The large- N limit of the Segal-Bargmann transform on unitary groups

Brian C. Hall Workshop on Mathematical Aspects of Quantization

Lisbon, June 2015

Credits for large- N limit

- Joint work with Bruce Driver and Todd Kemp of UCSD [J. Funct. Anal., 2013].
- Expository article: arXiv:1308.0615.
- Results motivated by work of Philippe Biane [Segal-Bargmann transform, functional calculus, ..., J. Funct. Anal., 1997]
- Related results obtained independently by Guillaume Cébron: [J. Funct. Anal., 2013]

Geometry of the unitary groups

- $U(N)=$ group of $N \times N$ unitary matrices $\left(U^{*} U=I\right)$
- Lie algebra $=$ tangent space at $I=u(N)$
- $u(N)=$ space of $N \times N$ skew matrices $\left(X^{*}=-X\right)$
- Use on $u(N)$ some multiple of real Hilbert-Schmidt inner product:

$$
\langle X, Y\rangle=C \operatorname{Re}\left[\operatorname{Trace}\left(X^{*} Y\right)\right], \quad C>0
$$

- This inner product determines a bi-invariant Riemannian metric on $U(N)$
- Metric determines Laplacian Δ (with $\Delta \leq 0)$

Heat equation

- Study heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u
$$

- Introduce heat kernel ρ_{t} (based at I) on $U(N)$:

$$
\begin{aligned}
\frac{\partial \rho_{t}}{\partial t} & =\frac{1}{2} \Delta \rho_{t} \\
\lim _{t \rightarrow 0} \rho_{t} & =\delta_{l}
\end{aligned}
$$

- Introduce heat operator $e^{t \Delta / 2}$:

$$
\left(e^{t \Delta / 2} f\right)(U)=\int_{U(N)} \rho_{t}\left(U V^{-1}\right) f(V) d \operatorname{vol}(V)
$$

Segal-Bargmann transform

- $G L(N ; \mathbb{C})=$ group of all $N \times N$ invertible matrices
- $G L(N ; \mathbb{C})$ is "complexification" of $U(N)$ (complex manifold)

Theorem

For any fixed $t>0$ and any reasonable function f on $U(N)$, the function

$$
e^{t \Delta / 2} f
$$

admits a (unique) holomorphic extension from $U(N)$ to $G L(N ; \mathbb{C})$.

Definition

The Segal-Bargmann transform for $U(N)$ is the map $B_{t}: L^{2}\left(U(N), \rho_{t}\right) \rightarrow \mathcal{H}(G L(N ; \mathbb{C}))$ given by

$$
B_{t}(f)=\left(e^{t \Delta / 2} f\right)_{\mathbf{C}}
$$

where $(\cdot)_{\text {C }}$ denotes holomorphic extension.

Segal-Bargmann transform, cont'd

- Natural heat kernel μ_{t} on $G L(N ; \mathbb{C})$ (based at I)
- $\mathcal{H} L^{2}\left(G L(N ; \mathbb{C}), \mu_{t}\right)=$ space of square-integrable holomorphic functions with respect to the measure $\mu_{t}(Z) d \operatorname{vol}(Z)$

Theorem (H, '94)

For each $t>0$, the map B_{t} is a unitary map of $L^{2}\left(U(N), \rho_{t}\right)$ onto $\mathcal{H} L^{2}\left(G L(N ; \mathbb{C}), \mu_{t}\right)$

- Same construction for $\mathbb{R}^{n} \subset \mathbb{C}^{n}$ yields the "classical" Segal-Bargmann transform

Large-N limit, first attempt

- Use fixed multiple of Hilbert-Schmidt inner product on Lie algebras
- Then inclusion of $u(N)$ into $u(N+1)$ is isometric
- Results of M. Gordina show that Segal-Bargmann transform does not have a reasonable limit with this approach
- Gordina shows (essentially) that in the large- N limit, all nonconstant functions in $\mathcal{H} L^{2}\left(G L(N ; \mathbb{C}), \mu_{t}\right)$ have infinite norm
- E.g., the function $F(Z)=Z_{j k}$ has norm

$$
\left\|Z_{j k}\right\|_{L^{2}\left(G L(N ; C), \mu_{t}\right)}^{2}=\left(1-e^{-t}\right) \frac{e^{N t}}{N} \rightarrow \infty
$$

Large- N limit, second attempt

- Use scaled Hilbert-Schmidt inner product on $u(N)$:

$$
\langle X, Y\rangle_{N}:=N\langle X, Y\rangle_{\mathrm{HS}}=N \operatorname{Re}\left[\operatorname{Trace}\left(X^{*} Y\right)\right]
$$

- The associated Laplacian is then

$$
\Delta_{N}=\frac{1}{N} \Delta_{\mathrm{HS}}
$$

- This scaling was proposed by Biane.
- Consider, for example, the function $f(U)=U_{j k}$ on $U(N)$. Then

$$
\Delta_{N}\left(U_{j k}\right)=-U_{j k}
$$

(Eigenvalue is -1 , independent of N.)

Large- N behavior of Laplacian

- Consider normalized trace,

$$
\operatorname{tr}(U)=\frac{1}{N} \operatorname{Trace}(U)=\frac{1}{N} \sum_{j=1}^{N} U_{j j}
$$

- Now consider trace polynomials, i.e., polynomials in traces of powers of U. E.g.

$$
f(U)=7 \operatorname{tr}\left(U^{2}\right) \operatorname{tr}\left(U^{3}\right)-\left(\operatorname{tr}\left(U^{2}\right)\right)^{3} .
$$

- The action of Δ_{N} on trace polynomials decomposes as:

$$
\Delta_{N}=\Delta_{\infty}+\frac{1}{N^{2}} L
$$

for operators " Δ_{∞} " and " L " whose actions are independent of N.

Large-N behavior of Laplacian, cont'd

- Action of Δ_{∞} (on trace polynomials) determined by two basic properties:
- First,

$$
\Delta_{\infty}\left[\operatorname{tr}\left(U^{k}\right)\right]=-k \operatorname{tr}\left(U^{k}\right)-2 \sum_{j=1}^{k-1} j \operatorname{tr}\left(U^{j}\right) \operatorname{tr}\left(U^{k-j}\right)
$$

- Second, Δ_{∞} satisfies the first-order product rule:

$$
\Delta_{\infty}(f g)=\Delta_{\infty}(f) g+f\left(\Delta_{\infty} g\right)
$$

- Thus: cross terms in product rule for Δ_{N} are of order $1 / N^{2}$.

Action as a vector field

- Let v_{k} denote the function

$$
v_{k}=\operatorname{tr}\left(U^{k}\right), \quad k=1,2,3, \ldots
$$

- Any finite set of these functions is algebraically independent for sufficiently large N
- Action of Δ_{∞} in these variables is given as a first-order differential operator:

$$
-\sum_{k=1}^{\infty} k v_{k} \frac{\partial}{\partial v_{k}}-2 \sum_{k=2}^{\infty}\left(\sum_{j=1}^{k-1} j v_{j} v_{k-j}\right) \frac{\partial}{\partial v_{k}}
$$

Concentration properties of heat kernels

- Look at heat kernel measure

$$
d \rho_{t}^{N}:=\rho_{t}(U) d \operatorname{vol}(U)
$$

- Work of Biane, E. Rains, and T. Kemp shows (roughly) that the heat kernel measure on $U(N)$ concentrates onto a single conjugacy class in the large- N limit.
- Conjugacy classes in $U(N)$ are determined by list of eigenvalues.
- List $\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$ of eigenvalues for U can be encoded in the empirical eigenvalue measure

$$
\mu_{U}=\frac{1}{N}\left(\delta_{\lambda_{1}}+\cdots+\delta_{\lambda_{N}}\right)
$$

- In the large- N limit, almost every U (with respect to ρ_{t}^{N}) has the same empirical eigenvalue measure, given by a certain fixed measure v_{t} described by Biane (picture).

Concentration properties of heat kernels, cont'd

- As ρ_{t}^{N} concentrates, all class functions become constant (as elements of $\left.L^{2}\left(U(N), \rho_{t}^{N}\right)\right)$.
- E.g., normalized trace:

$$
\left\|\operatorname{tr}(U)-e^{-t / 2}\right\|_{L^{2}\left(U(N), \rho_{t}^{N}\right)} \rightarrow 0
$$

as $N \rightarrow \infty$.

- That is, ρ_{t}^{N} is concentrating onto the set where $\operatorname{tr}(U)$ has the constant value $e^{-t / 2}$

Concentration properties of heat kernels, cont'd

- Concentration properties are closely related to the first-order product rule for Δ_{∞}.
- If Δ_{∞} behaves like a first-order operator, then heat doesn't diffuse.
- Similar concentration results for trace polynomials on $G L(N ; \mathbb{C})$ w.r.t.

$$
d \mu_{t}^{N}(Z):=\mu_{t}(Z) d \operatorname{vol}(Z)
$$

on $G L(N ; \mathbb{C})$

Digression: "Master field" in plane

- In 2-d (Euclidean) Yang-Mills theory on \mathbb{R}^{2}, have random connection.
- Holonomies around loops are random variables with values in $U(N)$.
- Physicists: these holonomies are nonrandom in the large- N limit, come from "master field"
- For simple closed curve, holonomy distributed as ρ_{t}^{N}. Hence: concentration!
- "Master field" in plane has been studied mathematically by Michael Anshelevitch and Ambar N. Sengupta and by Thierry Lévy, based on proposals by I. M. Singer.

Back to Segal-Bargmann transform

- On class functions, Segal-Bargmann transform makes sense in the limit, but it is trivial (constants map to constants)
- To get something nontrivial, Biane proposes to consider matrix-valued functions: $f: U(N) \rightarrow M_{N}(\mathbb{C})$
- Laplacian and SBT extend to matrix-valued functions, by applying them entrywise
- Consider matrix-valued trace polynomials, e.g.,

$$
f(U)=2 U^{2} \operatorname{tr}\left(U^{3}\right)-9 U \operatorname{tr}\left(U^{4}\right)
$$

- Product rule extends only if one of the polynomials is scalar:

$$
\Delta_{\infty}\left(U^{2} U^{3}\right) \neq \Delta_{\infty}\left(U^{2}\right) U^{3}+U^{2} \Delta_{\infty}\left(U^{3}\right)
$$

Single-variable polynomials

- Any function of the form $\operatorname{tr}\left(U^{k}\right)$ becomes constant (almost everywhere w.r.t. ρ_{t}^{N} or μ_{t}^{N}) in the large- N limit.
- Only untraced powers of U survive.
- In the large- N limit, single-variable polynomials (linear combinations of U^{k}) map to single-variable polynomials (linear combinations of Z^{k}) on $G L(N ; \mathbb{C})$

Example

- Consider

$$
f(U)=U^{2}, \quad U \in U(N)
$$

- Apply (entrywise) Segal-Bargmann transform B_{t}^{N} for $U(N)$.
- Result is

$$
\begin{aligned}
B_{t}^{N}(f)(Z) & =e^{-t}\left[\cosh (t / N) Z^{2}+t \frac{\sinh (t / N)}{t / N} Z \operatorname{tr}(Z)\right] \\
& =e^{-t}\left[Z^{2}+t Z \operatorname{tr}(Z)+O\left(1 / N^{2}\right)\right]
\end{aligned}
$$

- But on $G L(N ; \mathbb{C})$ we have $\operatorname{tr}(Z) \approx 1$ (w.r.t. $\left.\mu_{t}^{N}\right)$ in the large- N limit
- Thus,

$$
\lim _{N \rightarrow \infty} B_{t}^{N}(f)(Z)=e^{-t}\left(Z^{2}+t Z\right)
$$

Main result

Theorem (Driver-H-Kemp, 2013)

Let p be a polynomial in a single variable and let

$$
f(U)=p(U), \quad U \in U(N)
$$

Then for each $t>0$, there exists a unique polynomial q_{t} in a single variable such that

$$
\left\|B_{t}^{N}(f)(Z)-q_{t}(Z)\right\|_{L^{2}\left(G L(N ; \mathrm{C}), \mu_{t}^{N}\right)} \rightarrow 0
$$

as $N \rightarrow \infty$.

- E.g., if $p(u)=u^{2}$, then

$$
q_{t}(z)=e^{-t}\left(z^{2}+t z\right)
$$

Computing large- N limit on powers of U

- Step 1: Start with U^{k} and apply heat operator $e^{t \Delta_{\infty} / 2}$. Result is a trace polynomial (on $G L(N ; \mathbb{C})$).
- Step 2: Evaluate the traces. Actually, $\operatorname{tr}\left(Z^{k}\right) \approx 1$ for every k.
- After evaluating the traces, result is a polynomial in Z.
- Example: $f(U)=U^{3}$. Applying $e^{t \Delta_{\infty} / 2}$ gives

$$
e^{-3 t / 2}\left\{Z^{3}+t\left[2 Z^{2} \operatorname{tr}(Z)+Z \operatorname{tr}\left(Z^{2}\right)\right]+\frac{3 t^{2}}{2} Z \operatorname{tr}(Z)^{2}\right\}
$$

- Evaluating all traces to 1 gives

$$
B_{t}^{\infty}\left(U^{3}\right)=e^{-3 t / 2}\left\{Z^{3}+t\left(2 Z^{2}+Z\right)+\frac{3 t^{2}}{2} Z\right\}
$$

Comparing to Biane

- Biane defines a transform \mathcal{G}^{t} mapping polynomials to polynomials, using "free probability theory"
- Biane conjectures that \mathcal{G}^{t} is just the large- N limit of B_{t}.

Theorem (Driver-H-Kemp, 2013)

For every single-variable polynomial p, the polynomial q_{t} coincides with $\mathcal{G}^{t}(p)$.

Comparing to Biane, cont'd

- Let $p_{t, k}(u)=$ result of applying $\left(B_{t}^{\infty}\right)^{-1}$ to the function $F(Z)=Z^{k}$.
- Define generating function

$$
\Pi(t, u, z)=\sum_{k=0}^{\infty} p_{t, k}(u) z^{k}
$$

- We derive a PDE for Π and solve it by the method of characteristics
- Result:

$$
\Pi(t, u, z)=\frac{1}{1-u z e^{\frac{t}{2} \frac{1+z}{1-2}}} .
$$

- This is generating function for $\left(\mathcal{G}_{t}\right)^{-1}$!

Computing with the generating function

- Computer can compute Taylor series of Π in powers of z
- Coefficient of z^{k} is just $p_{t, k}(u)$
- This gives alternative method of computing explicitly with $B_{t}^{\infty}=\mathcal{G}_{t}$ (in addition to our recursion method).

Conclusion

- Thank you for your attention!

