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A SHORT OVERVIEW

Here we start mentioning the following classical works

Phillips, D.: A minimization problem and the regularity of
solutions in the presence of a free boundary. Indiana Univ.
Math. J. 32, 1–17 (1983)

Alt, H.M., Phillips D.: A free boundary problem for semilinear
elliptic equations. J. Reine Angew. Math. 368, 63–107 (1986)
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A SHORT OVERVIEW

The following minimization problem is considered

MINu≥0

∫
Ω

1
2 |Du(x)|

2+u(x)1−γ dx

with 0 < γ < 1

(non-differentiable)
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A SHORT OVERVIEW

One is related to the following free boundary problem

−∆u = u−γ in {u > 0} ∩ Ω.

Minimizers model density of gases and the singular right-hand side
denotes the rate of a reaction with catalyst.

! We do not know where the PDE is supposed to be satisfied.
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A SHORT OVERVIEW

The Alt-Phillips problem interpolates two relevant models:

. Obstacle problem:
∫ 1

2 |Du(x)|
2+u(x) dx (case γ = 0)

Solutions are locally C1,1 (Bounded Hessian)

. Bernoulli problem:
∫ 1

2 |Du(x)|
2+χ{u>0} dx (case γ = 1)

Solutions are locally C0,1 (Bounded gradient)
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A SHORT OVERVIEW

Sharp regularity estimates for solutions in the variational case:

✓ solutions are locally C1,α, for α =
1− γ

1+ γ
(Phillips 1983)

✓ For the p-Laplacian case: α = min

{
α−
p ,

1− γ

p− (1− γ)

}
(LTQ 2015)

✓ Obstacle p-Laplacian (γ = 0): α =
1

p− 1 at ∂{u > 0} (ALS 2015)
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A SHORT OVERVIEW

For the non-variational case:

F(D2u) = u−γ in {u > 0}

where F is (λ,Λ) - uniformly elliptic (viscosity sense):

✓ solutions are locally C1,α, for α =
1− γ

1+ γ
(AT 2013)

✓ The non-singular case γ < 0 (Teixeira 2016, WY 2021)
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A SHORT OVERVIEW

For the non-variational case:

F(D2u) = u−γ in {u > 0}

where F is (λ,Λ) - uniformly elliptic (viscosity sense):

Uniformly ellipticity:

λtrace(P) ≤ F(X+ P)− F(X) ≤ Λtrace(P), for P ≥ 0

Degenerate ellipticity:

F(X) ≤ F(Y) whenever X ≤ Y
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A SHORT OVERVIEW

What about to consider 2nd order degenerate operators?
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OTHER RELATED SCENARIOS

Infinity Laplacian equations with singular absorptions.
with G. Sá
Calc. Var. 61, 132 (2022).
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THE SINGULAR CASE

We consider the following singular free boundary problem

F(Du,D2u) = u−γ in {u > 0} ∩ B1

for 0 < γ < 1.

For
F(Du,D2u) = ∆∞u

where ∆∞ is the Infinity Laplacian.

10



THE SINGULAR CASE

We consider the following singular free boundary problem

F(Du,D2u) = u−γ in {u > 0} ∩ B1

for 0 < γ < 1. For
F(Du,D2u) = ∆∞u

where ∆∞ is the Infinity Laplacian.

10



A SHORT OVERVIEW

We denote the ∞-laplacian by the following degenerate operator:

∆∞u =
∑
ij

DiuDjuDiju = ⟨D2u · Du,Du⟩

! the operator ∆∞ is elliptic ”only in the field η⃗ = Du”.

the best
Lispchitz
extension

⇔ ∆∞u = 0 ⇔
comparison

with
cones
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OUR MAIN RESULT

! One of the main issues here is the lack of methods for pro-
viding regularity results for PDE involving ∆∞. Indeed, even for
the homogeneous case

∆∞u = 0

one is known that in general solutions are only locally Lipschitz.
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A SHORT OVERVIEW

Regularity for infinity harmonic functions:

✓ solutions are locally C0,1

✓ for any dimensions: differentiable (ES 2012)

✓ in two dimensions:

∙ solutions are locally C1 (Savin 2005)
∙ solutions are locally C1,α for small α > 0 (ES 2008)
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A SHORT OVERVIEW

? open question: C1,α for a optimal 0 < α ≤ 1/3

in R2 : X4/3 + Y4/3 (Arronson’s example 1960)
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OUR MAIN GOAL

Here, we focus on the study of analytic and geometric properties for
viscosity solutions of

∆∞u = u−γ in ∂{u > 0} ∩ B1,

for parameter 0 < γ < 1.

✓ Case infinity obstacle problem γ = 0 was studied in [TRU 2015].

. Solutions are C1,α at ∂{u > 0} for α =
1
3
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SINGULAR APPROACH STRATEGY

Let us turn our attention to the singularly perturbed strategy we
shall use in order to grapple with the lack of available variational
approaches:

∆∞u = u−γ

· Bε(u)
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SINGULAR APPROACH STRATEGY

γtγ−1χ{t>0}
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SINGULAR APPROACH STRATEGY

γtγ−1B(t)
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SINGULAR CASE

Here, for a given boundary datum φ > 0, we consider

−∆∞u = Bε(u) · u−γ in Ω

u = φ on ∂Ω
(Eε)

✓ Existence of positive (Perron’s) solutions, denoted by uε
✓ Under C0,1-compactness, uε −−−→

ε→0
u0 and by stability

−∆∞u0 = u−γ
0 in {u0 > 0}

in the viscosity sense.
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IMPROVED REGULARITY

THEOREM ( - G. Sá)
Let u be a positive solution of (Eε). There exists constant C > 0,
depending only on γ, ∥u∥L∞(B1) and dimension, such that, for points

x ∈ ∂{u > 0} ∩ B1/2,

there holds
sup
Br(x)

u ≤ C r θ

for θ =
4

3+ γ
.

Furthermore,

∂{u > 0} ⊂ {|Du| = 0},

which implies that u is C1,
1−γ
3+γ along ∂{u > 0}.
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SKETCH OF THE PROOF

1st step: Asymptotic estimates

sup
Br(x)

uε ≲ (Crµ + uε(x)
1
θ )θ for each µ ∈ (0, 1).

For this, we analyze regularity aspects for the corrector function

uγ := u
3−γ
4

ε

which solves in the viscosity sense

∆∞v =
[
(1− θ)|Dv|4 + θ−3f(x)

]
v−1

for f = Bε(uγ) ∈ [0, 1].
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SKETCH OF THE PROOF

1st step: Asymptotic estimates

Local C0,1− estimates for uγ .

Ishii-Lions method for nonvariational scenarios.

Φ(xm, ym) ∼ uγ(xm)− uγ(ym)− L|xm − ym|µ > 0

For ρ = |xm − ym| and ω(ρ) = Lρµ, we have

⟨Mxξx, ξx⟩ − ⟨Myξy, ξy⟩ ≲ −[ω′′(ω′)2](ρ) ∼ −ω−1(ρ).

This would imply that

uγ(ym)−1 − uγ(xm)−1 < 0 !
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SKETCH OF THE PROOF

2nd step: Asymptotic estimates imply optimal oscillation decay

sup
Br(x)

u ≤ C
(
rθ + u(x)

)
.

Proof: For each integer k > 1, we find εk > 0 and uk, such that

sk := sup
Brk (xk)

uk ≥ k(rθk + uk(xk)), (1)

for some radii 0 < rk < 1/2 and xk ∈ B1/2.
Define

φk(x) =
uk(xk + rkx)

sk
in B1.
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Note that
sup
B1

φk = 1 and φk(0) +
rθk
sk

≤ 1
k .

In addition, for each k > 0, φk solves a singular equation.
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SKETCH OF THE PROOF

2nd step: Asymptotic estimates imply optimal oscillation decay

sup
Br(x)

u ≤ C
(
rθ + u(x)

)
.

Proof: φk → φ0 which solves

φγ
0∆∞φ0 = 0 in B1,

satisfies
φ0 ≥ 0 in B1, sup

B1
φ0 = 1, φ0(0) = 0

and, for each 0 < µ < 1, there holds

sup
Br(x)

φ0 ≤
(
Crµ + φ0(x)

1
θ

)θ

, in particular Dφ0 = 0 at ∂{φ0 > 0}.
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SKETCH OF THE PROOF

2nd step: Asymptotic estimates imply optimal oscillation decay

sup
Br(x)

u ≤ C
(
rθ + u(x)

)
.

Proof: Finally, we find z0 ∈ {φ0 = 0} and z+ ∈ {φ0 > 0}, satisfying

d := dist(z+, {φ0 = 0}) = |z+ − z0|.

Note that φ0 is infinity-harmonic in Bd(z+). By the Hopf lemma

0 < lim inf
s→0+

φ0(z0 + s(z+ − z0))− φ0(z0)
s .

On the other hand, choosing 1/θ < µ < 1 and letting s→ 0+

φ0(s(z+ − z0) + z0)
s =

φ0(s(z+ − z0) + z0)
sµθ · sµθ−1 ≤ Csµθ−1 → 0.

25



SKETCH OF THE PROOF

2nd step: Asymptotic estimates imply optimal oscillation decay

sup
Br(x)

u ≤ C
(
rθ + u(x)

)
.

Proof: Finally, we find z0 ∈ {φ0 = 0} and z+ ∈ {φ0 > 0}, satisfying

d := dist(z+, {φ0 = 0}) = |z+ − z0|.

Note that φ0 is infinity-harmonic in Bd(z+). By the Hopf lemma

0 < lim inf
s→0+

φ0(z0 + s(z+ − z0))− φ0(z0)
s .

On the other hand, choosing 1/θ < µ < 1 and letting s→ 0+

φ0(s(z+ − z0) + z0)
s =

φ0(s(z+ − z0) + z0)
sµθ · sµθ−1 ≤ Csµθ−1 → 0.
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GROWTH ESTIMATES AT FLOATING SETS

! constants do not depend on ε
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IMPROVED REGULARITY

THEOREM ( - G. Sá)
Let u be a positive solution of (Eε). There exists constant C > 0,
depending only on γ, ∥u∥L∞(B1) and dimension, such that, for points

x ∈ ∂{u > 0} ∩ B1/2,

there holds
sup
Br(x)

u ≤ C r θ

for θ =
4

3+ γ
.

Furthermore,

∂{u > 0} ⊂ {|Du| = 0},

which implies that u is C1,
1−γ
3+γ along ∂{u > 0}.
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NONDEGENERACY ESTIMATES

THEOREM ( - G. Sá)
Let u be a limiting Perron’s solution. There exists c > 0, depending
only on γ, such that for

x ∈ {u > 0} ∩ B1/2,

there holds
sup
Br(x)

u ≥ c rθ.
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OTHER RELATED SCENARIOS

Sharp regularity for singular obstacle problems.
with R. Teymurazyan and V. Voskanyan
Math. Ann., to appear.

Singular fully nonlinear parabolic equations
with G. Sá and J.M. Urbano
Submitted.
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MUITO OBRIGADO!
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