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Credits for large-N limit

Joint work with Bruce Driver and Todd Kemp of UCSD [J. Funct.
Anal., 2013].

Expository article: arXiv:1308.0615.

Results motivated by work of Philippe Biane [Segal-Bargmann
transform, functional calculus, . . . , J. Funct. Anal., 1997]
Related results obtained independently by Guillaume Cébron: [J.
Funct. Anal., 2013]
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Geometry of the unitary groups

U(N) = group of N ×N unitary matrices (U∗U = I )
Lie algebra = tangent space at I = u(N)

u(N) = space of N ×N skew matrices (X ∗ = −X )
Use on u(N) some multiple of real Hilbert—Schmidt inner product:

〈X ,Y 〉 = C Re[Trace(X ∗Y )], C > 0.

This inner product determines a bi-invariant Riemannian metric on
U(N)

Metric determines Laplacian ∆ (with ∆ ≤ 0)

Brian C. Hall, Workshop on Mathematical Aspects of Quantization ()The large-N limit Lisbon, June 2015 3 / 24



Heat equation

Study heat equation
∂u
∂t
=
1
2

∆u

Introduce heat kernel ρt (based at I ) on U(N):

∂ρt
∂t

=
1
2

∆ρt

lim
t→0

ρt = δI

Introduce heat operator et∆/2:

(et∆/2f )(U) =
∫
U (N )

ρt (UV
−1)f (V ) dvol(V )
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Segal—Bargmann transform

GL(N;C) = group of all N ×N invertible matrices
GL(N;C) is “complexification”of U(N) (complex manifold)

Theorem
For any fixed t > 0 and any reasonable function f on U(N), the function

et∆/2f

admits a (unique) holomorphic extension from U(N) to GL(N;C).

Definition
The Segal—Bargmann transform for U(N) is the map
Bt : L2(U(N), ρt )→ H(GL(N;C)) given by

Bt (f ) = (et∆/2f )C,

where (·)C denotes holomorphic extension.
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Segal—Bargmann transform, cont’d

Natural heat kernel µt on GL(N;C) (based at I )

HL2(GL(N;C), µt ) = space of square-integrable holomorphic
functions with respect to the measure µt (Z ) dvol(Z )

Theorem (H, ’94)

For each t > 0, the map Bt is a unitary map of L2(U(N), ρt ) onto
HL2(GL(N;C), µt )

Same construction for Rn ⊂ Cn yields the “classical”
Segal—Bargmann transform
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Large-N limit, first attempt

Use fixed multiple of Hilbert—Schmidt inner product on Lie algebras
Then inclusion of u(N) into u(N + 1) is isometric

Results of M. Gordina show that Segal—Bargmann transform does
not have a reasonable limit with this approach
Gordina shows (essentially) that in the large-N limit, all nonconstant
functions in HL2(GL(N;C), µt ) have infinite norm
E.g., the function F (Z ) = Zjk has norm

‖Zjk‖2L2(GL(N ;C),µt ) = (1− e
−t )

eNt

N
→ ∞
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Large-N limit, second attempt

Use scaled Hilbert—Schmidt inner product on u(N):

〈X ,Y 〉N := N 〈X ,Y 〉HS = N Re[Trace(X ∗Y )]

The associated Laplacian is then

∆N =
1
N

∆HS

This scaling was proposed by Biane.

Consider, for example, the function f (U) = Ujk on U(N). Then

∆N (Ujk ) = −Ujk

(Eigenvalue is −1, independent of N.)
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Large-N behavior of Laplacian

Consider normalized trace,

tr(U) =
1
N

Trace(U) =
1
N

N

∑
j=1
Ujj .

Now consider trace polynomials, i.e., polynomials in traces of
powers of U. E.g.

f (U) = 7tr(U2)tr(U3)− (tr(U2))3.

The action of ∆N on trace polynomials decomposes as:

∆N = ∆∞ +
1
N2
L

for operators “∆∞”and “L”whose actions are independent of N.
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Large-N behavior of Laplacian, cont’d

Action of ∆∞ (on trace polynomials) determined by two basic
properties:

First,

∆∞[tr(Uk )] = −ktr(Uk )− 2
k−1
∑
j=1

jtr(U j )tr(Uk−j ).

Second, ∆∞ satisfies the first-order product rule:

∆∞(fg) = ∆∞(f )g + f (∆∞g).

Thus: cross terms in product rule for ∆N are of order 1/N2.
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Action as a vector field

Let vk denote the function

vk = tr(Uk ), k = 1, 2, 3, . . .

Any finite set of these functions is algebraically independent for
suffi ciently large N

Action of ∆∞ in these variables is given as a first-order differential
operator:

−
∞

∑
k=1

kvk
∂

∂vk
− 2

∞

∑
k=2

(
k−1
∑
j=1

jvjvk−j

)
∂

∂vk
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Concentration properties of heat kernels

Look at heat kernel measure

dρNt := ρt (U) dvol(U)

Work of Biane, E. Rains, and T. Kemp shows (roughly) that the heat
kernel measure on U(N) concentrates onto a single conjugacy
class in the large-N limit.
Conjugacy classes in U(N) are determined by list of eigenvalues.

List {λ1, . . . ,λN} of eigenvalues for U can be encoded in the
empirical eigenvalue measure

µU =
1
N
(δλ1 + · · ·+ δλN )

In the large-N limit, almost every U (with respect to ρNt ) has the
same empirical eigenvalue measure, given by a certain fixed
measure νt described by Biane (picture).
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Concentration properties of heat kernels, cont’d

As ρNt concentrates, all class functions become constant (as
elements of L2(U(N), ρNt )).

E.g., normalized trace:∥∥∥tr(U)− e−t/2
∥∥∥
L2(U (N ),ρNt )

→ 0

as N → ∞.
That is, ρNt is concentrating onto the set where tr(U) has the
constant value e−t/2
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Concentration properties of heat kernels, cont’d

Concentration properties are closely related to the first-order
product rule for ∆∞.

If ∆∞ behaves like a first-order operator, then heat doesn’t diffuse.

Similar concentration results for trace polynomials on GL(N;C) w.r.t.

dµNt (Z ) := µt (Z ) dvol(Z )

on GL(N;C)
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Digression: “Master field” in plane

In 2-d (Euclidean) Yang—Mills theory on R2, have random
connection.
Holonomies around loops are random variables with values in U(N).

Physicists: these holonomies are nonrandom in the large-N limit,
come from “master field”

For simple closed curve, holonomy distributed as ρNt . Hence:
concentration!

“Master field” in plane has been studied mathematically by Michael
Anshelevitch and Ambar N. Sengupta and by Thierry Lévy, based
on proposals by I. M. Singer.
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Back to Segal—Bargmann transform

On class functions, Segal—Bargmann transform makes sense in the
limit, but it is trivial (constants map to constants)
To get something nontrivial, Biane proposes to consider
matrix-valued functions: f : U(N)→ MN (C)

Laplacian and SBT extend to matrix-valued functions, by applying
them entrywise
Consider matrix-valued trace polynomials, e.g.,

f (U) = 2U2tr(U3)− 9Utr(U4).

Product rule extends only if one of the polynomials is scalar:

∆∞(U2U3) 6= ∆∞(U2)U3 + U2∆∞(U3).
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Single-variable polynomials

Any function of the form tr(Uk ) becomes constant (almost
everywhere w.r.t. ρNt or µNt ) in the large-N limit.

Only untraced powers of U survive.
In the large-N limit, single-variable polynomials (linear
combinations of Uk ) map to single-variable polynomials (linear
combinations of Z k ) on GL(N;C)
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Example

Consider
f (U) = U2, U ∈ U(N).

Apply (entrywise) Segal—Bargmann transform BNt for U(N).

Result is

BNt (f )(Z ) = e−t
[
cosh(t/N)Z 2 + t

sinh(t/N)
t/N

Z tr(Z )
]

= e−t
[
Z 2 + tZ tr(Z ) +O(1/N2)

]
But on GL(N;C) we have tr(Z ) ≈ 1 (w.r.t. µNt ) in the large-N limit

Thus,
lim
N→∞

BNt (f )(Z ) = e
−t (Z 2 + tZ )
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Main result

Theorem (Driver-H-Kemp, 2013)
Let p be a polynomial in a single variable and let

f (U) = p(U), U ∈ U(N).

Then for each t > 0, there exists a unique polynomial qt in a single
variable such that∥∥∥BNt (f )(Z )− qt (Z )∥∥∥

L2(GL(N ;C),µNt )
→ 0

as N → ∞.

E.g., if p(u) = u2, then

qt (z) = e−t (z2 + tz).

Brian C. Hall, Workshop on Mathematical Aspects of Quantization ()The large-N limit Lisbon, June 2015 19 / 24



Computing large-N limit on powers of U

Step 1: Start with Uk and apply heat operator et∆∞/2. Result is a
trace polynomial (on GL(N;C)).

Step 2: Evaluate the traces. Actually, tr(Z k ) ≈ 1 for every k.
After evaluating the traces, result is a polynomial in Z .
Example: f (U) = U3. Applying et∆∞/2 gives

e−3t/2
{
Z 3 + t[2Z 2tr(Z ) + Z tr(Z 2)] +

3t2

2
Z tr(Z )2

}
Evaluating all traces to 1 gives

B∞
t (U

3) = e−3t/2
{
Z 3 + t(2Z 2 + Z ) +

3t2

2
Z
}
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Comparing to Biane

Biane defines a transform Gt mapping polynomials to polynomials,
using “free probability theory”

Biane conjectures that Gt is just the large-N limit of Bt .

Theorem (Driver-H-Kemp, 2013)
For every single-variable polynomial p, the polynomial qt coincides with
Gt (p).
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Comparing to Biane, cont’d

Let pt ,k (u) = result of applying (B∞
t )
−1 to the function F (Z ) = Z k .

Define generating function

Π(t, u, z) =
∞

∑
k=0

pt ,k (u)z
k

We derive a PDE for Π and solve it by the method of
characteristics
Result:

Π(t, u, z) =
1

1− uze t2 1+z1−z
.

This is generating function for (Gt )−1 !
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Computing with the generating function

Computer can compute Taylor series of Π in powers of z

Coeffi cient of zk is just pt ,k (u)

This gives alternative method of computing explicitly with B∞
t = Gt

(in addition to our recursion method).
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Conclusion

Thank you for your attention!
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