a complete stacky metric

2.5 Completeness of stacky metrics

A Riemannian stack [M/G] is **geodesically complete** if geodesics can be extended to the whole real line.

Theorem (dH, de Melo 2020)

A separated Riemannian stack [M/G] is geodesically complete if and only if the normal distance d_N makes M/G a complete metric space.

Corollary: Every stack [M/G] admits a complete stacky metric

Every Lie groupoid $G \rightrightarrows M$ admits a groupoid metric but not every Lie groupoid admits a complete groupoid metric! Mistake in [Pflaum, Posthuma, Tang 2014]

$$(G \rightrightarrows M) = \bigcup_{[M/G]}^{M}$$

14/21

3. Invariant linearization

3.1 Linearization of groupoids

Given $G \rightrightarrows M$ a Lie groupoid and $S \subset M$ invariant submanifold, there is a **linear model** for G around S:

 $0 \rightarrow (TG_S \rightrightarrows TS) \rightarrow (TG|_{G_S} \rightrightarrows TM|_S) \rightarrow (NG_S \rightrightarrows NS) \rightarrow 0$

3.1 Linearization of groupoids

Given $G \rightrightarrows M$ a Lie groupoid and $S \subset M$ invariant submanifold, there is a **linear model** for G around S:

$$0 \rightarrow (TG_S \rightrightarrows TS) \rightarrow (TG|_{G_S} \rightrightarrows TM|_S) \rightarrow (NG_S \rightrightarrows NS) \rightarrow 0$$

 $G \rightrightarrows M$ is **linearizable** around S if there are opens nbhds U, V of S s.t.

$$(G \rightrightarrows M)|_U \cong (NG_S \rightrightarrows NS)|_V$$

3.1 Linearization of groupoids

Given $G \rightrightarrows M$ a Lie groupoid and $S \subset M$ invariant submanifold, there is a **linear model** for G around S:

$$0 \rightarrow (TG_S \rightrightarrows TS) \rightarrow (TG|_{G_S} \rightrightarrows TM|_S) \rightarrow (NG_S \rightrightarrows NS) \rightarrow 0$$

 $G \rightrightarrows M$ is **linearizable** around S if there are opens nbhds U, V of S s.t.

$$(G \rightrightarrows M)|_U \cong (NG_S \rightrightarrows NS)|_V$$

Theorem (dH, Fernandes 2018)

A proper groupoid is linearizable by exponential flows of groupoid metric.

- Simpler proof and stronger version of Linearization Theorem [Weinstein 2001], [Zung 2004], [Crainic, Struchiner 2011]
- Generalizes Ehresmann Thm for submersions, Tube Thm for actions, Reeb stability for foliations.

3.2 The open problem

A linearization is **invariant** if we can take U, V invariant opens (stability)

$$(G
ightarrow M)|_U \cong (NG_S
ightarrow NS)|_V$$

3.2 The open problem

A linearization is **invariant** if we can take U, V invariant opens (stability)

$$(G \rightrightarrows M)|_U \cong (NG_S \rightrightarrows NS)|_V$$

Example

Proper actions of Lie groups $K \curvearrowright M$ (or their corresponding groupoids) can are invariantly linearizable. It doesn't follows from groupoid result!

3.2 The open problem

A linearization is **invariant** if we can take U, V invariant opens (stability)

$$(G \rightrightarrows M)|_U \cong (NG_S \rightrightarrows NS)|_V$$

Example

Proper actions of Lie groups $K \curvearrowright M$ (or their corresponding groupoids) can are invariantly linearizable. It doesn't follows from groupoid result!

Question [Crainic, Struchiner 2011]

When a proper groupoid $G \rightrightarrows M$ is invariantly linearizable?

Conjecture [Crainic, Struchiner 2011]

When the source map $s: G \rightarrow M$ is trivial on an invariant nbh.

3.3 A counter-example [dH, de Melo 2021]

based on [Meigniez 1995, 2002] and [Weinstein 2002]

$$(G \rightrightarrows M) = (E \times_{\mathbb{R}} E \rightrightarrows E) \times (SU(2) \rightrightarrows *)$$

3.4 Sufficient condition

 $p: E \to M$ Riemannian submersion, $S \subset M$, $S' = p^{-1}(S)$. Then:

• $\exp |_U$ étale $\Rightarrow \exp |_{U'}$ étale (\Leftarrow if dp(U') = U)

• $\exp |_U$ injective $\Rightarrow \exp |_{U'}$ injective (\Leftarrow if η^E complete and $U' = dp^{-1}(U)$)

$$\begin{array}{c|c} NS' \supset U' \xrightarrow{\exp} E \\ & dp \\ & \downarrow \\ NS \supset U \xrightarrow{\exp} M \end{array}$$

3.4 Sufficient condition

 $p: E \to M$ Riemannian submersion, $S \subset M$, $S' = p^{-1}(S)$. Then:

• $\exp |_U$ étale $\Rightarrow \exp |_{U'}$ étale (\Leftarrow if dp(U') = U)

• $\exp |_U$ injective $\Rightarrow \exp |_{U'}$ injective (\Leftarrow if η^E complete and $U' = dp^{-1}(U)$)

$$\begin{array}{c|c} NS' \supset U' \xrightarrow{\exp} E \\ & dp \\ & \downarrow \\ NS \supset U \xrightarrow{\exp} M \end{array}$$

Theorem (dH, de Melo 2021)

If $(G \Rightarrow M, \eta)$ is a proper Riemannian groupoid and $\eta^{(0)}$ is complete then it is invariantly linearizable.

- Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]
- It includes the linearization of group actions as a particular case!
- Similar results for SRF appeared in [Mendes, Radeschi 2019] and [Alexandrino, Inagaki, de Melo, Struchiner 2022]

イロン イロン イヨン イヨン 二日

Theorem (dH, de Melo 2021)

Let $G \Rightarrow M$ be a proper groupoid that is invariantly linearizable around its orbits. Then it admits a complete 0-metric $\eta^{(0)}$ on $G^{(0)} = M$.

- Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]
- The 0-metric $\eta^{(0)}$ may a priori not extend to a groupoid metric $\eta!$
- They do extend (and give a complete characterization of invariant linearization) for regular groupoids.

Obrigado!

