ON HIGHLY DEGENERATE ALT-PHILLIPS PROBLEMS

Damião J. Araújo

November 10, 2022

Universidade Federal da Paraíba João Pessoa - Brazil

Here we start mentioning the following classical works

	_		-	٦
	=	-		
	_	_	_	1
-	_	_	-	
-	-	-		1
-				· I

Phillips, D.: A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32, 1–17 (1983)

	_	
Ι.		
13		
-		
13		
ι.		

Alt, H.M., Phillips D.: A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63–107 (1986)

The following minimization problem is considered

$$MIN_{u\geq 0} \int_{\Omega} \frac{1}{2} |Du(x)|^2 + u(x)^{1-\gamma} dx$$

with $0 < \gamma < 1$

The following minimization problem is considered

$$\operatorname{MIN}_{u\geq 0} \int_{\Omega} \frac{1}{2} |Du(x)|^2 + u(x)^{1-\gamma} dx$$

with $0 < \gamma < 1$ (non-differentiable)

One is related to the following free boundary problem

 $-\Delta u = u^{-\gamma}$ in $\{u > 0\} \cap \Omega$.

One is related to the following free boundary problem

 $-\Delta u = u^{-\gamma} \quad \text{ in } \{u > 0\} \cap \Omega.$

Minimizers model density of gases and the singular right-hand side denotes the rate of a reaction with catalyst.

One is related to the following free boundary problem

 $-\Delta u = u^{-\gamma}$ in $\{u > 0\} \cap \Omega$.

Minimizers model density of gases and the singular right-hand side denotes the rate of a reaction with catalyst.

! We do not know where the PDE is supposed to be satisfied.

. Obstacle problem:
$$\int \frac{1}{2} |Du(x)|^2 + u(x) dx$$
 (case $\gamma = 0$)

. Obstacle problem:
$$\int \frac{1}{2} |Du(x)|^2 + u(x) dx$$
 (case $\gamma = 0$)
Solutions are locally $C^{1,1}$ (Bounded Hessian)

. Obstacle problem:
$$\int \frac{1}{2} |Du(x)|^2 + u(x) dx$$
 (case $\gamma = 0$)
Solutions are locally $C^{1,1}$ (Bounded Hessian)

. Bernoulli problem:
$$\int \frac{1}{2} |Du(x)|^2 + \chi_{\{u>0\}} dx$$
 (case $\gamma = 1$)

- . Obstacle problem: $\int \frac{1}{2} |Du(x)|^2 + u(x) dx$ (case $\gamma = 0$) Solutions are locally $C^{1,1}$ (Bounded Hessian)
- . Bernoulli problem: $\int \frac{1}{2} |Du(x)|^2 + \chi_{\{u>0\}} dx$ (case $\gamma = 1$) Solutions are locally $C^{0,1}$ (Bounded gradient)

Sharp regularity estimates for solutions in the variational case:

$$\checkmark$$
 solutions are locally $C^{1,\alpha}$, for $\alpha = \frac{1-\gamma}{1+\gamma}$ (Phillips 1983)

Sharp regularity estimates for solutions in the variational case:

$$\checkmark$$
 solutions are locally $C^{1,lpha}$, for $lpha=rac{1-\gamma}{1+\gamma}$ (Phillips 1983)

$$\checkmark$$
 For the *p*-Laplacian case: $\alpha = \min\left\{\alpha_p^-, \frac{1-\gamma}{p-(1-\gamma)}\right\}$ (LTQ 2015)

Sharp regularity estimates for solutions in the variational case:

$$\checkmark$$
 solutions are locally $C^{1,\alpha}$, for $\alpha = \frac{1-\gamma}{1+\gamma}$ (Phillips 1983)

$$\checkmark$$
 For the *p*-Laplacian case: $\alpha = \min\left\{\alpha_p^-, \frac{1-\gamma}{p-(1-\gamma)}\right\}$ (LTQ 2015)

✓ Obstacle *p*-Laplacian ($\gamma = 0$): $\alpha = \frac{1}{p-1}$ at $\partial \{u > 0\}$ (ALS 2015)

$$F(D^2u) = u^{-\gamma}$$
 in $\{u > 0\}$

where *F* is (λ, Λ) - uniformly elliptic (viscosity sense):

$$F(D^2 u) = u^{-\gamma}$$
 in $\{u > 0\}$

where *F* is (λ, Λ) - uniformly elliptic (viscosity sense):

$$\checkmark$$
 solutions are locally $C^{1,lpha}$, for $lpha=rac{1-\gamma}{1+\gamma}$ (AT 2013)

$$F(D^2u) = u^{-\gamma}$$
 in $\{u > 0\}$

where *F* is (λ, Λ) - uniformly elliptic (viscosity sense):

$$\checkmark$$
 solutions are locally $C^{1,\alpha}$, for $\alpha = \frac{1-\gamma}{1+\gamma}$ (AT 2013)

 \checkmark The non-singular case γ < 0 (Teixeira 2016, WY 2021)

$$F(D^2 u) = u^{-\gamma}$$
 in $\{u > 0\}$

where *F* is (λ, Λ) - uniformly elliptic (viscosity sense):

Uniformly ellipticity:

$$\lambda$$
trace(P) \leq F(X + P) - F(X) \leq Atrace(P), for P \geq 0

$$F(D^2 u) = u^{-\gamma}$$
 in $\{u > 0\}$

where *F* is (λ, Λ) - uniformly elliptic (viscosity sense):

Uniformly ellipticity:

$$\lambda$$
trace(P) \leq F(X + P) - F(X) \leq Atrace(P), for P \geq 0

Degenerate ellipticity:

 $F(X) \leq F(Y)$ whenever $X \leq Y$

What about to consider 2nd order degenerate operators?

Γ	=
l	
L	
L	

Infinity Laplacian equations with singular absorptions. with G. Sá Calc. Var. 61, 132 (2022).

Γ	=
l	
L	
L	

Infinity Laplacian equations with singular absorptions. with G. Sá Calc. Var. 61, 132 (2022).

We consider the following singular free boundary problem

 $F(Du, D^2u) = u^{-\gamma}$ in $\{u > 0\} \cap B_1$

for $0 < \gamma < 1$.

We consider the following singular free boundary problem $F(Du, D^2u) = u^{-\gamma}$ in $\{u > 0\} \cap B_1$ for $0 < \gamma < 1$. For $F(Du, D^2u) = \Delta_{\infty}u$ where Δ_{∞} is the Infinity Laplacian.

We denote the ∞ -laplacian by the following degenerate operator:

$$\Delta_{\infty} u = \sum_{ij} D_i u D_j u D_{ij} u = \langle D^2 u \cdot D u, D u \rangle$$

We denote the ∞ -laplacian by the following degenerate operator:

$$\Delta_{\infty} u = \sum_{ij} D_i u D_j u D_{ij} u = \langle D^2 u \cdot D u, D u \rangle$$

! the operator Δ_{∞} is elliptic **"only in the field** $\vec{\eta} = Du$ ".

We denote the ∞ -laplacian by the following degenerate operator:

$$\Delta_{\infty} u = \sum_{ij} D_i u D_j u D_{ij} u = \langle D^2 u \cdot D u, D u \rangle$$

! the operator Δ_{∞} is elliptic **"only in the field** $\vec{\eta} = Du$ ".

the best				comparison
Lispchitz	\Leftrightarrow	$\Delta_\infty u = 0$	\Leftrightarrow	with
extension				cones

! One of the main issues here is the lack of methods for providing regularity results for PDE involving Δ_∞ . Indeed, even for the homogeneous case

$$\Delta_{\infty} u = 0$$

one is known that in general solutions are only locally Lipschitz.

 \checkmark solutions are locally $C^{0,1}$

- \checkmark solutions are locally $C^{0,1}$
- \checkmark for any dimensions: differentiable (ES 2012)

- \checkmark solutions are locally $C^{0,1}$
- \checkmark for any dimensions: differentiable (ES 2012)
- \checkmark in two dimensions:

- \checkmark solutions are locally $C^{0,1}$
- \checkmark for any dimensions: differentiable (ES 2012)
- \checkmark in two dimensions:
 - \cdot solutions are locally C^1 (Savin 2005)

- \checkmark solutions are locally $C^{0,1}$
- \checkmark for any dimensions: differentiable (ES 2012)
- \checkmark in two dimensions:
 - solutions are locally *C*¹ (Savin 2005)
 - \cdot solutions are locally $C^{1,\alpha}$ for small $\alpha > 0$ (ES 2008)

? **open question**: $C^{1,\alpha}$ for a optimal $0 < \alpha \le 1/3$

in R^2 : $X^{4/3} + Y^{4/3}$ (Arronson's example 1960)

Here, we focus on the study of analytic and geometric properties for viscosity solutions of

 $\Delta_{\infty} u = u^{-\gamma} \quad \text{in } \partial\{u > 0\} \cap B_1,$

for parameter $0 < \gamma < 1$.
Here, we focus on the study of analytic and geometric properties for viscosity solutions of

 $\Delta_{\infty} u = u^{-\gamma} \quad \text{in } \partial\{u > 0\} \cap B_1,$

for parameter $0 < \gamma < 1$.

 \checkmark Case infinity obstacle problem $\gamma = 0$ was studied in [TRU 2015].

Here, we focus on the study of analytic and geometric properties for viscosity solutions of

$$\Delta_{\infty} u = u^{-\gamma} \quad \text{in } \partial\{u > 0\} \cap B_1,$$

for parameter $0 < \gamma < 1$.

✓ Case infinity obstacle problem $\gamma = 0$ was studied in [TRU 2015]. . Solutions are $C^{1,\alpha}$ at $\partial \{u > 0\}$ for $\alpha = \frac{1}{3}$ Let us turn our attention to the singularly perturbed strategy we shall use in order to grapple with the lack of available variational approaches:

$$\Delta_{\infty} u = u^{-\gamma}$$

Let us turn our attention to the singularly perturbed strategy we shall use in order to grapple with the lack of available variational approaches:

$$\Delta_{\infty} u = u^{-\gamma} \cdot \mathsf{B}_{\varepsilon}(u)$$

Here, for a given boundary datum $\varphi >$ 0, we consider

$$\begin{aligned} -\Delta_{\infty} u &= B_{\varepsilon}(u) \cdot u^{-\gamma} & \text{in } \Omega \\ u &= \varphi & \text{on } \partial\Omega \end{aligned} \tag{E_{\varepsilon}}$$

Here, for a given boundary datum $\varphi >$ 0, we consider

$$\begin{array}{rcl} -\Delta_{\infty} u &=& B_{\varepsilon}(u) \cdot u^{-\gamma} & \text{in } \Omega \\ & u &=& \varphi & \text{on } \partial \Omega \end{array} \tag{E_{ε}}$$

 \checkmark Existence of positive (Perron's) solutions, denoted by u_{ε}

Here, for a given boundary datum $\varphi > 0$, we consider

$$\begin{aligned} -\Delta_{\infty} u &= B_{\varepsilon}(u) \cdot u^{-\gamma} & \text{in } \Omega \\ u &= \varphi & \text{on } \partial\Omega \end{aligned} \tag{E_{\varepsilon}}$$

 \checkmark Existence of positive (Perron's) solutions, denoted by u_{ε}

 \checkmark Under C^{0,1}-compactness, $u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u_0$ and by stability

$$-\Delta_{\infty}u_0 = u_0^{-\gamma}$$
 in $\{u_0 > 0\}$

in the viscosity sense.

THEOREM (_____- G. Sá) Let u be a positive solution of (E_{ε}) . There exists constant C > 0, depending only on γ , $\|u\|_{L^{\infty}(B_1)}$ and dimension, such that, for points $x \in \partial \{u > 0\} \cap B_{1/2},$ there holds $\sup u \leq C r^{\theta}$ $B_r(x)$ for $\theta = \frac{4}{3+\gamma}$.

THEOREM (_____- G. Sá) Let u be a positive solution of (E_{ε}) . There exists constant C > 0, depending only on γ , $\|u\|_{L^{\infty}(B_1)}$ and dimension, such that, for points $x \in \partial \{u > 0\} \cap B_{1/2},$ there holds $\sup u \leq C r^{\theta}$ $B_r(x)$ for $\theta = \frac{4}{3+\gamma}$. Furthermore, $\partial \{u > 0\} \subset \{|Du| = 0\},\$ which implies that *u* is $C^{1,\frac{1-\gamma}{3+\gamma}}$ along $\partial \{u > 0\}$.

$$\sup_{B_{r}(x)} u_{\varepsilon} \lesssim (Cr^{\mu} + u_{\varepsilon}(x)^{\frac{1}{\theta}})^{\theta} \quad \text{for each } \mu \in (0, 1).$$

$$\sup_{B_{r}(X)} u_{\varepsilon} \lesssim (Cr^{\mu} + u_{\varepsilon}(X)^{\frac{1}{\theta}})^{\theta} \quad \text{for each } \mu \in (0, 1).$$

For this, we analyze regularity aspects for the corrector function

$$u_{\gamma} := u_{\varepsilon}^{\frac{3-\gamma}{4}}$$

$$\sup_{B_{r}(x)} u_{\varepsilon} \lesssim (Cr^{\mu} + u_{\varepsilon}(x)^{\frac{1}{\theta}})^{\theta} \quad \text{for each } \mu \in (0, 1).$$

For this, we analyze regularity aspects for the corrector function

$$u_{\gamma} := u_{\varepsilon}^{\frac{3-\gamma}{4}}$$

which solves in the viscosity sense

$$\Delta_{\infty} v = \left[(1-\theta) |Dv|^4 + \theta^{-3} f(x) \right] v^{-1}$$

for $f = B_{\varepsilon}(u_{\gamma}) \in [0, 1]$.

Local $C^{0,1^-}$ estimates for u_{γ} .

Local $C^{0,1^-}$ estimates for u_{γ} .

Ishii-Lions method for nonvariational scenarios.

Local $C^{0,1^-}$ estimates for u_{γ} .

Ishii-Lions method for nonvariational scenarios.

$$\Phi(x_m, y_m) \sim u_{\gamma}(x_m) - u_{\gamma}(y_m) - L|x_m - y_m|^{\mu}$$

Local $C^{0,1^-}$ estimates for u_{γ} .

Ishii-Lions method for nonvariational scenarios.

$$\Phi(x_m, y_m) \sim u_{\gamma}(x_m) - u_{\gamma}(y_m) - L|x_m - y_m|^{\mu} > 0$$

Local $C^{0,1^-}$ estimates for u_{γ} .

Ishii-Lions method for nonvariational scenarios.

$$\Phi(x_m, y_m) \sim u_{\gamma}(x_m) - u_{\gamma}(y_m) - L|x_m - y_m|^{\mu} > 0$$

For $ho = |x_m - y_m|$ and $\omega(
ho) = L
ho^\mu$, we have

$$\langle M_x \xi_x, \xi_x \rangle - \langle M_y \xi_y, \xi_y \rangle \lesssim -[\omega''(\omega')^2](\rho) \sim -\omega^{-1}(\rho).$$

Local $C^{0,1^-}$ estimates for u_{γ} .

Ishii-Lions method for nonvariational scenarios.

$$\Phi(x_m, y_m) \sim u_{\gamma}(x_m) - u_{\gamma}(y_m) - L|x_m - y_m|^{\mu} > 0$$

For $\rho = |x_m - y_m|$ and $\omega(\rho) = L\rho^{\mu}$, we have
 $\langle M_x \xi_x, \xi_x \rangle - \langle M_y \xi_y, \xi_y \rangle \lesssim -[\omega''(\omega')^2](\rho) \sim -\omega^{-1}(\rho).$

This would imply that

$$u_{\gamma}(y_m)^{-1} - u_{\gamma}(x_m)^{-1} < 0$$
 !

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: For each integer k > 1, we find $\varepsilon_k > 0$ and u_k , such that

$$S_k := \sup_{B_{r_k}(x_k)} u_k \ge k(r_k^{\theta} + u_k(x_k)), \tag{1}$$

for some radii $0 < r_k < 1/2$ and $x_k \in B_{1/2}$. Define

$$\varphi_k(x) = \frac{u_k(x_k + r_k x)}{s_k} \quad \text{in } B_1.$$

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: Define

$$\varphi_k(x) = \frac{u_k(x_k + r_k x)}{s_k} \quad \text{in } B_1.$$

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: Define

$$\varphi_k(x) = rac{u_k(x_k + r_k x)}{s_k}$$
 in B_1 .

Note that

$$\sup_{B_1} \varphi_k = 1 \quad \text{and} \quad \varphi_k(0) + \frac{r_k^{\theta}}{s_k} \leq \frac{1}{k}.$$

In addition, for each k > 0, φ_k solves a singular equation.

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: Define

$$\varphi_k(x) = rac{u_k(x_k + r_k x)}{s_k}$$
 in B_1 .

Note that

$$\sup_{B_1} \varphi_k = 1 \quad \text{and} \quad \varphi_k(0) + \frac{r_k^{\theta}}{s_k} \leq \frac{1}{k}.$$

In addition, for each k > 0, φ_k solves a singular equation.

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: $\varphi_k \rightarrow \varphi_0$ which solves

$$\varphi_0^{\gamma}\Delta_{\infty}\varphi_0=0 \quad \text{in } B_1,$$

satisfies

$$\varphi_0 \ge 0$$
 in B_1 , $\sup_{B_1} \varphi_0 = 1$, $\varphi_0(0) = 0$

and, for each 0 $<\mu<$ 1, there holds

$$\sup_{B_r(x)}\varphi_0 \leq \left(Cr^{\mu} + \varphi_0(x)^{\frac{1}{\theta}}\right)^{\theta}, \text{ in particular } D\varphi_0 = 0 \text{ at } \partial\{\varphi_0 > 0\}.$$

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: Finally, we find $z_0 \in \{\varphi_0 = 0\}$ and $z_+ \in \{\varphi_0 > 0\}$, satisfying

$$d := \text{dist}(z_+, \{\varphi_0 = 0\}) = |z_+ - z_0|.$$

Note that φ_0 is infinity-harmonic in $B_d(z_+)$. By the Hopf lemma

$$0 < \liminf_{s \to 0^+} \frac{\varphi_0(Z_0 + S(Z_+ - Z_0)) - \varphi_0(Z_0)}{S}$$

On the other hand, choosing 1/ $heta < \mu <$ 1 and letting s ightarrow 0⁺

$$\frac{\varphi_0(s(z_+-z_0)+z_0)}{s}=\frac{\varphi_0(s(z_+-z_0)+z_0)}{s^{\mu\theta}}\cdot s^{\mu\theta-1}\leq Cs^{\mu\theta-1}\to 0.$$

$$\sup_{B_r(x)} u \leq C\left(r^{\theta} + u(x)\right).$$

Proof: Finally, we find $z_0 \in \{\varphi_0 = 0\}$ and $z_+ \in \{\varphi_0 > 0\}$, satisfying

$$d := \text{dist}(z_+, \{\varphi_0 = 0\}) = |z_+ - z_0|.$$

Note that φ_0 is infinity-harmonic in $B_d(z_+)$. By the Hopf lemma

$$0 < \liminf_{s \to 0^+} \frac{\varphi_0(z_0 + s(z_+ - z_0)) - \varphi_0(z_0)}{s}$$

On the other hand, choosing $1/\theta < \mu < 1$ and letting s $\rightarrow 0^+$

$$\frac{\varphi_0(s(z_+-z_0)+z_0)}{s}=\frac{\varphi_0(s(z_+-z_0)+z_0)}{s^{\mu\theta}}\cdot s^{\mu\theta-1}\leq Cs^{\mu\theta-1}\to 0.$$

 $\fbox{}$ constants do not depend on arepsilon

$\fbox{ }$ constants do not depend on arepsilon

THEOREM (_____- G. Sá) Let u be a positive solution of (E_{ε}) . There exists constant C > 0, depending only on γ , $\|u\|_{L^{\infty}(B_1)}$ and dimension, such that, for points $x \in \partial \{u > 0\} \cap B_{1/2},$ there holds $\sup u \leq C r^{\theta}$ $B_r(x)$ for $\theta = \frac{4}{3+\gamma}$.

THEOREM (_____- G. Sá) Let u be a positive solution of (E_{ε}) . There exists constant C > 0, depending only on γ , $\|u\|_{L^{\infty}(B_1)}$ and dimension, such that, for points $x \in \partial \{u > 0\} \cap B_{1/2},$ there holds $\sup u \leq C r^{\theta}$ $B_r(x)$ for $\theta = \frac{4}{3+\gamma}$. Furthermore, $\partial \{u > 0\} \subset \{|Du| = 0\},\$ which implies that *u* is $C^{1,\frac{1-\gamma}{3+\gamma}}$ along $\partial \{u > 0\}$.

THEOREM (_____- G. Sá) Let u be a limiting Perron's solution. There exists c > 0, depending only on γ , such that for $x \in \overline{\{u > 0\}} \cap B_{1/2}$, there holds $\sup_{B_r(x)} u \ge c r^{\theta}$.
-		٦
	_	
_		.
2		:
-		-
1		:
_		_

Sharp regularity for singular obstacle problems. with R. Teymurazyan and V. Voskanyan Math. Ann., to appear.

	_	
_	_	
=		
1		
-		

Sharp regularity for singular obstacle problems. with R. Teymurazyan and V. Voskanyan Math. Ann., to appear.

		_
	_	- 1
-		_
-		-1
2		
-		-1

Singular fully nonlinear parabolic equations with G. Sá and J.M. Urbano Submitted.

MUITO OBRIGADO!