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1.1 Ehresmann connections

An Ehresmann connection on a surjective submersion p : E → M is a
smooth distribution H ⊂ TE such that

TE = H ⊕ ker dp

For every p there always exists an Ehresmann connection H

Fixed H, given t0 ∈ I ⊂ R, γ : I → M a curve and e0 ∈ E such that
p(e) = γ(t0), there exists a locally defined horizontal lift

γ̃ : J → E , γ̃(t0) = e0, pγ̃ = γ, γ̃′(t) ∈ H

∗ e0 //

t0
��

E

p

��
I

γ //

γ̃
??

M

A connection H is complete if the horizontal lift is defined in the whole I
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1.2 The proper case

Lemma
If p : E → M admits a complete connection then it is locally trivial.

Proof.
Parallel transport along radial curves on a ball x ∈ B ⊂ M.

A continuous map p : E → M is proper if (tfae):

I Preimage of compact sets are compact (*)

I Every base-change is closed

I Map is closed and fibers are compact

Theorem [Ehresmann, 1950]
A proper submersion is locally trivial.

Proof.
If p : E → M is proper then every connection H is complete.
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1.3 A tricky exercise

Theorem
A surjective submersion p : E → B admits a complete connection if and
only if it is locally trivial.

A shory history of the result:

I First appeared in [Wolf 1964] with first problematic proof

I Exercise in [Greub, Halperin, Vanstone 1972] without a proof

I Second problematic proof published in [Michor 1988, 1991, 2008]
and [Kolar, Michor, Slovak 1993] is attributed to Halperin
Complete connections are not closed under combex combinations

I Definite proof in [dH 2016]

I Generalization to Lie algebroid submersions [Frejlich 2019]
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1.4 The proof

Passing from local to global by convex combination via partition of 1
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1.5 The metric approach

A Riemannian submersion p : (E , ηE )→ (M, ηM) is a surjective
submersion such that dpe : (ker dep)⊥ → Tp(e)M is isometry ∀e.

p : (E , ηE )→ (M, ηM) Riemm. subm. ⇐⇒

{
ηE p-fibered

ηM = p∗(ηE )

I Every manifold admits a complete metric: η̃x = 1
d(x,∞)ηx

I Every submersion admits a fibered metric: pick H connection and fix
ηM , declare H⊥ ker dp, set ηE |H = p∗ηM , set ηE |ker dp arbitrary

Theorem
A surjective submersion p : E → B admits a complete and fibered metric
if and only if it is locally trivial.

8 / 21



1.5 The metric approach

A Riemannian submersion p : (E , ηE )→ (M, ηM) is a surjective
submersion such that dpe : (ker dep)⊥ → Tp(e)M is isometry ∀e.

p : (E , ηE )→ (M, ηM) Riemm. subm. ⇐⇒

{
ηE p-fibered

ηM = p∗(ηE )

I Every manifold admits a complete metric: η̃x = 1
d(x,∞)ηx

I Every submersion admits a fibered metric: pick H connection and fix
ηM , declare H⊥ ker dp, set ηE |H = p∗ηM , set ηE |ker dp arbitrary

Theorem
A surjective submersion p : E → B admits a complete and fibered metric
if and only if it is locally trivial.

8 / 21



1.5 The metric approach

A Riemannian submersion p : (E , ηE )→ (M, ηM) is a surjective
submersion such that dpe : (ker dep)⊥ → Tp(e)M is isometry ∀e.

p : (E , ηE )→ (M, ηM) Riemm. subm. ⇐⇒

{
ηE p-fibered

ηM = p∗(ηE )

I Every manifold admits a complete metric: η̃x = 1
d(x,∞)ηx

I Every submersion admits a fibered metric: pick H connection and fix
ηM , declare H⊥ ker dp, set ηE |H = p∗ηM , set ηE |ker dp arbitrary

Theorem
A surjective submersion p : E → B admits a complete and fibered metric
if and only if it is locally trivial.

8 / 21



2. Riemannian stacks
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2.1 Groupoids and stacks
A Lie groupoid G ⇒ M consists of manifolds of objects M and arrows
G , submersions s, t : G → M and a multiplication with unit and inverse

m : G ×M G → G (z
g2←− y , y

g1←− x) 7→ (z
g2g1←−− x)

I isotropy groups: Gx = {x ←− x} are Lie groups

I orbits: Ox = {y |∃y ←− x} ⊂ M define singular foliation

I normal representation: Gx y NxO = TxM/TxO.

A differentiable stack [M/G ] is the class of a Lie groupoid modulo
morphisms inducing isomorphism on isotropy, homeomorphism on orbit
spaces and isomorphism on normal rep. [dH 2013]

Example
E → M surj subm E ×M E ⇒ E [E/E ×M E ] = M
K y M group action K ×M ⇒ M [M/K ×M] orbit space
F ⊂ TM foliation Hol(F )⇒ M [M/Hol(F )] leaf space
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2.2 Riemannian groupoids and stacks

A Riemannian groupoid∗ is (G ⇒ M, η), η(i) metric on G (i) such that
the following are Riemannian submersions [dH, Fernandes 2018]

G (2)

π1 //
m //
π2

//G
s //
t
//M

This improves [Gallego 1989], [Glickenstein 2007] and [Pflaum et al 2011]

A Riemannian stack is the class of Riemannian groupoid modulo
morphisms inducing isomorphism on isotropy, homeomorphism on orbit
spaces and isometry on normal rep. [dH, Fernandes 2019]

Example

I Riemannian manifolds and orbifolds [Thurston 1980]

I orbit spaces of isometric actions [Alekseevsky, Michor et al 2003]

I leaf spaces of Riem. foliations∗ [Alexandrino, Briquet, Toben 2013]
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2.3 Curves on Riemannian stacks
A stacky curve α : I → [M/G ] is given by a cocycle of curves

(I ⇒ I )← (
∐

In+1 ∩ In ⇒
∐

In)
∐

an−−−→ (G ⇒ M)

The speed ||α′(t)|| at a time t ∈ I is the norm of the normal component
of the velocity ||a′n(t)||N

Proposition
The speed ||α′(t)|| is continuous (but not smooth!)
We can integrate the speed to measure lengths of curves.

Theorem (dH, de Melo 2020)
Given (G ⇒ M, η) Riemannian gpd and dN induced distance in M/G ,

dN([x ], [y ]) = inf

{∫
I

||α′(t)||dt : α : I → [M/G ], α(0) = [x ], α(1) = [y ]

}
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2.4 Geodesics on Riemannian stacks

A stacky geodesic α : I → [M/G ] is a stacky curve that can be
presented by a cocycle of geodesics normal to the orbits an

(I ⇒ I )← (
∐

In+1 ∩ In ⇒
∐

In)
∐

an−−−→ (G ⇒ M)

I Local existence and local uniqueness hold easily

I Global uniqueness only if groupoid is proper
Counter-example: R2 \ {0} → R

I Minimizing geodesics stay in a same stratum: Gα(t0)
∼= Gα(t1) ∀t0, t1

Theorem (dH, de Melo 2020)
A stacky curve α : I → [M/G ] is a geodesic if and only if it is locally
minimizing at every t ∈ I

13 / 21



2.4 Geodesics on Riemannian stacks

A stacky geodesic α : I → [M/G ] is a stacky curve that can be
presented by a cocycle of geodesics normal to the orbits an

(I ⇒ I )← (
∐

In+1 ∩ In ⇒
∐

In)
∐

an−−−→ (G ⇒ M)

I Local existence and local uniqueness hold easily

I Global uniqueness only if groupoid is proper
Counter-example: R2 \ {0} → R

I Minimizing geodesics stay in a same stratum: Gα(t0)
∼= Gα(t1) ∀t0, t1

Theorem (dH, de Melo 2020)
A stacky curve α : I → [M/G ] is a geodesic if and only if it is locally
minimizing at every t ∈ I

13 / 21



2.4 Geodesics on Riemannian stacks

A stacky geodesic α : I → [M/G ] is a stacky curve that can be
presented by a cocycle of geodesics normal to the orbits an

(I ⇒ I )← (
∐

In+1 ∩ In ⇒
∐

In)
∐

an−−−→ (G ⇒ M)

I Local existence and local uniqueness hold easily

I Global uniqueness only if groupoid is proper
Counter-example: R2 \ {0} → R

I Minimizing geodesics stay in a same stratum: Gα(t0)
∼= Gα(t1) ∀t0, t1

Theorem (dH, de Melo 2020)
A stacky curve α : I → [M/G ] is a geodesic if and only if it is locally
minimizing at every t ∈ I

13 / 21



2.5 Completeness of stacky metrics

A Riemannian stack [M/G ] is geodesically complete if geodesics can
be extended to the whole real line.

Theorem (dH, de Melo 2020)
A separated Riemannian stack [M/G ] is geodesically complete if and
only if the normal distance dN makes M/G a complete metric space.

Corollary: Every stack [M/G ] admits a complete stacky metric

Every Lie groupoid G ⇒ M admits a groupoid metric
but not every Lie groupoid admits a complete groupoid metric!
Mistake in [Pflaum, Posthuma, Tang 2014]

(G ⇒ M) =
M
↓

[M/G ]
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3. Invariant linearization
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3.1 Linearization of groupoids

Given G ⇒ M a Lie groupoid and S ⊂ M invariant submanifold, there is
a linear model for G around S :

0→ (TGS ⇒ TS)→ (TG |GS
⇒ TM|S)→ (NGS ⇒ NS)→ 0

G ⇒ M is linearizable around S if there are opens nbhds U,V of S s.t.

(G ⇒ M)|U ∼= (NGS ⇒ NS)|V

Theorem (dH, Fernandes 2018)
A proper groupoid is linearizable by exponential flows of groupoid metric.

I Simpler proof and stronger version of Linearization Theorem
[Weinstein 2001], [Zung 2004], [Crainic, Struchiner 2011]

I Generalizes Ehresmann Thm for submersions, Tube Thm for actions,
Reeb stability for foliations.
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3.2 The open problem

A linearization is invariant if we can take U,V invariant opens (stability)

(G ⇒ M)|U ∼= (NGS ⇒ NS)|V

Example
Proper actions of Lie groups K y M (or their corresponding groupoids)
can are invariantly linearizable. It doesn’t follows from groupoid result!

Question [Crainic, Struchiner 2011]
When a proper groupoid G ⇒ M is invariantly linearizable?

Conjecture [Crainic, Struchiner 2011]
When the source map s : G → M is trivial on an invariant nbh.
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3.3 A counter-example [dH, de Melo 2021]

based on [Meigniez 1995, 2002] and [Weinstein 2002]

(G ⇒ M) = (E ×R E ⇒ E )× (SU(2)⇒ ∗)

18 / 21



3.4 Sufficient condition
p : E → M Riemannian submersion, S ⊂ M, S ′ = p−1(S). Then:

I exp |U étale ⇒ exp |U′ étale (⇐ if dp(U ′) = U)

I exp |U injective ⇒ exp |U′ injective (⇐ if ηE complete and
U ′ = dp−1(U))

NS ′ ⊃ U ′
exp //

dp

��

E

p

��
NS ⊃ U

exp
// M

Theorem (dH, de Melo 2021)
If (G ⇒ M, η) is a proper Riemannian groupoid and η(0) is complete then
it is invariantly linearizable.

I Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]

I It includes the linearization of group actions as a particular case!

I Similar results for SRF appeared in [Mendes, Radeschi 2019] and
[Alexandrino, Inagaki, de Melo, Struchiner 2022]
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3.5 About necessity

Theorem (dH, de Melo 2021)
Let G ⇒ M be a proper groupoid that is invariantly linearizable around
its orbits. Then it admits a complete 0-metric η(0) on G (0) = M.

I Proof uses geodesics on Riemannian stacks [dH, de Melo 2020]

I The 0-metric η(0) may a priori not extend to a groupoid metric η!

I They do extend (and give a complete characterization of invariant
linearization) for regular groupoids.
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Obrigado!
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